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Advanced Anode Materials of Potassium Ion 
Batteries: from Zero Dimension to Three 
Dimensions

Jiefeng Zheng1, Yuanji Wu1, Yingjuan Sun1, Jianhua Rong1, Hongyan Li1  *, Li Niu2

HIGHLIGHTS

• This review introduces the recent anode materials of potassium ion batteries classified into 0D, 1D, 2D, and 3D, mainly including 
carbon materials, metal-based chalcogenides and metal-based oxides, and alloying materials.

• The advantages, disadvantages, and optimized strategies of different dimensional anode materials are summarized.

• The relationship between different dimensional anode materials in potassium ion batteries and the corresponding electrochemical 
performances is outlined. And some strategies are proposed to deal with the current disadvantages of potassium ion batteries.

ABSTRACT Potassium ion batteries (PIBs) with the prominent advantages of suf-
ficient reserves and economical cost are attractive candidates of new rechargeable 
batteries for large-grid electrochemical energy storage systems (EESs). However, 
there are still some obstacles like large size of  K+ to commercial PIBs applications. 
Therefore, rational structural design based on appropriate materials is essential to 
obtain practical PIBs anode with  K+ accommodated and fast diffused. Nanostructural 
design has been considered as one of the effective strategies to solve these issues 
owing to unique physicochemical properties. Accordingly, quite a few recent anode 
materials with different dimensions in PIBs have been reported, mainly involving 
in carbon materials, metal-based chalcogenides (MCs), metal-based oxides (MOs), 
and alloying materials. Among these anodes, nanostructural carbon materials with 
shorter ionic transfer path are beneficial for decreasing the resistances of transporta-
tion. Besides, MCs, MOs, and alloying materials with nanostructures can effectively 
alleviate their stress changes. Herein, these materials are classified into 0D, 1D, 2D, 
and 3D. Particularly, the relationship between different dimensional structures and the corresponding electrochemical performances has 
been outlined. Meanwhile, some strategies are proposed to deal with the current disadvantages. Hope that the readers are enlightened from 
this review to carry out further experiments better.
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1 Introduction

In 2004, it was the first time that Ali Eftekhari proposed 
the prototype of PIBs [1]. Nonetheless, the later stagnation 
about PIBs researches was ascribed to the safety issues about 
the K as well as technologies about other metal ion batteries 
becoming increasingly popular [2]. Owing to fossil fuels 
used increasingly as well as the severity of global warming, 
renewable and sustainable energy sources have been exploit-
ing, including solar, wind, rain, geothermal, tide, and wave 
energies. Nevertheless, EESs must be considered to solve the 
intermittent issues of clean energy, which has a great effect 
on storing and delivering these energy resources [3, 4]. So 
far, lithium ion batteries (LIBs), as a representative energy 
storage technology, have been widely explored for portable 
devices, electrical vehicles, and large-grid EESs because of 
high energy density and stable cycling lifespan [5]. Unfor-
tunately, there are some barriers for LIBs to develop sus-
tainably, such as challenging lithium (Li) recovery, uneven 
distribution of Li, and increasing cost [6–8]. Accordingly, 
it is necessary to search for alternative rechargeable batter-
ies’ technologies. Based on cost and resource considerations, 
scientists have put a lot of effort into developing a series 
of non-lithium ion batteries, including sodium ion batter-
ies (SIBs) [9], PIBs [10], magnesium ion batteries (MIBs) 
[11], zinc ion batteries (ZIBs) [12], aluminum ion batteries 
(AIBs) [13] and so on [14]. Since zinc, magnesium, and 
aluminum are less active than lithium, they could be used 
as anode materials for metal ion batteries [15–17]; espe-
cially, magnesium and aluminum anodes do not even form 
dendrites, so their corresponding ion batteries are able to 
meet the safe requirement [18, 19]. In addition, commercial 
LIBs mainly use graphite with a theoretical specific capacity 
of 372 mAh g−1 as anode material, while the capacities of 
zinc (820 mAh g−1) [20], magnesium (2205 mAh g−1), and 
aluminum (2980 mAh g−1) anodes are much higher than 
that of graphite [18]. Clearly, each multivalent cation can 
exchange more than one electron, suggesting that if a host 
material can store the same number of cations, the capacities 
of multivalent ion cells are several times that of monovalent 
ion cells. Therefore, these multivalent ion batteries may have 
higher energy densities. Furthermore, the ion radii of zinc 
ions (0.74 Å) [12], magnesium ions (0.72 Å) [21], and alu-
minum ions (0.535 Å) [21] are relatively small, having low 
trends to damage the structure of host material. However, 

although these multivalent metal ion batteries have various 
irreplaceable advantages, they also face some intractable 
problems. First of all, the surface charge density of these 
multivalent metal ions is relatively high, resulting in greater 
mutual repulsion between cations and greater interaction 
between cations and host materials, which is not conducive 
to high capacity and high rate performance for batteries [22]. 
Besides, the potentials of Zn/Zn2+ (− 0.76 V vs. SHE) [23], 
Mg/Mg2+ (− 2.37 V vs. SHE) [14], Al/Al3+ (− 1.76 V vs. 
SHE) [13] are much higher than that of Li/Li+ (− 3.04 V 
vs. SHE), indicating that it is difficult for these batteries to 
obtain high operating voltages. There are many other prob-
lems that hinder their development. For instance, the zinc 
anode is still plagued by dendrites problem [24] and the 
electrolyte used in MIB is not ideal [14, 25, 26]. Compared 
with MIBs, ZIBs, and AIBs, both the working principle and 
the electrode materials and electrolytes used in SIBs and 
PIBs are similar to those of LIBs, for the reason that sodium, 
potassium, and lithium have similar physical and chemical 
properties [27]. It is expected that PIBs and SIBs have fewer 
obstacles for commercial applications.

PIBs aroused remarkable attentions again in 2015 and 
increasing researches have been publishing since then (the 
inset of Fig. 1). Firstly, PIBs possess similar rocking-chair 
operating principle compared with LIBs, which provides a 
favorable foundation for the studies of PIBs [28, 29]. Sec-
ondly, PIBs with lower price and sufficient resources are 
suitable for EESs [30]. Thirdly, the standard redox potential 
versus SHE of  K+/K (− 2.93 V) is not only even compara-
ble to that of  Li+/Li (− 3.04 V) but also lower compared 
with that of  Na+/Na (− 2.71 V); thus, PIBs are beneficial 
to produce higher operating voltages [31, 32]. Meanwhile, 
the lowest potential versus SHE of  K+/K (− 2.88 V) is com-
pared with that of  Na+/Na (− 2.56 V) and  Li+/Li (− 2.79 V) 
in some non-aqueous electrolytes like propylene carbonate 
solvent, which makes PIBs benefit from wider potential win-
dow to achieve high energy density [2, 33, 34]. Besides, 
Okoshi et al. indicated that weaker Lewis acidity and low 
K-ion desolvation energy brought about the smaller Stokes 
radius of solvated ions and the low interfacial reaction resist-
ance, respectively, which made K electrolytes possess higher 
conductivity compared with Li as well as sodium (Na) elec-
trolytes [35]. In addition, the commercialized graphite has 
been successfully explored for PIBs anode and the theoreti-
cal capacity is around 279 mAh g−1, but it is not suitable 
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for SIBs [28, 29, 31]. Furthermore, the unwanted K-metal 
deposition on the surface of anode may be hindered due to 
the insertion potential versus  K+/K of K-ion (0.2 V), which 
is beneficial for improving safety in terms of operation [32]. 
Moreover, compared with Li metal (180.54 °C) and Na metal 
(≈ 98 °C), K-metal lower melting point (63.38 °C) makes the 
dendritic K melting to provide a secure capability under an 
appropriate temperature [10, 36, 37]. It is worth mentioning 
that Cu foil can be replaced with Al foil as current collectors 
in anode electrode of PIBs without forming Al-K alloy, cut-
ting down the batteries’ production expenses [29]. Given the 
above-mentioned advantages, PIBs are promising alternative 

batteries for LIBs. To date, the reported PIBs anode materi-
als mainly contain carbon materials (e.g., carbon nanotubes 
(CNTs), graphene, and graphite), MCs (e.g.,  MoS2 and 
 MoSe2), MOs (e.g.,  MoO2 and  SnO2), and alloying materi-
als (e.g., antimony (Sb), tin (Sn), bismuth (Bi), germanium 
(Ge), and phosphorous (P)) (Fig. 1).

Accordingly, lots of anode materials have been reported, 
but it is still necessary to well comprehend how to select 
suitable anode materials so as to make it convenient to 
search for the related materials. It is known that alkali ion 
batteries (LIBs, SIBs, and PIBs) have similar electrochemi-
cal processes due to their similar features. And then, the 
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Fig. 1  Cycle capacity of various PIBs anode materials reported recently.  Sb2S3-SNG [38];  Co3O4-Fe2O3/C [39]; black phosphorus = BP 
[33];  Sn4P3/C [40]; CoS@G [41]; CNC [42]; PMC [43]; Sb@C [44]; P/C [45];  MoO2/rGO hollow sphere composites = MoO2/rGO [46]; 
 Mn3O4@rGO [47];  SnP3/C [48];  SnO2 nanoparticles anchored on carbon foam = SnO2@CF [49]; P@TBMC [50]; NCNF@CS [51]; alka-
lized  Ti3C2 MXene nanoribbons = Ti3C2 [52]; chitin-derived NCNFs = C-NCNFs [53]; bamboo-like NCNTs = b-NCNTs [54]; MOF-derived 
NCNTs = M-NCNTs [55]; red P [56]; segment-like Sb nanorod encapsulated in hollow carbon tube = Sb/HCT [57];  K2Ti6O13 [58]; Bi@C [59]; 
 Ti3CNTz [60];  MoS2@rGO [61];  MoS2@SnO2@C [62]; graphene-like  VSe2 nanosheets = VSe2 [63]; Few-layered  SnS2 nanosheets supported 
on rGO = SnS2/rGO [64]; FLNG [65]; PODG [66];  MoSe2/N–C [67]; EF-TNS [68]; FLP/rGO [69];  MoS2 [70];  K2Ti6O13 [71]; NP-Sb [72]; 
NP-Ge [73]; activated carbon = AC [74];  Co3[Co(CN)6]2 [75]; HPCS [76]; N/O co-doped mesoporous carbon octahedrons = NOHPHC [77]; 
rGO aerogel = rGO [78]; GNCs [79]; honeycomb hard carbon = HHC [80]. And the inset about number of articles obtained from Web of Science 
on PIBs anode materials and based on the corresponding Topic about potassium ion battery, potassium ion storage, potassium storage, and anode 
(accessed: July 1, 2020)
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practical application of alkali ion batteries can be influenced 
because of the choice of suitable anode materials based on 
selection principle. Therefore, the selection principle of 
LIBs, SIBs, and PIBs should be considered about several 
aspects in detail: (1) The materials can be regarded as anode 
materials, depending on whether the material can react with 
alkali ions and the corresponding theoretical capacity; (2) 
The structural stability and durability should also be consid-
ered because the robust structures can better tolerate with 
the stress variation during long cycles; (3) The operability 
of the materials is also one of the considered factors, so the 
materials affected easily by environmental conditions like 
oxygen should be excluded; (4) The cost of materials also 
affects the practical application of batteries; (5) The recy-
clability of electrode materials should be paid more atten-
tion to make good use of resources and protect environment. 
Therefore, based on aforementioned selection principle, the 
anode materials can be better chosen. However, it does not 
mean that all anode electrodes used in LIBs can be suc-
cessfully used in SIBs and PIBs, although LIBs, SIBs, and 
PIBs have similarities in the energy storage mechanism. For 
examples, the aforementioned graphite can be used as the 
commercial LIBs electrode materials but not suitable for 
 Na+. This phenomenon is possibly attributed to two main 
reasons: (1) Ionic insertion can be affected because of dif-
ferent storage reactions between ions and the corresponding 
active materials and (2) Different ion radii are necessary to 
search for related different material accommodating their 
ionic size, such as  Li+ (0.76 Å),  Na+ (1.02 Å), and  K+ (1.38 
Å). So some anode materials may be conducive to hold  Li+ 
but not in favor of containing large K-ion.

The aforementioned electrode materials have exhibited 
distinct electrochemical performances due to their unique 
features. Meanwhile, it is well known that the materials prop-
erties will be affected due to different dimensional structures. 
Zero-dimensional (0D) nanomaterials can promote ionic 
adsorption and mitigate stress variation owing to surface 
effect and small size effect. As 0D nanomaterials,  SnO2 nano-
particles anchored on carbon foam not only facilitated elec-
trolyte penetration but also boosted K-ion transport, which 
realized the cycle capacity of 231.7 mAh g−1 at 1 A g−1 after 
400 cycles as well as the rate capacity of 143.5 mAh g−1 
at 5 A g−1 [49]. Furthermore, one-dimensional (1D) nano-
materials with high length-to-diameter ratio are beneficial 
to enhance the electronic and ionic transfer and provide 
high mechanical robustness. For example, owing to unique 

architecture, nitrogen (N)-doped carbon nanofibers (CNFs) 
as electrode materials in PIBs exhibited outstanding perfor-
mances, delivering a capacity of 146 mAh g−1 at 2 A g−1 
after 4000 cycles [81]. In addition, two-dimensional (2D) 
nanomaterials are also capable of improving ionic adsorption 
and facilitating ionic diffusion owing to high surface area 
as well as tunable interlayer spacing. As one of the typical 
2D materials, few-layer bismuthene explored for PIBs anode 
materials could facilitate electrolyte infiltration, boost K-ion 
transfer, and buffer volumetric expansion in the course of 
charge and discharge process, so a capacity of more than 
200 mAh g−1 was delivered at 20 A g−1 over 2500 cycles 
[82]. As for three-dimensional (3D) nanomaterials, with high 
mechanical strength and interconnected structures, they can 
effectively tolerate stress variation and make largely electrode 
contact with electrolyte as well as promote electronic con-
ductivity. In 2019, 3D reduced graphene oxide (rGO) aerogel 
was fabricated to enhance K-ion transfer, improving rate per-
formance (92 mAh g−1 at 6.7 C) as well as cycle performance 
(267 mAh g−1 at C/3 after 100 cycles) [78].

In this review, 0D, 1D, 2D, and 3D nanomaterials about 
the recent developed PIBs anode materials will be intro-
duced (Fig. 2), mainly concentrating on carbon materials, 
MCs and MOs, and alloying materials. Among them, car-
bon materials with the advantage of low price are attributed 
to its abundant sources, which is beneficial for practical 
applications. In addition, the existing technology can be 
used to prepare carbon nanomaterials, making the synthe-
sis process convenient. And then, the structures of carbon 
materials are relatively stable and durable, which helps to 
keep structural stability and improve the long life of the cor-
responding electrode during charging and discharging. As 
for MCs and MOs, they have high capacity and it is easy to 
synthesize. Besides, alloying materials not only possess high 
theoretical capacity, such as Sb (660 mAh g−1) [83] and Bi 
(385 mAh g−1) [83], but also can react with K-ion under low 
potentials (~ 0.1–0.8 V vs.  K+/K) [72, 84–88]. Additionally, 
similar to MCs and MOs, alloying materials can be pre-
pared by some easy synthesis methods, so it is convenient 
to obtain the corresponding products [2]. According to these 
advantages, alloying materials can be considered as anode 
materials of PIBs. Furthermore, the structural design and 
the corresponding electrochemical performances of differ-
ent dimensional anode materials will be summarized. To 
date, the capacities of 0D–3D carbon materials have var-
ied from 200 to 600 mAh g−1. Moreover, MCs and MOs 



Nano-Micro Lett.           (2021) 13:12  Page 5 of 37    12 

1 3

with 0D–3D structures have delivered the capacities with 
50–600 mAh g−1. In addition, the capacities of 0D–3D alloy-
ing materials varied from 300 to 1000 mAh g−1 have been 
studied [36]. Meanwhile, some practical strategies about 
solving some challenging issues will be proposed.

2  Zero‑Dimensional Nanomaterials for PIBs

0D nanomaterials are defined as 1 nm to 100 nm in three 
dimensions. So far, 0D nanomaterials have various types, 
including quantum dots, nanoparticles, nanospheres, nanoc-
ages, core–shell structures, and so forth. Typically, these 
0D nanomaterials have been widely studied in energy stor-
age field due to structural features and properties including 
surface effect, small size effect, and so on; especially, the 
small size of 0D nanomaterials possesses large surface area, 
providing sufficient sites for ionic adsorption [94, 95]. Addi-
tionally, the stable structure plays a crucial role in buffer-
ing large volume expansion, like hollow 0D nanomaterials. 
Therefore, 0D nanomaterials are beneficial for anode mate-
rials of PIBs to keep contact with electrolyte and restrict 

volumetric variation. However, the electrochemical perfor-
mances will be affected due to 0D nanomaterials with easier 
self-aggregation. Thus, it is better to be composited with 
other materials to inhibit aggregation for anode materials. 
Next, the relationship between 0D nanomaterials and the 
corresponding electrochemical performances will be elabo-
rated in detail. In addition, the initial Coulombic efficiency 
(C.E.), rate performances, and cycle properties of recent 
reported 0D anode materials of PIBs are summarized in 
Table 1.

2.1  Zero‑Dimensional Carbon Materials

0D carbon materials with shorter ionic diffusion pathway 
are advantageous to reduce transport resistances. Accord-
ingly, a few studies about nanoparticles have recently been 
reported so as to improve the electrochemical behavior. 
Carbon nanoparticles with N/P co-doping and expanded 
interlayer (NP-CNPs) were fabricated for the PIBs elec-
trode materials [107]. The synergistic effect of nano-size 
and P/N-co-doping helped to obtain good electrochemical 
performances. Then, the NP-CNPs electrode had a capacity 
of 157 mAh g−1 at 5.0 A g−1 (Fig. 3c). In addition, a capacity 
of 190 mAh g−1 was obtained at 1.0 A g−1 after 4000 cycles 
(Fig. 3d). According to experimental test, the nanoparticles 
with the expanded interlayer and uniform ultrafine nanopar-
ticles were exhibited (Fig. 3a, b). Obviously, the morphology 
of nanoparticles and its expanded interlayer could effectively 
improve the electrochemical performances, which not only 
provided shorter K-ion transfer path as well as improved 
electrical conductivity, but also enhanced adsorption capa-
bility toward K-ions.

Besides, novel hollow structures may be advantageous 
for accommodating the volumetric changes compared with 
solid nanoparticles. For example, graphite has been wildly 
utilized but still suffered from large volumetric variation 
during charge and discharge process as PIBs electrode. 
Although some progress has been achieved in terms of 
regulating structure including polynanocrystalline graph-
ite, activated carbon, and expanded graphite, it is still chal-
lenging to ensure the robust stability of graphite during 
long cycling process [74, 108–110]. It is worthwhile that 
hollow nanocages have gradually been used for electrode 
materials. Cao et al. [42] synthesized graphitic carbon 
nanocage (CNC) as anode material for PIBs by taking 
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Fig. 2  Schematic diagram of various 0D–3D PIBs anode materials. 
Reproduced with permission from Ref. [42, 43, 68, 89]. Copyright 
2018 (2019), John Wiley and Sons; from Ref. [66, 90, 91]. Copy-
right 2017 (2019, 2020), Royal Society of Chemistry; from Ref. [50]. 
Copyright 2018, Elsevier; from Ref. [69, 72, 92, 93]. Copyright 2017 
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advantage of Ketjen carbon black. From Fig. 3e, f, it can 
be clearly seen that the CNC possessed interlinked struc-
tural appearance, which benefited fast electronic transfer. 
As for the electrochemical performances, reversible capac-
ities of the CNC electrode were 221.5 mAh g−1 as well 
as 175 mAh g−1 at 0.1 and 35 C, respectively (Fig. 3g). 
As expected, the electrochemical behavior of the obtained 
electrode was due to its unique structure features. In detail, 
the cage-like structure kept the stability of structure by 
reducing the anisotropy and avoiding interlayer slipping. 
Then, the cage-like hollow interior could retain the struc-
tural integrity by accommodating volume changes well in 
the course of charging and discharging. Similarly to soft 
carbon, hollow graphitized carbon nanocages (HGCNs) 
were also synthesized as effective PIBs electrode materi-
als [111]. The authors exhibited that HGCN-1000 (1000 
mean the carbonization temperature of 1000  °C) with 
highly graphitized carbon-cage, developed porosity, and 
hollow structure was endowed robust structural stability 
and good electrochemical performances. Therefore, the 
capacity retention of 95.9% for the HGCN-1000 electrode 

was achieved at 1 A g−1 over 2000 cycles, which identified 
better cyclic stability.

Based on the above-mentioned examples, 0D carbon 
materials including nanoparticles and nanocages have been 
fabricated to effectively enhance the electrochemical perfor-
mances, devoted to fast ionic transportation and high struc-
tural stability. However, compared with LIBs and SIBs, few 
studies about carbon dots (CDs) applied for anode materials 
of PIBs have been reported [112–120]. Therefore, it is nec-
essary for further experiments to focus on novel structure 
for the family of 0D carbon anode materials, such as CDs, 
core–shell structure, and yolk shell structure.

2.2  Zero‑Dimensional MCs and MOs

MCs and MOs have proved to be a kind of hopeful PIBs 
electrode materials, but severe volume changes and low elec-
trical conductivity have hindered their development. It is 
well known that the minimization of materials is conducive 
to alleviating stress changes, so the preparation of 0D MCs 

Table 1  Comparison of the state-of-the-art performances of 0D anode materials in PIBs

Materials Initial C.E. (%) Rate capacity (mAh g−1) at 
the current density (mA g−1)

Cycle capacity (mAh g−1) at the cur-
rent density (mA g−1) (cycle number)

References

Sb2S3-SNG 69.7 340 at 1000 480.078 at 50 (100) [38]
Co3O4-Fe2O3/C 54 – 220 at 50 (50) [39]
BP 60 300 at 2000 270 at 50 (50) [33]
Sn4P3/C – 221.9 at 1000 307.2 at 50 (50) [40]
Sb@C 75.8 127 at 2000 160 at 1000 (800) [44]
Sb@PC 46.2 200 at 2000 90 at 500 (200) [96]
P/C 50.3 90 at 500 71.5 at 500 (500) [45]
ZNP/C 58.5 46 at 2000 145 at 500 (300) [97]
Sb@NPMC 50 161 at 1000 130 at 1000 (1500) [98]
MoO2/rGO 51.6 176.4 at 500 104.2 at 500 (500) [46]
Co0.85Se-QDs/C 61.8 220 at 2000 228 at 1000 (500) [99]
S,N co-doped thin carbon – 64 at 4000 65 at 2000 (900) [100]
Mn3O4@rGO 66 95 at 10,000 635 at 500 (500) [47]
FexO@NFLG 46 176 at 5000 140 at 5000 (5000) [101]
Titanium oxynitride nanoparticles/carbon – 72 at 1600 150 at 200 (1250) [102]
SnP3/C 58.8 221.8 at 1200 225 at 500 (80) [48]
SnO2@3D PC 13.99 144.6 at 2000 270.3 at 100 (200) [103]
VN-QDs/CM 72.9 152 at 2000 215 at 500 (500) [104]
Co9S8/N-C@MoS2 89.1 50 at 1000 100 at 1000 (100) [105]
Carbon-coated mesoporous  Co9S8 nano-

particles supported on rGO
59.5 215.1 at 5000 210.8 at 1000 (1200) [106]

SnO2@CF 44.43 143.5 at 5000 231.7 at 1000 (400) [49]
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and MOs is an effective method. In order to solve low con-
ductivity and agglomeration problems, MCs and MOs are 
usually combined with conductive materials.

Quantum dots with quantum confinement are practical 
architectures for boosting electronic and ionic transporta-
tion. A composite about cobalt sulfide compounded with 
graphene (CoS@G) was synthesized for PIBs (Fig. 4a) 

[41]. In this composite, graphene offering landing plat-
form for CoS quantum dots not only contributed to 
restraining the agglomeration of CoS quantum dots, but 
also improved electronic conductivity. Then, numerous 
smaller CoS nanoclusters were uniformly dispersed onto 
the graphene nanosheets, consisting of the interlinked 
quantum dots (Fig. 4b, c). As illustrated in Fig. 4d, the 
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CoS@G-25 (25 means 25% graphene oxide) electrode 
delivered the discharge capacity of 310.8 mAh g−1 at 
500 mA g−1 after 100 cycles. Moreover, the CoS@G-25 
electrode’s capacities were retained 67.3% and 56.2% at 
3 C and 4 C, respectively. Therefore, it is effective for 
novel shapes to improve the corresponding electrochemi-
cal performances. Coating is also an effective means to 
prevent agglomeration and buffer volume changes, such 
as building a core/shell structure. So Wang et al. [43] 
synthesized  MoSe2/C composites with pistachio-shuck-
like morphology (PMC) as PIBs anodes to improve their 

performances. As shown in Fig. 4e, the packing density of 
the unique PMC was enhanced via plane-to-plane contact. 
It could expedite electronic transfer as well as K-ion diffu-
sion and retain the structural stability during the process 
of potassium/depotassium. Additionally, the PMC exhib-
ited pistachio-shuck-like morphology with the diameter 
of around 70–90 nm (Fig. 4f). In the electrochemical test, 
the PMC electrode delivered 226 mAh g−1 at 1.0 A g−1 
after 1000 cycles (Fig. 4g). The PMC electrode’s electro-
chemical performances were due to the core of  MoSe2, the 
pistachio-shuck-like structure, and thin amorphous carbon 
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shell. These structural features could facilitate K-ion trans-
fer and buffered the volume expansion.

Besides, titanium dioxides  (TiO2) have been utilized in 
LIBs and SIBs but seldom reported for PIBs. Therefore, in 
2019, Fang et al. [121] synthesized a composite about  TiO2 
nanoparticles anchored on rGO for PIBs. As for this com-
posite, the small size  TiO2 could boost K-ion diffusion and 
the rGO could promote electronic transfer. So its electro-
chemical performances could be enhanced, which achieved 
the rate capacity of 107.1 mAh g−1 at 1000 mA g−1 and the 
cycling capacity of 88.4 mAh g−1 at 1000 mA g−1 after 1000 
cycles. Nevertheless, its electrochemical behavior is neces-
sary to be improved by further experiments.

2.3  Zero‑Dimensional Alloying Materials

Alloying materials including Sb, Sn, Bi, Ge, as well as P, 
characterized by high capacity, have been studied for PIBs 
anode materials [84]. Volume expansion is one of their 
most obvious shortcomings, and the stress variation can be 
affected by small size structures. Therefore, it is urgent to 
design appropriate electrode materials and designing suit-
able nanostructures is a common modification method.

It was reported that nanoparticles have been widely fabri-
cated as electrode materials to mitigate stress changes. As a 
typical example, engineering bulk materials to nanoparticles 
is beneficial to alleviate stress variation. Thus, the network 
of a carbon sphere enclosed Sb nanoparticles (Sb@CSN) 
as PIBs anode [90]. The schematic diagram of Sb@CSN 
and its TEM image are shown in Fig. 5a, b, which indicated 
the Sb nanoparticles were well encapsulated in the carbon 
sphere with uniform distribution. As for electrochemical 
performances, the Sb@CSN electrode presented high dis-
charge capacity of 626 mAh g−1 at 200 mA g−1 after second 
cycle (Fig. 5c). In addition, the capacity of 504 mAh g−1 
was obtained at 200 mA g−1 after 200 cycles (Fig. 5d). The 
Sb@CSN anode’s electrochemical behavior indicated the 
importance of small size nanoparticles and carbon sphere 
network, which could buffer volume expansion and promote 
the transportation of electrons. Similarly, Ge and co-workers 
[87] also constructed a composite composed of Sb nanopar-
ticles and carbon materials. They encapsulated ultra-small 
Sb nanocrystals into CNFs for PIBs anode, which achieved 
225 mAh g−1 at 1 A g−1 after 2000 cycles because ultra-
small Sb nanocrystals and hollow nanochannels not only 

promoted  K+ fast diffusion but also buffered strain varia-
tion. Compared to carbon spheres, CNFs may have better 
connectivity and can better make the electrode stable. Addi-
tionally, the nanostructural design also has an impact on the 
electrochemical performances of red P. So tailoring different 
sizes of red P into 3D carbon could effectively overcome 
the above-mentioned disadvantages (Fig. 5e) [122]. In this 
composite, the small size of red P and 3D carbon nanosheet 
framework could reduce the degree of volume expansion; on 
the other hand, it also could boost the fast electron transpor-
tation during charge and discharge process. In addition, red 
P without agglomeration was displayed, which indicated that 
red P was uniformly dispersed in the 3D carbon nanosheet 
frameworks (Fig. 5f). Benefit from the structural design, 
the red P@CN composite anode delivered a charge capac-
ity of 715.2 mAh g−1 and a rate capacity of 323.7 mAh g−1 
at 2000 mA g−1 (Fig. 5g, h). Based on nanoparticles with 
effective impact, different morphology of 0D alloying mate-
rials should be designed to enhance the electrochemical 
performances.

3  One‑Dimensional Nanomaterials for PIBs

1D nanomaterials are defined as high length-to-diameter 
aspect ratios, including nanotubes, nanorods, nanowires, 
nanofibers, and nanoribbons. Since CNTs were first discov-
ered by Iijima [123], 1D nanomaterials with similar struc-
tures have been widely studied. The structural features of 1D 
nanomaterials not only include nanoscale and microscale 
joint effects, but also contain high aspect ratio and oriented 
growth direction [124]. Therefore, 1D nanomaterials are 
beneficial for fast transportation of electrons and ions and 
have an impact on tolerating the stress changes, which was 
considered as a class of most promising materials for high 
performances of energy storage systems [125]. Given these 
mentioned above, 1D nanomaterials can be utilized to boost 
the diffusion of electrons and ions as well as alleviate the 
stress variation as PIBs electrode materials. Significant pro-
gress has recently been achieved for anode materials with 
high performances by designing and fabricating 1D nano-
materials. Based on typical 1D nanomaterials, systematic 
discussion is carried out about the relationship between the 
related structures and their electrochemical performances. 
Furthermore, in order to comprehensively comprehend the 
electrochemical behavior of 1D nanomaterials, the initial 
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C.E., rate performances, and cycle properties of recent 
reported 1D anode materials of PIBs are outlined in Table 2.

3.1  One‑Dimensional Carbon Materials

CNTs can be considered as a representative example among 
1D carbon materials. It is well established that CNTs with 
remarkable mechanical strength and excellent electrical 
properties have been applied in PIBs field [136–139]. So 
far, CNTs not only can be used directly or doped with other 
elements, but also can be composited with other materials 
to serve as electrode materials. As for composites, a CNT-
backboned mesoporous carbon confining red P composite 

(P@TBMC) was formed as anode material for SIBs/PIBs 
(Fig. 6a) [50]. P encapsulated completely within the pores, 
and homogenous distributions in the composite were con-
firmed (Fig. 6b). In these composites, the main function of 
red P was to provide high K storage capacity. The multi-
walled CNTs not only supported the structure as backbone, 
but also boosted the electrons transfer because of the high 
content of sp2 carbon. Therefore, the P@TBMC-2.4 (2.4 
means the resorcinol mass (g) in the recipe) anode exhibited 
a depotassiation capacity of 244 mAh g−1 at 0.5 A g−1 after 
200 cycles, which displayed stable cyclability (Fig. 6c).

Generally, heteroatom-doped carbon materials have 
better K storage properties than non-doped ones, so 

Fig. 5  a Sb@CSN’s schematic diagram. b Single Sb@CSN sphere exhibited in TEM image. c Voltage profiles as well as d Related cycle 
capacities of Sb@CSN at 200 mA g−1. Reproduced with permission from Ref. [90]. Copyright 2019, Royal Society of Chemistry. e Schematic 
illustration of red P@CN composite. f TEM image of red P@CN composite. g Voltage curves of red P@CN composite for the selected cycles. 
h Rate capabilities of red P@CN composite in the range of 100–2000 mA g−1. Reproduced with permission from Ref. [122]. Copyright 2018, 
John Wiley and Sons
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heteroatom-doped CNTs may perform better than ordi-
nary CNTs. So a  CoSe2 strung by CNTs with N-doping 
(NCNF@CS) was prepared by two-step hydrothermal 
means as a PIBs anode (Fig. 6d) [51]. Then, the CNTs 
made every octahedral  CoSe2 particle arrange in sequence 
with zigzag void space among particles (Fig. 6e). Remark-
ably, the NCNF@CS-6 h (6 h means the reaction hours) 
anode reached the reversible capacity of 196 mAh g−1 at 
2.0 A g−1 (Fig. 6f). Moreover, a capacity of 173 mAh g−1 
at 2.0 A g−1 after over 600 cycles was exhibited (Fig. 6g). 
The electrochemical performances of NCNF@CS-6  h 
electrode were ascribed to the use of CNTs and octahedral 
 CoSe2 particles arranging in sequence, where conductive 
N-doped CNTs not only hindered the agglomeration and 
anchored the active materials as backbone but also effec-
tively promoted the electronic transfer. Based on afore-
mentioned work, CNTs can enhance the electrochemical 
behaviors by boosting electronic and ionic diffusion and 
keeping structural integrity. Therefore, novel composites 

about CNTs deserve to research for PIBs anode materials 
in the further experiments.

3.2  One‑Dimensional MCs and MOs

To date, 1D MCs and MOs mainly include various K-Ti–O 
anode materials with common formula  K2TinO2n+1, which 
are advantageous for insertion/extraction of K-ion [140]. 
As for  K2Ti6O13, its crystal structure with open 3D frame-
work and tunnel can facilitate K-ion transfer. So  K2Ti6O13 
nanorods were synthesized as PIBs anode and the obtained 
electrode achieved stable long cycling performance, but its 
poor rate performance was exhibited [58]. Accordingly, car-
bon coating may be a practical way to further improve the 
rate capacities. Therefore, oriented nanorod-like  K2Ti6O13 
bunches with a thin carbon layer (KTO/C) were fabricated as 
PIBs electrode materials (Fig. 7a) [76]. The size of nanorods 
of KTO/C-700 (700 means the heat treatment temperature 

Table 2  Comparison of state-of-the-art performances of 1D anode materials in PIBs

Materials Initial C.E. (%) Rate capacity (mAh g−1) 
at the current density 
(mA g−1)

Cycle capacity (mAh g−1) at the 
current density (mA g−1) (cycle 
number)

References

Ti3C2 – 60 at 300 42 at 200 (500) [52]
Cryptomelane-type  MnO2/CNT hybrids 40.07 127.2 at 1000 226.5 at 100 (500) [126]
C-NCNFs 37.8 84.7 at 5 C 103.4 at 2 C (500) [53]
b-NCNTs 23.3 186 at 1000 204 at 500 (1000) [54]
M-NCNTs 24.45 102 at 2000 102 at 2000 (500) [55]
Highly N-doped CNFs 49 101 at 20,000 146 at 2000 (4000) [81]
Cup-stacked NCNT mats 14.2 75 at 1000 236 at 20 (100) [127]
Red P 68.26 71 at 3000 300 at 1000 (60) [56]
Sb/HCT 70 211.5 at 5000 300.1 at 2000 (120) [57]
3D amorphous carbon encapsulated CoS/

NCNTs on CoS-coated CNFs
57.6 133.1 at 6400 ≈130 at 3200 (600) [128]

Carbon-encapsulated CoP nanoparticles 
embedded in CNTs supported on CNFs

53.2 ~292 at 3200 247 at 800 (1000) [129]

Sub-micro-carbon fiber@CNTs – 108 at 5 C more than 193 at 1 C (300) [130]
Pyrrolic/pyridinic-N-doped necklace-like 

hollow carbon
– 204.8 at 2000 161.3 at 1000 (1600) [131]

Bi-nanorod networks confined in N, S co-
doped carbon matrix

65 289 at 6000 285 at 5000 (1000) [132]

rGO/CNT hybrid papers – 110 at 100 148 at 50 (200) [133]
Porous Mn–Fe-Se composite adhered/inserted 

with interlaced CNTs
33.43 83 at 800 141 at 50 (70) [134]

Hollow NCNFs anchored hierarchical FeP 
nanosheets

57 103 at 800 210 at 100 (1000) [135]
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of 700 °C) was well maintained compared with that of bare 
KTO (Fig. 7b). As for rate capacities, the KTO/C-700 elec-
trode delivered 65.1 mAh g−1 at 500 mA g−1 (Fig. 7c). The 
electrochemical performances of the KTO/C-700 electrode 
were due to K-ion diffusion boosted by crystal orientations 
of KTO and electron conductivity improved by carbon 
layer. Besides, in 2016,  K2Ti4O9 was fabricated as PIBs 

anode materials for the first time, but delivered low capaci-
ties and poor cycling performance [141]. It is necessary to 
control the morphology of  K2Ti4O9 well so as to improve 
the electrochemical behavior. Therefore,  K2Ti4O9 nanorib-
bons derived from MXene have been studied for PIBs anode 
materials due to unique structural features. Wu’s group [92] 
reported that ultrathin nanoribbons of potassium titanate 

Fig. 6  a Schematic diagram for P@TBMC composite’s fabrication process. b The corresponding EDS elemental mapping and line scanning of 
P@TBMC-2.4 displayed in SEM image. c Long-term cycle capacities at 0.5 A g−1 after initial two-cycle activation at 0.05 A g−1. Reproduced 
with permission from Ref. [50]. Copyright 2018, Elsevier. d Schematic diagram for NCNF@CS’s preparation process. e SEM image of NCNF@
CS-6 h. f Rate capacities of the obtained three NCNF@CS samples. g Long-term cycling stability and C.E. of NCNF@CS-6 h at 2.0 A g−1 over 
600 cycles. Reproduced with permission from Ref. [51]. Copyright 2018, John Wiley and Sons
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Fig. 7  a Schematic diagram of KTO/C. b SEM image of KTO/C-700. c Rate capacities of the obtained hybrids electrode. Reproduced with 
permission from Ref. [140]. Copyright 2020, Royal Society of Chemistry. d M-KTO nanoribbons’ schematic illustration. e M-KTO’s HRTEM 
image with the corresponding SAED patterns (inset). f M-KTO’s rate performance. g Long cycle capacities as well as C.E. of the obtained sam-
ple at 200 mA g−1. Reproduced with permission from Ref. [92]. Copyright 2017, American Chemical Society
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(M-KTO,  K2Ti4O9) were synthesized as anode materials for 
PIBs. The morphology of nanoribbons and the interlayer 
space with 0.93 nm were exhibited, which benefited K-ion 
insertion/extraction (Fig. 7d, e). As for electrochemical per-
formances, the rate capacity of 81 mAh g−1 was attained at 
300 mA g−1 as well as the retention of 51% (of the second 
charge capacity) was exhibited at 200 mA g−1 after over 
900 cycles (Fig. 7f, g). The M-KTO electrode’s electro-
chemical performances were ascribed to suitable interlayer 
spacing, narrow widths, ultrathin thickness, as well as open 
macroporous architectures. The convincing example verified 
that nanoribbons are beneficial to enhance electrochemical 
behavior due to well-designed structures. However, because 
only single material is used, the K storage capacity is not 
high enough, and it may need to be compounded with other 
materials in the subsequent research to further improve the 
electrochemical performances.

3.3  One‑Dimensional Alloying Materials

Up to now, few studies about 1D alloying materials have 
involved in nanotubes, nanowires, nanofibers, and nanor-
ibbons in the PIBs fields. Therefore, nanorod-like alloying 
materials with shorter ionic transfer path will be introduced 
by typical examples [57, 59, 91, 132, 142].

Nanorod-like Bi has been composited with carbon materi-
als as anode materials for PIBs. For instance, Bi nanorods 
coated with mesoporous carbon were fabricated [142]. The 
unique structure with the core of Bi nanorods and outside 
carbon mesoporous shell had an effect on boosting the elec-
tronic and ionic diffusion as well as buffering the volumetric 
variation. Thus, the storage capacity reached 425 mAh g−1 
at 0.2 A g−1. Compared with mesoporous carbon coatings, 
CNTs may encapsulate and confine Bi nanorods better due 
to their hollow tubular structures and good mechanical prop-
erties. Li et al. [91] synthesized Bi nanorods confined by 
hollow N-doped CNTs (Bi@N–CT) as anode materials of 
PIBs. The Bi nanorod structure was encapsulated in hollow 
structure with the carbon coating layer thickness of about 
40 nm (Fig. 8a, b). In the electrochemical test, the capac-
ity was 297 mAh g−1 at 20 C (Fig. 8c). Additionally, the 
obtained electrode reached the capacity of 266 mAh g−1 at 
10 C after over 1000 cycles (Fig. 8d). These electrochemi-
cal performances were largely ascribed to the nanostructural 
design as well as the perfect coordination of Bi nanorods and 

CNTs. In addition, the storage mechanism could be under-
stood well by in situ XRD, which indicated the high revers-
ibility of structure (Fig. 8e). Coincidentally, Bi nanorods 
were encapsulated in N-doped CNTs (Bi@C nanorods) for 
PIBs anode [59]. The N-doped CNTs were originated from 
the carbonization of polydopamine, different from the above 
example using polypyrrole. The morphology of Bi nanorods, 
hollow structural robustness, and carbon coating layer con-
ductive network were beneficial for the obtained anode to 
deliver the capacity of 179.1 mAh g−1 at 0.5 A g−1 after over 
300 cycles. Therefore, Bi nanorods compounded with hol-
low structure carbon materials are advantageous to restrict 
volume changes and keep long cycle stability.

4  Two‑Dimensional Nanomaterials for PIBs

2D nanomaterials have attracted increasing attentions since 
the discovery of graphene in 2004, and they have been exten-
sively studied for electrochemical energy storage because 
of unique structural features as well as physicochemical 
properties [143–151]. On the one hand, the large surface 
area of 2D nanomaterials is conducive to ionic adsorption, 
which is beneficial to improve capacitance. On the other 
hand, 2D nanomaterials with high conductivity and tunable 
interlayer spacing can boost electronic transfer and ben-
efit ionic intercalation, respectively [152]. Based on these 
advantages, 2D materials have become favored materials for 
researchers. Therefore, the corresponding 2D materials will 
be introduced typically. And then, the initial C.E., rate per-
formances, and cycle properties of recent reported 2D anode 
materials of PIBs are summarized in Table 3.

4.1  Two‑Dimensional Carbon Materials

As a typical example of 2D carbon materials, graphene 
has been used for PIBs because of its high surface area, 
extraordinary mechanical strength, as well as high elec-
trical conductivity [167–169]. In 2015, it was the first 
time that the K-ion intercalation of rGO film was stud-
ied by Luo and co-workers [170]. Although the reversible 
capacity was 222 mAh g−1, rGO with poor rate capability 
was due to its inferior electronic conductivity. Therefore, 
graphene need to be modified and modifying its struc-
ture may be one of the effective strategies to improve its 
electrochemical performances. Firstly, single heteroatom 
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Fig. 8  a Bi@N–CT’s schematic diagram. b Bi@N–CT’s TEM image. c Rate performance of the obtained electrode at different C-rates (1 C is 
385 mAh g−1). d Long-term cycling performance of Bi@N–CT at 10 C. e Contour plot of the obtained electrode’s in situ XRD results in the 
course of discharge/charge process about the first two cycles with discharge/charge curves. Reproduced with permission from Ref. [91]. Copy-
right 2020, Royal Society of Chemistry
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doping has been used to regulate the structure of graphene. 
Few-layered graphene with N-doping was reported as 
PIBs anode materials, which realized the charge capacity 
of over 350 mAh g−1 at 50 mA g−1 and the cycle capac-
ity of more than 210 mAh g−1 at 100 mA g−1 after 100 
cycles because the obtained electrode could provide abun-
dant sites for ion storage and boost ionic transfer [171]. 
Based on an improved method, similar few-layer N-doped 
graphene (FLNG) was prepared as electrode materials 
in PIBs [65]. Its storage mechanism was made up of two 
parts including trapping K-ion on the surface and into the 
defect sites (Fig. 9a, b). The FLNG could supply more 
K-ion storage active sites and enhance electronic as well 
as ionic diffusion because of few-layer structure, N-doping 
impact and high surface area, so the long cycle capacity of 
150 mAh g−1 was realized at 500 mA g−1 after 500 cycles. 
Besides, in order to regulate the structure of graphene bet-
ter, co-doping with two different heteroatoms has been 
utilized. Ma et al. [66] fabricated graphene with P and O 

co-doping (PODG) as PIBs electrode materials (Fig. 9c). 
The ultrathin film of PODG with only a few layers was 
displayed in the TEM image (Fig. 9d). As for PODG, 
graphene and elements with P and O not only boosted 
K-ion diffusion by the expanding interlayer spacing, but 
also promoted K-ion adsorption because of large surface 
area as well as sufficient defects. Therefore, the PODG 
electrode delivered 165 mAh g−1 at 2000 mA g−1 (Fig. 9e). 
Moreover, PODG electrode delivered about 385, 235, and 
160 mAh g−1 at 500, 1000, as well as 2000 mA g−1 after 
600 cycles, respectively (Fig. 9f). Accordingly, expand-
ing interlayer spacing and abundant active sites can be 
achieved by dual doping, so Luan and co-workers [172] 
further synthesized the multilayer graphene with N and 
P dual-doping (NPG) in PIBs electrode materials field. 
As for its electrochemical behavior, the rate capacity 
of 194 mAh g−1 was achieved at 1000 mA g−1. In addi-
tion, the cycle capacity of 242 mAh g−1 was obtained 
at 500 mA g−1 after 500 cycles. These electrochemical 

Table 3  Comparison of the state-of-the-art performances of 2D anode materials in PIBs

Materials Initial C.E. (%) Rate capacity (mAh g−1) 
at the current density 
(mA g−1)

Cycle capacity (mAh g−1) at the current 
density (mA g−1) (cycle number)

References

Nanocrystalline  SnS2 coated onto rGO – 120 at 2000 280 at 25 (25) [153]
Ti3CNTz 28.4 32 at 500 75 at 20 (100) [60]
MoS2@rGO – 178 at 500 381 at 100 (100) [61]
MoS2@SnO2@C 73 86 at 800 250 at 100 (20) [62]
MoS2/C – 164 at 2000 180 at 500 (240) [154]
Envelope-like N-doped carbon 

nanosheets
≈20 168 at 2000 151 at 1000 (1000) [155]

VSe2 69.1 172 at 2000 ≈87.3% of the capacity retention at 2000 
(500)

[63]

FSCC 62.7 139 at 1000 226 at 100 (100) [156]
SnS2/graphene 40.5 290 at 2000 559 at 100 (50) [157]
CuO nanoplates 50.8 163 at 2000 206 at 1000 (100) [158]
SnS2/rGO 51.2 247 at 1000 205 at 1000 (300) [64]
Amorphous carbon/graphitic carbon 

nanoplates
15.7 120 at 5000 192 at 1000 (5200) [159]

SnS2@C@rGO 53.0 287.8 at 500 170.9 at 500 (500) [160]
HeTiO2eC micro-tubes 49.1 97.3 at 2000 132.8 at 500 (1200) [161]
MnCO3 nanorods@rGO – 98 at 2000 701 at 200 (500) [162]
N and P co-doped vertical graphene/

carbon cloth
53.47 156.1 at 2000 142.4 at 1000 (1000) [163]

rGO@p-FeS2@C composite – 298 at 2000 322 at 1000 (30) [164]
SnP0.94 nanoplates/graphene oxide 

composite
42 57 at 1000 106 at 200 (100) [165]

Activated crumbled graphene ≈39 210 at 2000 245 at 500 (2800) [166]
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performances were mainly due to the NPG with sufficient 
active sites for ion storage, expanding interlayer spacing, 
and enhanced electrochemical conductivity. Given the 
aforementioned examples, graphene can improve elec-
trochemical performances of PIBs anode by heteroatom 
doping (e.g., N, P, and O). However, the obstructions of 
graphene in practical applications are attributed to low 
initial coulomb efficiency, potential plateau lack, and the 
large voltage hysteresis [173]. Therefore, some strategies 
should be undertaken in the further experiments.

4.2  Two‑Dimensional MCs and MOs

Among 2D MCs and MOs, 2D transition metal chalco-
genides (2D TMCs), including  MoS2,  MoSe2,  VS2,  VSe2, 
 V5S8, etc., have been studied in PIBs anode materials for 
the reason that they have sufficient active sites, short ionic 
transfer pathways, and low intercalation barriers [174]. Tak-
ing  MoSe2 as an example, it possesses sandwich-like lamel-
lar structure, but low intrinsic conductivity, compounding 
with carbon materials, could be considered to enhance its 

Fig. 9  Schematic diagram of  K+ trapped a in the surface and b in the defect sites. Reproduced with permission from Ref. [65]. Copyright 2018, 
Elsevier. c Schematic diagram and d TEM image of PODG. e The rate capability of the PODG electrode. f Cycle capacities of the obtained 
anode under three different current densities. Reproduced with permission from Ref. [66]. Copyright 2017, Royal Society of Chemistry
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Fig. 10  a TEM image of  MoSe2/N–C. b HRTEM image of  MoSe2/N-C. c Rate capability of  MoSe2/N-C from 100 to 2000 mA g−1. d Long 
Cycle capacities of  MoSe2/N-C,  MoSe2, as well as C at 100 mA g−1. Reproduced with permission from Ref. [67]. Copyright 2018, John Wiley 
and Sons. e Schematic diagram of expanding process of EF-TNS. f HRTEM image of pristine  Ta2NiSe5. g HRTEM image of intercalated 
 Ta2NiSe5. h Stable cycle capacities of EF-TNS anode at 500 mA g−1. Reproduced with permission from Ref. [68]. Copyright 2019, John Wiley 
and Sons
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electrochemical performances. So  MoSe2/N-doped carbon 
 (MoSe2/N–C) composite was synthesized as anode mate-
rials in PIBs [67]. Spherical structure was composed of a 
great number of nanosheets, and the interplanar spacing 
with 0.678 nm was beneficial to  K+ insertion/extraction 
(Fig. 10a, b). In addition, the coated carbon layer encap-
sulating the  MoSe2 nanosheets effectively improved con-
ductivity and obstructed the aggregation of the nanosheets. 
As for electrochemical performances, the  MoSe2/N-C elec-
trode remained 178 mAh g−1 at 2000 mA g−1 as well as 
maintained 258.2 mAh g−1 after 300 cycles at 100 mA g−1 
(Fig. 10c, d). Besides, quite a few binary 2D TMCs have 
also been reported to improve the electrochemical perfor-
mances of PIBs anode, but a few studies about ternary 2D 
TMCs have been published. Gradually, ternary 2D TMCs 
have aroused increasing interesting in PIBs anode due to 
their unique structure and properties [68, 175, 176]. Then, 
expanded few-layered ternary  Ta2NiSe5 (EF-TNS) flakes 
were reported [68]. The  Ta2NiSe5 with expanded inter-
layer was realized by  Mg2

+/NO3
− ion assisted intercalation 

(Fig. 10e). First of all, ternary  Ta2NiSe5 was beneficial to 
increase the capacity. Secondly, the obtained EF-TNS had 
a few-layered structure, which was in favor of buffering the 
volume variation. Thirdly, the interlayer distance of EF-TNS 
was expanded from 0.6 to 1.1 nm after intercalation, which 
facilitated K-ion diffusion and benefited for  K+ ions inter-
calating along zigzag pathways (Fig. 10f, g). These three 
advantages made it have good K storage performances and 
become promising anode materials. As a consequence, the 
EF-TNS electrode delivered the capacity of 116 mAh g−1 at 
500 mA g−1 after 1100 cycles (Fig. 10h).

In order to further search for appropriate anode materi-
als, 2D metal-based oxides have been studied in PIBs [177]. 
 Sb2O3 flakes anchored onto rGO were synthesized by Li and 
co-workers [178], which delivered the long cycle capacity 
of 201 mAh g−1 at 500 mA g−1 after 3300 cycles. As for the 
reason of the remarkable electrochemical behavior, it was 
found that the  Sb2O3 flakes and rGO could not only make 
electrode and electrolyte close, but also enhance conductiv-
ity and buffer the volume expansion. In addition, further 
strategies should be taken so as to relieve the stress variation 
of  Sb2O3 better, such as designing rational structures and 
synthesizing bimetallic compounds; especially, bimetallic 

compounds with the better electrochemical behavior are 
ascribed to the synergistic effects, more active sites, and 
interfacial effects, compared with the single-metal counter-
parts [179–182]. Accordingly, Wang et al. [183] fabricated 
 Sb2MoO6 nanoplates composited with rGO as anode materi-
als of PIBs. In these composites, with the help of Mo ele-
ment, the conductivity could be improved and the volume 
changes of Sb could be relieved in the course of charge and 
discharge process. Therefore, the electrochemical perfor-
mances would be enhanced and the capacity of 247 mAh g−1 
was delivered at 500 mA g−1 after 100 cycles.

4.3  Two‑Dimensional Alloying Materials

Phosphorene can be regarded as a typical 2D alloying mate-
rials in PIBs. In 2014, monolayer and few-layer phosphorene 
were exfoliated from black phosphorus by scotch-tape-based 
micro-cleavage method [184, 185]. However, monolayer 
phosphorene could not be utilized directly as electrode 
materials, which was ascribed to be easily oxidized when 
it exposed to air [186, 187]. Therefore, He et al. [188] indi-
rectly verified that the monolayer phosphorene was benefi-
cial to improve performances of GeSe electrode by first-
principles calculation. Moreover, phosphorene with sulfur 
doping could be considered as the PIBs anode materials by 
using ab initio density functional theory [189]. Furthermore, 
few-layer phosphorene has started to be directly utilized for 
PIBs because of high carrier mobility and superior mechani-
cal flexibility [190]. And then, Nikhil Koratkar’s group [69] 
fabricated few-layer phosphorene composited with rGO 
(FLP/rGO) as anode materials (Fig. 11a). The TEM image 
of FLP/rGO indicated FLP encapsulated with rGO and the 
existing evidence of both FLP and rGO was provided by 
the SAED pattern (Fig. 11b). In these composites, FLP and 
rGO were beneficial for enhancing electrical conductivity as 
well as buffering volumetric variation in the course of alloy-
ing reaction. The FLP/rGO (1:3) electrode delivered differ-
ent capacities at different current density, especially ~ 400 
and ~ 230 mAh g−1 at ~ 0.6 C as well as ~ 1.2 C, respec-
tively. As for cycle performance, FLP/rGO (1:3) delivered 
the capacity of ~ 230 mAh g−1 at ~ 0.5 C after 300 cycles 
(Fig. 11c, d). Furthermore, in terms of alloying mechanism, 
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the author confirmed that  K4P3 bringing about high capacity 
was the type of alloy and used DFT calculation to give a fur-
ther understanding about the formation of  K4P3 (Fig. 11e). 

Further experiments can focus on phosphorene compounded 
with other materials or doped with heteroatom to enhance 
the electrochemical performances.

Fig. 11  a Schematic diagram and b TEM image (inset shows SAED pattern) of FLP/rGO. c Rate capability of FLP/rGO (1:3) at various C-rates 
between ~ 0.1 and ~ 1.2 C. d Cycling performance of FLP/rGO (1:3) at ~ 0.5 C. e various alloys’ formation energies calculated by DFT. Repro-
duced with permission from Ref. [69]. Copyright 2019, American Chemical Society



Nano-Micro Lett.           (2021) 13:12  Page 21 of 37    12 

1 3

5  Three‑Dimensional Nanomaterials for PIBs

3D nanomaterials are essential to the application of bat-
teries, due to unique features such as high specific areas, 
interlinked porous channels, high conductivity and out-
standing structural mechanical stability [191, 192]. 3D 

nanomaterials could overcome the insufficiency of 1D and 
2D nanomaterials caused by evident aggregation [193]. In 
addition, some 3D nanomaterials can be directly used as 
free-standing electrodes, simplifying the preparation pro-
cess of battery. To date, 3D nanomaterials in PIBs electrode 
materials field mainly include 3D carbon nanomaterials, 

Table 4  Comparison of the state-of-the-art performances of 3D anode materials in PIBs

Materials Initial C.E. (%) Rate capacity (mAh g−1) 
at the current density 
(mA g−1)

Cycle capacity (mAh g−1) at the current 
density (mA g−1) (cycle number)

References

N- and O-rich CNF 35 70 at 10 C 160 at 1 C (300) [198]
Cobalt(II) terephthalate-based layered 

MOF
60.65 131 at 1000 188 at 1000 (600) [199]

Tire-derived carbons 37.1 60 at 2 C 155 at C/2 (200) [200]
Hard wood-based hard carbon 56 135 at 100 – [201]
AC – 30 at 1000 100.3 at 200 (100) [74]
Porous CNF paper 24.1 140 at 5000 211 at 200 (1200) [202]
S/O co-doped porous hard carbon micro-

spheres
61.7 158 at 1000 108.4 at 1000 (2000 cycles) [203]

Co3[Co(CN)6]2 45.5 112 at 2000 297.5 at 100 (200) [75]
Skimmed cotton-derived hard carbon 73 165.2 at 4000 240 at 200 (150) [204]
HPCS 45.3 150 at 500 276.4 at 500 (100) [76]
SnO2-graphene-CNFs 44.13 114.81 at 1000 202.06 at 1000 (100) [205]
MoS2/N-Doped C – 131 at 2000 151 at 5000 (1000) [206]
Hierarchically N-doped porous carbon 43.1 185 at 10,000 144.4 at 5000 (1000) [89]
HNTO/CS – 50 at 1000 88.9 at 1000 (1555) [93]
High pyridine NPC – 186.2 at 2000 231.6 at 5000 (2000) [207]
Zero-strain potassium fluoromanganate 

hollow nanocubes
65 78 at 1000 110 at 4000 (10,000) [208]

N-doped hierarchically porous carbon 30.28 193.1 at 500 121.3 at 5000 (1000) [209]
KTi2(PO4)3@C nanocomposites 35.3 131.1 at 1000 69.7 at 1000 (1000) [210]
NOHPHC 25 118 at 3000 230.6 at 500 (100) [77]
Sn4P3 in N-doped carbon fibers 64.17 169.6 at 2000 160.7 at 5000 after 1000 [211]
Bi@3DGFs 51.1 113 at 10,000 164 at 1000 (400) [212]
N-doped biomorphic carbon 55.1 102.6 at 2000 119.9 at 1000 (1000) [213]
Nanosheets-assembled CuSe Crystal 

Pillar
92.4 280 at 5000 337 at 100 (40) [214]

rGO aerogel 44 92 at 6.7 C 125 at 1.6 C (500) [78]
KVPO4F – 65 at 2000 133 at 100 (100) [215]
MXene@Sb 57.29 270.81 at 500 capacity retention of 79.1435% at 500 

(500 cycles)
[216]

Red P@N-PHCNFs – 342 at 5000 282 at 5000 (800 cycles) [217]
NOHPHC – 110 at 1000 80 at 2000 (3000) [218]
Yolk shell FeP@C nanoboxes 47 37 at 2000 205 at 1000 (300) [219]
Multicore shell Bi@N-doped carbon 

nanospheres
43 152 at 100,000 203 at 10,000 (1000) [220]

Graphitic nanocarbons – 56.6 at 5000 189 at 200 (200) [79]
HHC 46.88 42 at 3200 67.6 at 500 (100) [80]
N-doped soft carbon frameworks built of 

well-interconnected nanocapsules
30.9 151 at 5000 165 at 1000 (500) [221]
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3D MCs and MOs, and 3D alloying materials [194–197]. 
At the following section, the relationship between these 
materials and their electrochemical performances will be 
discussed systematically. Meanwhile, the initial C.E., rate 
performances, and cycle properties of recent reported 3D 
anode materials of PIBs are summarized in Table 4.

5.1  Three‑Dimensional Carbon Materials

3D carbon materials mainly include 3D interconnected struc-
tures, which can promote electronic and ionic transport as 

well as improve mechanical stability [222–224]. Among 3D 
interconnected networks, 3D carbon nanofiber frameworks 
are typical materials and were used in PIBs anode materi-
als field in 2018. Li et al. [225] reported bacterial-derived 
and compressible carbon nanofiber foam (CNFF) with hier-
archical pores as electrode materials in PIBs (Fig. 12a). The 
diameters of fibers were between 10 and 30 nm shown in 
the SEM image (Fig. 12b). According to the authors’ report, 
two kinds of pores were found in this CNFF. The first was 
numerous nanopores originating from nanofibers’ surface; the 
other was hierarchical pores between fiber and fiber. Those 

Fig. 12  a Schematic diagram of preparation of CNFF. SEM images of b CNFF and c CNFs. d TEM image of CNFF. e Long-term cycling per-
formance of CNFF electrode at three current densities. The battery rested for 10 days before using different current density. Reproduced with 
permission from Ref. [225]. Copyright 2018, American Chemical Society. f SEM image of HINCA and its tetrapod center (inset). SEM images 
of g the tetrapod-joint cross section and h a tetrapod-unit broken arm. i Neuron structural Cartoon. j Charge/discharge curves of the  1st cycle at 
0.1 C (28 mA g−1). k). Long cycle performance of the HINCA-type product at 1 C. Reproduced with permission from Ref. [226]. Copyright 
2018, American Chemical Society
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pores could benefit K-ions absorption in the course of charge 
and discharge process (Fig. 12c, d). In the electrochemical 
test, the CNFF electrode achieved a reversible capacity of 
158 mAh g−1 at 1000 mA g−1 after 2000 cycles. Further-
more, after a period of time, the same battery could also run 
1500 and 1000 cycles at 2000 and 5000 mA g−1, respectively 
(Fig. 12e), showing superior cycle stability. The splendid 
electrochemical behavior of the CNFF anode was ascribed to 
the hierarchical pores of the structure, the 3D carbon foam, 
and the quasi-amorphous carbon, which not only enhanced 
ionic adsorption and diffusion but also relieved the volume 
variation. Additionally, 3D porous structures have also been 
used in PIBs. Bin et al. [226] fabricated interconnected carbon 
architecture with hollow structure and neuron-like morphol-
ogy (HINCA) as anode materials. As for HINCA, intercon-
nected tetrapod backbones with tubular structure and hollow 
structural spherical joint were exhibited and better compre-
hend by cartoon (Fig. 12f–i). The aforementioned structural 
characteristics could facilitate electronic conductivity and pos-
sess flexible mechanical robustness. Then, the HINCA-type 
electrode delivered the capacity of 340 mAh g−1 as well as 
showed only slight capacity decay of ~ 0.05% per cycle over 
500 cycles at 1 C (Fig. 12j, k). The HINCA-type electrode’s 
electrochemical performances were due to carbon structure 
with hollow feature, which kept the stability of structure dur-
ing potassiation/depotassiation process and promoted the ions 
and electrons transport. With similar structures, hollow neu-
ronal carbon skeleton (HNCS) was fabricated, which exhibited 
interlinked hollow architecture with high content of pyridinic 
N [227]. The interlinked hollow framework and pyridinic N 
could enhance ionic transfer and adsorption as well as tolerate 
the stress variation to improve corresponding performances. 
As for electrochemical performances, the electrode deliv-
ered the rate capacity of 110 mAh g−1 at 1000 mA g−1 and 
134 mAh g−1 at 0.5 A g−1 after 500 cycles. Overall, 3D carbon 
materials are beneficial to boost ionic and electronic transport 
and keep high mechanical robustness, resulting in improved 
electrochemical performances.

5.2  Three‑Dimensional MCs and MOs

3D MCs and MOs have aroused increasing attentions in 
PIBs electrode materials. For example, in 2017, it was 
the first time that Ren et al. [70] used  MoS2 particles as 
electrode materials in PIBs. The author indicated that the 

micro-sized  MoS2 with layer structure was beneficial to 
stably form K-ion intercalation compound  (K0.4MoS2) dur-
ing potassiation to 0.5 V. It is demonstrated that  MoS2 may 
be considered as another choice of PIBs anode materials. 
Besides, increasing 3D metal-based oxides have been tried 
for PIBs anode. In 2018, Li and co-workers [228] firstly 
introduced orthorhombic niobium pentoxide (T-Nb2O5) into 
PIBs anode field. The urchin-like interlinked hierarchical 
structure of T-Nb2O5 assembled by nanowires was exhibited 
(Fig. 13a), which could boost K-ion diffusion. Therefore, 
the capacity of 104 mAh g−1 was delivered at 0.4 A g−1 in 
terms of rate performance (Fig. 13b, c). In addition, inter-
connected  K2Ti6O13 nanowires framework was fabricated as 
electrode materials in PIBs [71]. The  K2Ti6O13 nanowires 
with a diameter of around 5.5 nm (name as TBTN) were 
displayed (Fig. 13d). In this framework, ionic diffusion and 
mechanical robustness could be enhanced due to 3D inter-
linked architectures. Thus, the TBTN electrode delivered the 
rate capacities of 11 mAh g−1 at 10 C (Fig. 13e). Besides, the 
cycle capacity of around 120 mAh g−1 was exhibited at 0.2 
C after 20th cycle (Fig. 13f). From the above analysis, it can 
be concluded that good structural design helps to improve 
the performances of 3D MCs and MOs, but these properties 
are not satisfactory enough. Judging from the characteristics 
of these materials, the reason may put down to their poor 
conductivity. Therefore, it is necessary for 3D MCs and MOs 
to combine other modification methods to obtain satisfactory 
electrochemical performances.

5.3  Three‑Dimensional Alloying Materials

3D alloying materials are beneficial to contact largely with 
electrolyte and buffer the volume expansion, especially 
3D porous structures. Pristine Bi block was used as PIBs 
anode and would gradually transform into 3D porous net-
works after 100 cycles during charge and discharge process 
(Fig. 14a, b) [229]. The formed porous networks not only 
enhanced ionic transfer but also restricted the stress variation 
in the course of potassium/depotassium process. Therefore, 
the capacity retention realized 86.9% after 300 cycles at 2 
C (Fig. 14c). This method provides new ideas for construct-
ing porous alloying materials. So nanoporous Sb (NP-Sb) 
was synthesized as PIBs anode materials (Fig. 14d) [72]. 
The pores of NP-Sb-20 (20 means the percentage of Sb 
atom) were uniformly distributed in the continuous porous 
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structure (Fig. 14e). Benefiting from the 3D porous architec-
ture, the NP-Sb-20 could effectively tolerate stress variation 
and promote ions transportation. As for rate performance, 
the bulk Sb only delivered 30 mAh g−1 at 500 mA g−1, while 
the NP-Sb-20 delivered 265 mAh g−1 (Fig. 14f). Obviously, 
the performances improvement was due to the nanoporous 
structure of Sb. Besides, in 2019, nanoporous Ge was fab-
ricated for the first time, which delivered the capacity of 
around 120 mAh g−1 at 20 mA g−1 over 400 cycles [73]. 
Based on nanoporous Ge with the numerous pores as well 
as nanoscale ligaments, the stable cycling performance was 
ascribed to shorter diffusion distance of K-ion as well as 
the adequate space for volumetric variation. Overall, 3D 
porous structures are of benefit to alloying materials and 
further efforts should be made to improve the electrochemi-
cal behavior.

Additionally, given the discussion about multi-dimen-
sional structures, related nanomaterials possess attractive 
advantages and unfavorable disadvantages, so optimized 
strategies should be taken to improve their electrochemical 

performances. Accordingly, the corresponding advantages, 
disadvantages, and optimized strategies are outlined in 
Table 5.

6  Summary and Outlook

As aforementioned, PIBs have been investigated due to 
better advantages compared with LIBs and SIBs, such as 
abundant resources, lower price, and smaller stokes radius 
of solvated ions. However, there are still some obstacles to 
PIBs for commercial applications, such as large volumet-
ric variation induced by large size of K-ion during charge 
and discharge process, weak ionic diffusivity in solid phase, 
inferior kinetics of  K+ reaction, the existence of side and 
irreversible reactions, the imperfect energy store mechanism 
compared with LIBs, the production of dendrite and related 
safety problems. Accordingly, nanostructural design has 
been considered as one of the effective strategies to enhance 
corresponding performances.

Fig. 13  a T-Nb2O5’s SEM image. b T-Nb2O5 anode’s rate performance in the range of 0.1–1 A g−1. c Corresponding charge capacities under 
various current densities. Reproduced with permission from Ref. [228]. Copyright 2018, Royal Society of Chemistry. d TEM image of TBTN 
with average diameter of around 5.5 nm. e Rate performance and f cycle performance of TBTN. Reproduced with permission from Ref. [71]. 
Copyright 2018, John Wiley and Sons
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In summary, 0D–3D nanomaterials about PIBs anode 
materials have been summarized and involved in the rela-
tionship with the corresponding electrochemical perfor-
mances, mainly concerning carbon materials, MCs and 
MOs, and alloying materials. 0D nanomaterials have been 
utilized in PIBs anode materials due to nano-size and large 
surface area, which can boost ionic transportation and allevi-
ate the stress changes. In addition, 1D nanomaterials with 
high length-to-diameter aspect ratios possess high mechani-
cal robustness as well as shorter electronic and ionic trans-
port path. Moreover, 2D nanomaterials have also possessed 
large surface area to enhance ionic adsorption and diffusion 
in PIBs anode materials field. Finally, the interconnected 
structure about 3D nanomaterials can make largely electrode 
and electrolyte contact, which can facilitate ionic transfer.

Given aforementioned information, 0D–3D nanomateri-
als possess different structural and morphological features, 
corresponding to different electrochemical performances. 
Therefore, in order to better understand the different effect 
of multi-dimensional nanomaterials, it is necessary to make 

a comparison about their electrochemical performances. 
Furthermore, the corresponding comparision would be 
discussed by taking 0D–3D carbon materials as examples. 
And then, typical carbon nanomaterials will be introduced, 
including carbon nanocage, CNTs, graphene, and graphite. 
Among them, 0D carbon nanocage possesses large surface 
area and unique cage-like structure, which makes it have 
well electrochemical performances (e.g., 195 mAh g−1 at 
0.2 C after 100 cycles for CNC) [42]. Additionally, as rep-
resentative 1D carbon nanomaterial, compared with 0D 
nanocage, CNTs with high aspect ratio are conducive to 
enhance the mechanical strength of electrode materials. So 
the structure of related electrode can be maintained stable 
and durable during charging and discharging, improving the 
long cycling life (e.g., 244 mAh g−1 at 0.5 A g−1 after 200 
cycles for P@TBMC-2.4) [50]. As for graphene, with large 
landing platform, they are beneficial for adsorbing K-ion 
and are different from 0D as well as 1D carbon materials, 
which can evidently improve the capacity by adsorption 
mechanism (e.g., 385 mAh g−1 at 500 mA g−1 after 600 
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cycles for PODG) [66]. Moreover, graphite can be used to 
inhibit the aggregation as a comparison of 0D–2D nanoma-
terials, which can keep structure stable and retain the stable 
capacity (e.g., 174 mAh g−1 at 200 mA g−1 after 500 cycles 
for expanded graphite) [109]. According to the compari-
son and discussion of 0D–3D carbon materials, the differ-
ence of electrochemical performances of multi-dimensional 
nanomaterials can be well understood. Additionally, the 
synthetic methods are important to prepare nanostructures 
with excellent electrochemical performances. Therefore, the 
main preparation methods about their advantages and dis-
advantages are summarized in Table 6. From the results of 
comparison, Ball milling may be considered as the practical 
strategies to obtain nanomaterials in the industries, which is 
attributed to its facile operability, low cost, and large scale.

Although significant progress has been achieved due to 
nanostructure design with different dimensions, more efforts 
should be made for PIBs anode materials to improve elec-
trochemical performances as followed:

1. Novel architecture should be proposed. For example, 
carbon dots have been directly explored for LIBs and 
SIBs, while carbon dots only as raw materials were used 
to fabricate PIBs anode materials. Thus, further experi-
ments may focus on novel structure design.

2. Novel synthetic strategies about different dimensional 
structures like 3D printing method can be used in PIBs 
field. Therefore, it is necessary to create methods with 
simple process and low cost.

3. Different dimensional structures can be assembled to 
fabricate various materials with unique morphology to 
sufficiently achieve the properties of every component.

4. Using new materials to design different dimensional 
structures is beneficial for increasing the variety of 
anodes as well as trying to improve the electrochemical 
performances.

5. The relationship between different dimensional struc-
tural electrodes and various electrolytes should be stud-
ied. To date, a few studies have involved in the impact 
of electrolytes on corresponding performances.

6. Some energy store mechanisms of PIBs still keep 
unclear, so more efforts should be undertaken.

All in all, it is one of the key preconditions for commer-
cial PIBs anode materials to utilize simple preparation meth-
ods and simplified processes in different dimensional mate-
rials fabrication. Meanwhile, high-performance, low-cost, 
and good-stability materials will be considered as the desire 
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choice in the practical application. Therefore, this review is 
devoted to provide new insights for further research.
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