Supporting Information for

Homologous Strategy to Construct High-Performance Coupling Electrodes for Advanced Potassium-Ion Hybrid Capacitors

Ying Xu¹, Jiafeng Ruan¹, Yuepeng Pang¹, Hao Sun¹, Chu Liang^{2, *}, Haiwen Li³, Junhe Yang^{1, *}, Shiyou Zheng^{1, *}

¹School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China

²College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

³International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan

*Corresponding authors. E-mail: cliang@zjut.edu.cn (C. Liang); jhyang@usst.edu.cn (J. Yang); syzheng@usst.edu.cn (S. Zheng)

Supplementary Figures

Fig. S1 SEM imagine of MCCF

Fig. S2 TEM imagine with larger magnification of S-MCCF, in which the interlayer distance calculated to be about 0.38 nm

Fig. S3 a N₂ adsorption-desorption isothermal curves and b Pore size distributions of AC

Fig. S4 Electrochemical performance of MCCF anode for PIBs: **a** Cycling performance at the current density of 50 mA g⁻¹. **b** Rate performances tested at 50, 100, 200, 500, 1000, 2000, and 50 mA g⁻¹. **c** Long-term cycling performance at a current density of 2000 mA g⁻¹

Fig. S5 a CV curves and **b** GCD profiles of S-MCCF//aMCCF PIHC with an anode to cathode mass ratio of 1:1

Fig. S6 a CV curves and **b** GCD profiles of S-MCCF//aMCCF PIHC with an anode to cathode mass ratio of 1:3

Fig. S7 a GCD profiles and **b** Ragone plots of the energy density versus power density for S-MCCF//MCCF PIHC with an anode to cathode mass ratio of 1:2