Supporting Information for

Three-dimensional Porous Networks of Ultra-long Electrospun SnO₂

Nanotubes with High Photocatalytic Performance

Peng Zhang^{1,2}, Lijie Wang^{1,2}, Xi Zhang^{1,2}, Changlu Shao⁴, Junhua Hu^{1,2,*} and

Guosheng Shao^{1,2,3,*}

¹School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (People's Republic of China)

²International Joint Research Laboratory for Low-Carbon & Environmental Materials of Henan Province, Zhengzhou University, Zhengzhou 450002, Henan Province (People's Republic of China)

³Institute for Renewable Energy and Environmental Technologies, University of Bolton, Bolton BL3 5AB (UK)

⁴Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University (People's Republic of China)

*Corresponding author. E-mail: hujh@zzu.edu.cn; g.shao@bolton.ac.uk

Fig. S1 EDX image of the SnO₂ NTs

Fig. S2 UV-Vis diffuse reflectance spectra of the SnO₂ NTs and SnO₂ NFs

Fig. S3 Kinetic linear simulation curves of MO photocatalytic degradation with SnO₂

NTs and SnO₂NFs

Fig. S4 The absorption spectra of SnO₂ NTs for the absorption experiment in dark

Fig. S1

Fig. S2

Fig. S3

Fig. S4