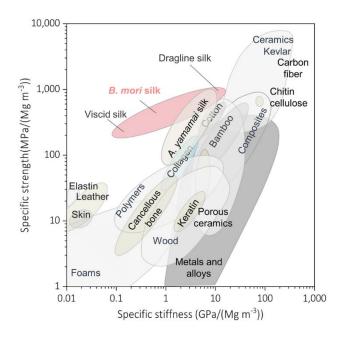
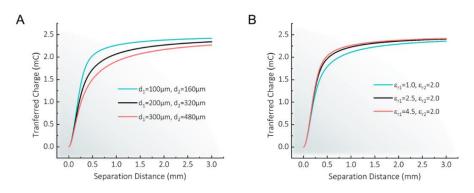
Supporting Information for


Ultrastable and High Performance Silk Energy Harvesting Textiles

Chao Ye¹, Shaojun Dong¹, Jing Ren^{1, *}, Shengjie Ling^{1,*}


¹School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China

*Corresponding authors. E-mail: <u>renjing@shanghaitech.edu.cn (Jing Ren);</u> <u>lingshj@shanghaitech.edu.cn (Shengjie Ling)</u>

Supplementary Figures and Tables

Fig. S1 Comparison of the specific strength and specific stiffness of *B. mori* silk with other natural and synthetic materials. Ashby plot of natural and synthetic materials are adapted from reference [S1]

Fig. S2 Effect of thickness and relative permittivity on real-time transferred charge: **a** Effect of thickness of SF (d_1) and PTFEF (d_2) on the transferred charge (Q) of the EHT, respectively. **b** Effect of relative permittivity of SF (ε_{r1}) on the transferred charge (Q) of the EHT

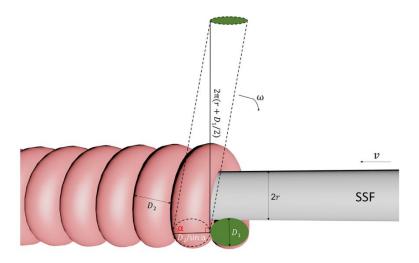


Fig. S3 Schematic illustration of geometry of full-packaged core-shell yarns without gaps on core yarns

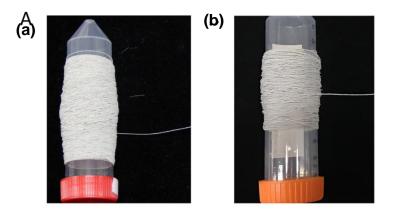
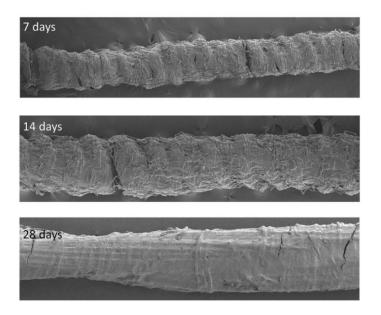



Fig. S4 Photographs of SF/SSF yarn a and PTFE/SSF yarn b

Fig. S5 SEM image of surface morphology on SF/SSF yarn after incubated in HFIP for 7days, 14days, and 28 days

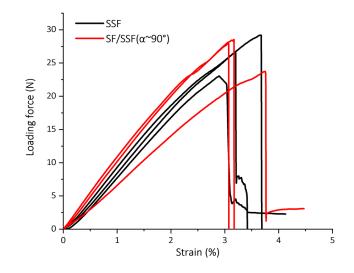
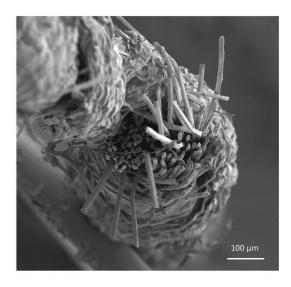
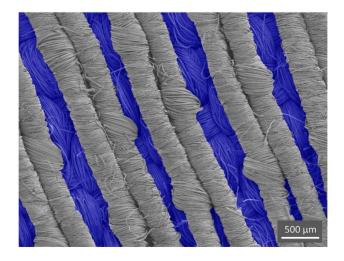
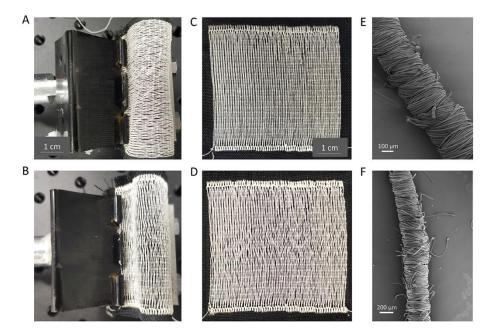
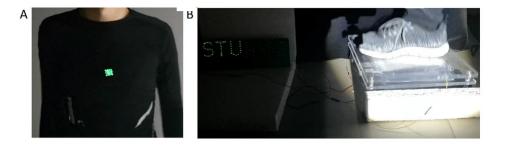


Fig. S6 Loading force-strain curves of SSFs and SF/SSF yarns


Fig. S7 SEM image of cross section of the SF/SSF yarn after being tensiled to failure


Fig. S8 SEM image of the SF/SSF yarn in EHT. The area recoloured in blue were the base fabric

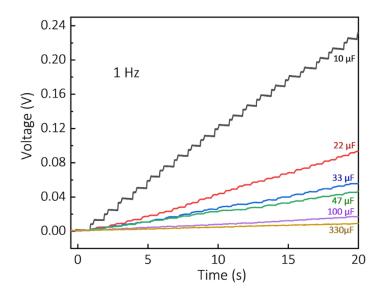

Fig. S9 Photograph of the SF/SSF yarn woven into large scale textile

Fig. S10 Long-time cyclic deformation test of the SF/SSF fabric: a Photographs of the SF/SSF fabric bending along longitudinal directions. b Photograph of the SF/SSF fabric bending along transverse directions. c Photograph of pristine SF/SSF fabric. d Photograph of SF/SSF fabric after 2.3 million of cyclic deformations. e SEM image of pristine SF/SSF yarns. f SEM image of SF/SSF yarn after 2.3 million of cyclic deformations. image of SF/SSF

Fig. S11 a Photograph of the 8×8 cm EHTs used as wearable power generation fabric to drive 25 LEDs. (Ambient humidity: 70%) **b** Photograph of the power generation floor used to drive a group of LEDs. (Ambient humidity: 50%)

Fig. S12 Measured voltage of capacitors with different capacities ($10 \ \mu\text{F}$ — $330 \ \mu\text{F}$) charged by the energy harvesting floor. (Ambient humidity: 37%)

The detailed derivation process about output voltage of SF/PTFEF EHT

The derivation is based on reference [S2]. The Equation 1 can be solved by specifying the boundary condition. We assume that the two plates are close to each other at t = 0. Hence, the boundary condition is

$$Q(t=0) = 0 \tag{S1}$$

Then Eq. S1 can be solved analytically as

$$Q(t) = \sigma S - \sigma Sexp \left[-\frac{1}{RS\varepsilon_0} \left(d_0 t + \int_0^t x(t) dt \right) \right] - \frac{\sigma d_0}{R\varepsilon_0} exp \left[-\frac{1}{RS\varepsilon_0} \left(d_0 t + \int_0^t x(t) dt \right) \right] \times \int_0^t exp \left[\frac{1}{RS\varepsilon_0} \left(d_0 z + \int_0^z x(z) dz \right) \right] dz$$
(S2)

Then, we consider a special case that the top plate starts to separate from the bottom one at a uniform velocity, under the external mechanical force.

$$x(t) = vt \tag{S3}$$

Substitute Eq. S3 into Eq. S2, we can obtain,

$$Q(t) = \sigma S \left[1 - exp(-At - Bt^2) + \sqrt{2}Fexp(-At - Bt^2) \times Dawson\left(\frac{F}{\sqrt{2}}\right) - \sqrt{2}F \times Dawson\left(\frac{F}{\sqrt{2}} + \sqrt{B}t\right) \right]$$
(S4)

Therefore, the current and voltage output can be derived as

S5 / S7

$$I(t) = \frac{dQ}{dt} = \sigma S \left[exp(-At - Bt^{2})(A + 2Bt) - \sqrt{2}Fexp(-At - Bt^{2})(A + 2Bt) \times Dawson\left(\frac{F}{\sqrt{2}}\right) - A + 2A\left(\frac{F}{\sqrt{2}} + \sqrt{B}t\right) + 2A\left(\frac{F}{\sqrt{2}} + \sqrt{B}t\right) + 2Bt + \sqrt{B}t \right]$$
(S5)

$$V(t) = RI(t) = R\sigma S \left[exp(-At - Bt^{2})(A + 2Bt) - \sqrt{2}Fexp(-At - Bt^{2})(A + 2Bt) \times Dawson\left(\frac{F}{\sqrt{2}}\right) - A + 2A\left(\frac{F}{\sqrt{2}} + \sqrt{B}t\right) + 2A\left(\frac{F}{\sqrt{2}} + \sqrt{B}t\right) \right]$$

$$\times Dawson\left(\frac{F}{\sqrt{2}} + \sqrt{B}t\right)$$
(S6)

$$V(x) = R\sigma S \left\{ exp\left(-\frac{A}{v}x - \frac{B}{v^2}x^2\right) \left(A + \frac{2B}{v}x\right) \left(1 - \sqrt{2}F \times Dawson\left(\frac{F}{\sqrt{2}}\right)\right) - A \left[1 - 2\left(\frac{F}{\sqrt{2}} + \frac{\sqrt{B}}{v}x\right) \times Dawson\left(\frac{F}{\sqrt{2}} + \frac{\sqrt{B}}{v}x\right)\right] \right\}$$
(S7)

In the above expressions,

$$A = \frac{d_0}{RS\varepsilon_0} \tag{S8}$$

$$B = \frac{v}{2RS\varepsilon_0}$$
(S9)

$$F = \frac{A}{\sqrt{2B}} = \frac{d_0}{\sqrt{RS\varepsilon_0 \nu}}$$
(S10)

$$Dawson(x) = exp(-x^2) \int_0^x exp(y^2) dy$$
 (S11)

Table S1	Parameters of the EHT	

$d_1 = 0.1 \text{ mm}, \varepsilon_{r1} = 4.5$
$d_2 = 0.16 \text{ mm}, \epsilon_{r_2} = 2$
$25 cm^2$
$0.001 \ C/m^2$
3 mm
0.012 <i>m/s</i>

SF	$D_1 = 0.10mm$	$D_2 = 0.17mm$
PTFEF	$D_1 = 0.16mm$	$D_2 = 0.20mm$

Table S2 Diameters of shell yarns on SSF

Supplementary References

- [S1]U.G.K. Wegst, M.F. Ashby, The mechanical efficiency of natural materials. Philos. **84**, 2167-2186 (2004). https://doi.org/10.1080/14786430410001680935
- [S2]S. Niu, S. Wang, L. Lin, Y. Liu, Y. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contactmode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576-3583 (2013). https://doi.org/10.1039/c3ee42571a