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Abstract: Olivine lithium iron phosphate (LiFePO4) is considered as a promising cathode material for high

power-density lithium ion battery due to its high capacity, long cycle life, environmental friendly, low cost, and

safety consideration. The theoretical capacity of LiFePO4 based on one electron reaction is 170 mAh g−1 at

the stable voltage plateau of 3.5 V vs. Li/Li+. However, the instinct drawbacks of olivine structure induce

a poor rate performance, resulting from the low lithium ion diffusion rate and low electronic conductivity.

In this review, we summarize the methods for enhancing the rate performance of LiFePO4 cathode materials,

including carbon coating, elements doping, preparation of nanosized materials, porous materials and composites,

etc. Meanwhile, the advantages and disadvantages of above methods are also discussed.
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Introduction

In recent years, one of the greatest challenges is to
make use of renewable energies to deal with the lim-
ited oil storage and global warming threats [1]. The
development of electric vehicles (EVs) and plug-in hy-
brid electric vehicles (PHEVs) is imperative. Currently,
challenges remain in designing and manufacturing high
safety, high performance and low cost rechargeable bat-
teries for vehicle applications. The large scale lithium-
ion batteries (LIBs) have become the prime candidate
for the next generation of EVs and PHEVs because
of its high operative voltage and energy density [2, 3].
For LIBs, the cathode material has significantly im-
pact on battery capacity, cycle life, safety and cost, on
which a lot of attentions are drawn. Since the olivine
LiFePO4 was reported by Goodenough and coworkers
in 1997 [4], it has been considered as the most promis-
ing cathode candidate for the next generation large-
scale LIBs used in PHEVs or EVs, because of its in-

herent merits including low toxicity, low material cost,
flat voltage profile, long cycle ability and high safety
compared to other cathode materials including LiCoO2,
LiMn2O4, and Li(NiCoMn)O2 etc. [5-7]. Meanwhile,
the olivine LiFePO4 exhibits reversible electrochemical
lithium insertion/extraction reactions at about 3.5 V
(vs. Li/Li+) with a theoretical capacity of 170 mAh
g−1 [8]. However, with the deepening of the study, re-
searchers find that the pristine LiFePO4 exhibits poor
rate capacities. The low intrinsic electronic conduc-
tivity and low Li+ diffusion coefficient of LiFePO4 are
the main shortcomings that limits its electrochemical
performance and commercial applications of LiFePO4

[9]. At room temperature, bare LiFePO4 is an insu-
lating with an electrical conductivity of about 10−9

to 10−10 S cm−1, which is much lower than that of
LiCoO2 (about 10−3 S cm−1) and LiMn2O4 (2 × 10−5

to 5 × 10−5 S cm−1) [10-12]. Meanwhile, the intrin-
sic ionic diffusion coefficient is found to be as low as
10−13 (LiFePO4) to 10−16 (FePO4) cm2 s−1 depend-
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ing on the Li+ concentration and the characterization
method such as the electrochemical impedance spec-
trometry. It should be noted that the diffusion coeffi-
cient calculated is related to the state of charge and on
the composition of Li

x
FePO4 [13]. Obviously, such a

diffusion coefficient is also lower than that of LiCoO2

(about 5 × 10−9 cm2 s−1) [14]. Hence, how to over-
come these drawbacks has become an important factor
of study.

Structure of pristine LiFePO4

The olivine structure of LiFePO4 belongs to the fam-
ily of lithium ortho-phosphates which is shown in Fig. 1.
Its space group is Pnma. The lattice parameters are a
= 10.33 Å, b = 6.01 Å, c = 4.69 Å and V = 291.2 Å3.
The O atoms occupy a slightly distorted, hexagonal-
close-packed arrangement. The P atoms are located
in tetrahedral sites; and the Fe and Li atoms are lo-
cated in octahedral 4a and 4c sites, respectively. A
corner-shared FeO6 octahedron shares edges with two
edge-shared LiO6 octahedrons and a PO4 tetrahedron.
It is notable that the delithiated phase FePO4 has es-
sentially the same structure as LiFePO4. This struc-
tural similarity not only avoids capacity degradation
resulting from severe volumetric changes during the
charge-discharge process, but also effectively compen-
sates the volume changes of the carbon anode during
lithiation and delithiation. This explains the excellent
electrochemical cyclability of the system to some ex-
tent [15]. However, in this structure, there is only
one-dimensional tunnel formed by the edge shared Li
octahedra, where the Li+ are mobile in this tunnel.
These one-dimensional channels are easily blocked by
defects and impurities, which may hinder the ion diffu-
sion rate of Li+, resulting in the poor ion conductivity

of LiFePO4. Meanwhile, such structure cannot form a
continuous FeO6 network, leading to low intrinsic elec-
tronic conductivity [16].

Obviously, the low electronic and ionic conductivi-
ties seriously restrict the rate performance of LiFePO4.
In recent years, various methods have been proposed
to solve these problems in order to improve its perfor-
mance.

Approaches to improve the rate perfor-

mance of LiFePO4

Carbon coating

Carbon coating on the LiFePO4 particles is one of
the most important techniques to improve its electro-
chemical performance with respect to the specific ca-
pacity, rate performance, and cycling life [18-22]. The
main role of carbon coating is to increase the electronic
conductivity on the surface of LiFePO4 particles [23].
Meanwhile, carbon coating reduces the particle size and
alleviates to aggregation of LiFePO4 particles by in-
hibiting particle growth [24-27]. In addition, carbon
can play the role of a reducing agent, avoiding the ox-
idation of Fe2+ to Fe3+ during sintering and thus sim-
plify the atmosphere requirement during synthesis [28,
29]. The beneficial effect of carbon coating has been
observed varying depending on the structure, precur-
sor, uniformity, loading and thickness of the coating
[30-32]. Different carbon sources have different effects
on the electrochemical properties of LiFePO4.

The conventional synthesis route, in which the car-
bon source materials are simply mixed together with
LiFePO4 precursor, yields a non-uniform distribution of
carbon in the final LiFePO4/C products. Recently the
chemical synthesis routes are widely adopted to achieve
homogeneous carbon coating around the surface of
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Fig. 1 The crystal structure of olivine LiFePO4 in projection along [001] [17].
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Fig. 2 (a) Electron-transfer pathway for LiFePO4 particles partially coated with carbon. (b) Designed ideal structure for
LiFePO4 particles with typical nano-size and a complete carbon coating. (c) Preparation process for the LiFePO4/carbon
composite including an in situ polymerization reaction and two typical restriction processes [35].

LiFePO4 particles. Nazar et al. [33] prepared LiFePO4-
conductive carbon by polymerization of resorcinol-
formaldehyde and then heated at 700℃ for 10 h un-
der flowing N2. The discharge capacity reached about
120 mAh g−1 at 5 C. Zhao et al. [34] synthesized core-
shell LiFePO4/C composites from FePO4/C precursor.
They used a chemical vapor deposition (CVD) assisted
solid-state route with polyvinyl alcohol (PVA) and ben-
zene vapor as the reducing agent and carbon source.
The LiFePO4 particles were encapsulated within thin
graphite shell with a thickness of 3 nm, which pre-
vented the agglomeration of the LiFePO4 and improved
the conductivity of the whole electrode materials. The
composites exhibited a high specific capacity of 115
mAh g−1 at discharge rate of 5 C. However, gener-
ally the polymers are difficult to be dissolved and dis-
persed, which will lead to inhomogeneity in the process
of carbon coating. In order to solve these problems,
Wang et al. [35] prepared a LiFePO4/C composite by
an in situ polymerization restriction method, formed
from a highly crystalline LiFePO4 core with a size of
about 20-40 nm and a uniform semi-graphitic carbon
shell with a thickness of about 1-2 nm (Fig. 2). Ani-
line was polymerized in situ on the outer surface of
the newly generated FePO4 precipitate to form a green
polyaniline shell that can effectively restrict the growth
of the FePO4 particles. The unique structure combined
with its full coating of conductive carbon, effectively
enhanced the electrochemical performance of LiFePO4.
The as-prepared LiFePO4/C composite delivered a ca-
pacity of 90 mAh g−1 at the rate of about 60 C.

In addition to using polymer, various sugar and or-
ganic carboxylic acids are also adopted as the carbon
precursor. A LiFePO4/C composite synthesized by
adding sugar before the heating steps was reported by
Dahn et al. [36]. The particles of LiFePO4/C were of
uniform size and well coated by carbon. These char-
acteristics apparently assured LiFePO4/C of a good
rate capability. The capacity of LiFePO4/C showed

125 mAh g−1 even at 5 C discharge rate. Zhang
et al. [37] reported a LiFePO4/C composite cathode
synthesized via a mechanochemical activation/sintering
process by adopting citric acid as the carbon source.
The formation of carbon consisted of two processes
i.e. pyrolysis of carbon precursor to CH

x
and subse-

quent formation of carbon. Compared with different
carbon contents, the cathode with 6.0 wt% citric acid
showed the highest initial rate discharge capacities of
92 mAh g−1 at 20 C. Manthiram et al. [38] synthe-
sized highly crystalline LiFePO4 nanorods via a rapid
microwave-assisted solvothermal approach employing
tetraethyleneglycol as the solvent. Then they adopted
an ex situ coating of carbon by heating the nanostruc-
tured LiFePO4 with sucrose in 2% H2-98% Ar at 700℃

for 1 h. The as-prepared LiFePO4/C possessed excel-
lent rate capability of 110 mAh g−1 at discharge rate
of 10 C, which could be attributed to the formation
of highly crystallized sp2 carbon. Manthiram’s group
also presented a one-pot microwave-assisted hydrother-
mal method to synthesize carbon-coated LiFePO4 with
a more uniform particle size (220-225 nm). The car-
bon coating was uniform and found to be 5-12 nm in
thickness, which uniformly cover the surface of LiFePO4

(Fig. 3). The composite exhibited high capacity with
excellent cyclability and rate capability, which reached
at 110 mAh g−1 at discharge rate of 10 C [39].

Other carbon sources are also studied. Sides et al.

[40] reported a new type of template-prepared nanos-
tructured LiFePO4 electrode. This electrode consisted
of uniformly dispersed nanofibers of the LiFePO4 elec-
trode material mixed in an electronically conductive
carbon matrix. Because of this unique nanocomposite
morphology, these electrodes delivered high capacity of
150 mA h g−1 at a rate of 5 C. Meanwhile, even at
rates exceeding 50 C, these electrodes still maintained
a substantial fraction of the theoretical capacity. Due
to the conductive carbon matrix, this new nanocompos-
ite electrode solved the problem of the inherently poor
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electronic conductivity of LiFePO4.
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Fig. 3 TEM image of LiMPO4/C nanocomposites obtained
by the MW-HT process after heat-treatment at 700℃ for
1 h: (a) TEM image of LiFePO4/C, (b) HRTEM image of
LiFePO4/C [39].

So far, the application of carbon coating on the
LiFePO4 particle surface by various strategies is the
most effective way to increase the conductivity of
LiFePO4. However, some authors find that carbon
coating still have some disadvantages, including re-
duced tap density and high production costs, which
may cause low energy density and high energy cost of
the battery [41]. Meanwhile, the high rate capacity
and cycling stability of LiFePO4/C materials are still
dissatisfactory [42].

Doping

Carbon coating is an efficient way to enhance the
conductivity between particles [33, 36, 43]. However,
this method obviously has little effect on the chemical
diffusion coefficient or lattice electronic conductivity of
lithium within the LiFePO4 crystal [44]. The doping of
heterogeneous ions, at either cation (Li+ and Fe2+) or
anion (O2−) sites of LiFePO4, can greatly improve the
intrinsic electronic conductivity of materials in terms of
capacity delivery, cycle life, and rate capability [45-48].

Li site doping

Many studies have demonstrated that Li-site doping
can cause LiFePO4 lattice defects, which is conducive to
the proliferation of Li-ion [9]. The Li-site doping with

supervalent cations was inspired by Chung et al. [10].
They prepared Li1-xMxFePO4 samples by the solid-
state reaction, with the dopant (M = Mg2+, Al3+, Ti4+,
Zr4+, Nb5+ or W6+) being added as a metal alkox-
ide. It suggested that, using supervalent cations to re-
place the Li-site, lead to the co-existence of Fe2+/Fe3+

mixed valent phases. LiFePO4 was charged and dis-
charged in structure between p-type phase and n-type
phase according to the variation of Fe2+/Fe3+ propor-
tion. Li0.99M0.01FePO4 showed electrical conductivity
at room temperature that was a factor of ∼108 greater
than undoped LiFePO4, and absolute values >10−3 S
cm−1 over the temperature range of –20℃ to +150℃,
which was shown in Fig. 4. As shown in Fig. 4, the
doped electrode materials exhibited well rate perfor-
mance, with discharge capacities over 60 mAh g−1 at
21.5 C rate.
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Fig. 4 The electrical conductivity of doped olivines of sto-
ichiometry Li1-xMxFePO4 at room temperature [10].

However, the mechanism and effect of supervalent
cation doping on electronic conductivity reported so
far are still in controversy. Herle et al. [49] exam-
ined the LixZr0.01FePO4 (x = 0.87 to 0.99) and found
that percolating “nano-networks” of metal-rich phos-
phides within the grain boundaries of LiFePO4 crystal-
lites were responsible for the enhanced electronic con-
ductivity. Delacourt et al. [50] were unsuccessful in
Nb doping of LiFePO4, instead, they formed crystalline
β-NbOPO4 and/or an amorphous (Nb, Fe, C, O, P)
‘cobweb’ around LiFePO4 particles, which was respon-
sible for superior electrochemical activity. The elec-
tronic conductivity of pure LiFePO4 and LiFePO4/β-
NbPO4 composites is ∼10−9 S cm−1 while that of Nb-
and/or C-containing LiFePO4 composites increase up
to 1.6×10−1 S cm−1. The first principle calculations by
Ouyang et al. [51] showed that Li diffusion in olivine
LiFePO4 was one dimensional, thus even though the
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Li-site doping could enhance the electronic conductiv-
ity, it did not improve the electrochemical performance
for LiFePO4 as cathode material. As the high valence
heavy metal ions in the Li sites will block the one-
dimensional diffusion pathways, the ionic conductivity
is decreased, which is certainly harmful to the battery
performance. An atomic-scale simulation by Islam et

al. [16] suggested that, low favorable energies were
found only for divalent dopants on the Fe site (such
as Mg and Mn), and on energetic grounds, LiFePO4

was not tolerant to aliovalent doping (e.g., Al, Ga, Zr,
Ti, Nb, Ta) on either Li or Fe sites.

Fe site doping

Similar to Li-site doping, Fe-site doping can also im-
prove the electrochemical performance of LiFePO4 by
causing lattice defects [52, 53]. Wang et al. [54] re-
ported Fe-site doped LiFe0.9M0.1PO4 (M = Ni, Co,
Mg) cathode materials with good rate performance and
cyclic stability by solid-state reactions. The capaci-
ties of LiFe0.9M0.1PO4 (M = Ni, Co, Mg) maintained
at 81.7, 90.4 and 88.7 mAh g−1 under 10 C rate, re-
spectively, in comparison with 53.7 mAh g−1 and 54.8
mAh g−1 for non-doped and carbon-coated LiFePO4,
respectively. Such a significant improvement in elec-
trochemical performance should be partially related to
the enhanced electronic conductivities (from 2.2×10−9

to < 2.5 × 10−7 S cm−1) and Li+ ions mobility in the
doped samples. The Cr-doped LiFePO4/C was synthe-
sized by a mechanochemical process with the employ-
ment of planetary ball milling followed by a one-step
heat treatment [55]. The LiFe0.97Cr0.03PO4/C showed
excellent rate performance, delivering a discharge ca-
pacity up to 120 mAh g−1 at 10 C. The synchrotron-
based in situ X-ray diffraction (XRD) analysis indicated
that Cr doping facilitated the phase transformation be-
tween triphylite and heterosite during cycling and thus
improved the rate performances of LiFePO4/C. Sun et

al. [56] reported V-doped LiFePO4/C cathode materi-
als using a carbothermal reduction route. The V-doped
LiFePO4/C showed a high discharge capacity of ∼70
mAh g−1 at the rate of 20 C. This was attributed to
the optimization of the morphology and the crystal mi-
crostructure by V-doping, which facilitates the Li+ ion
diffusion.

O site doping

Besides cation doping, anion doping is also expected
as an effective way to enhance the electronic conduc-
tivity of LiFePO4. Some researches select Cl− and F−

as the substitution for O2− anion [57]. Lu et al. [58]
reported the F-doped LiFePO4/C nanoparticles syn-
thesized through a low-temperature hydrothermal re-
action followed by a high-temperature treatment. The
discharge capacities at different rates were 120.4 (5

C), 101.3 (10 C) and 90.5 (15 C) mAh g−1, respec-
tively. The cyclic voltammetry (CV) and electrochem-
ical impedance spectroscopy (EIS) were used to inves-
tigate the influence of F doping on the electronic con-
ductivity of LiFePO4 as shown in Fig. 5.
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Fig. 5 The CV curves (a) and EIS (b) of un-doped and
F-doped LiFePO4/C samples [58].

XRD, X-ray photoelectron spectroscopy (XPS) and
Fourier transform infrared spectroscopy (FTIR) anal-
yses indicated that F-doping did not alter the crystal
structure of LiFePO4 phase. F-doping could improve
the electric conductivity of LiFePO4 cathode materials,
which is considered beneficial to the Li+ diffusion be-
tween LiFePO4 phase and FePO4 phase. The improved
Li+ ion diffusion could be attributed to the weakening
of Li-O bonds resulting from introduction of F− into
the lattice of olivine structure. Cl-doped LiFePO4/C
cathode materials were synthesized via a carbothermal
reduction route by Sun et al. [59]. The Cl-doped
LiFePO4/C cathode materials presented a high dis-
charge capacity of ∼90 mAh g−1 at the rate of 20 C.
The results indicated that the optimized electrochem-
ical reaction and Li+ diffusion in the bulk of LiFePO4

due to Cl-doping. The improved Li+ diffusion capabil-
ity was attributed to the microstructure modification
of LiFePO4 via Cl-doping.
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Preparation of nanosized materials

Carbon coating and elements doping are efficient way
to increase the electronic conductivity of LiFePO4 elec-
trode materials [60-62]. However, both carbon coating
and doping do not solve the problem of the low in-
trinsic ionic conductivity of LiFePO4 which could be
addressed by downsizing the particles. Obviously, de-
creasing the particle size, which leads to a decrease
in solid state transport length and increase in surface
reactivity, has been the main method to solve above
problem [17]. In addition, Lee et al. [63] studied the
lithiation/delithiation mechanism for the general case
of nanoparticles with a heterogeneous particle size dis-
tribution (Fig. 6). They proofed that ionic transport
occurs between nano and bulk particles in a cell at equi-
librium, due to their electrochemical potential differ-
ence that originates from their different thermodynamic
properties and surface energies. Based on the careful
analysis of the results reported by different research
groups, Gaberscek et al. [64] showed the relationship
between the average particle size and the electrochem-
ical performance of LiFePO4-based electrodes. They
pointed out that the electrical resistance of electrode
materials depended solely on the mean particle size,
as shown in the Fig. 7(a). Meanwhile, the discharge
capacity of LiFePO4-based electrodes dropped approx-
imately linearly with average particle size, regardless of
the presence/absence of a native carbon coating, which
was shown in Fig. 7(b).
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Delacourt et al. [65] prepared carbon-free LiFePO4

crystalline powders by a direct precipitation method.
The particle size distribution is very narrow, centered
on about 140 nm. A soft thermal treatment, typi-
cally at 500℃ for 3 h under slight reducing conditions
(N2/H2 gas flow) was shown to be necessary to obtain
satisfactory electrochemical Li+ deinsertion/insertion
properties. This thermal treatment does not lead to
grain growth or sintering of the particles, and does
not alter the surface of the particles. The powders ex-
hibited excellent electrochemical performances of about
147 mAh g−1 at a rate of 5 C. Gibot et al. [66] reported
a single phase carbon-free LiFePO4 nanoparticles by a
low-temperature precipitation process. They reported
the feasibility to drive the well-established two-phase
room-temperature insertion process in LiFePO4 elec-
trodes into a single-phase one by modifying the mate-
rial’s particle size and ion ordering. Electrodes made
of LiFePO4 nanoparticles (40 nm) exhibited excellent
reversible performance and the capacity sustained near
100% after 60 cycles both at 0.1 C and 1 C, which
were shown in Fig. 8. Lim et al. [67] synthesized
nanowires and hollow carbon-free LiFePO4 cathodes
using the hard templates SBA-15 and KIT-6, respec-
tively. The nanowires had a diameter of about 7 nm,
and the hollow LiFePO4 had a pore size of 5.6 nm. Both
the nanowires and hollow LiFePO4 cathodes exhibited
excellent rate capability even at 10 C, with over 89%

214



Nano-Micro Lett. 6(3), 209-226 (2014)/ http://dx.doi.org/10.5101/nml140023r

capacity retention of the initial capacity. The rate ca-
pability of the hollow cathode was higher than that of
the nanowire cathode due to its higher surface area.

Of course, we recognized that the morphology
and crystal orientation of LiFePO4 related to the
ionic kinetics is also significantly affecting its elec-
trochemical performance in the nanosized electrode
materials [68, 69]. Wang’s group [70] synthesized

3D hierarchical LiFePO4 particles networked with
electronically conducting multi-walled carbon nan-
otubes (MWCNT) including particle-like nanoparticles,
shuttle-like nanoparticles and disk-like nanoparticles by
a hydrothermal approach. The particle morphology,
crystal orientation, and electrochemical reactivity of
the prepared LiFePO4/MWCNT particles could be tai-
lored by varying the P source. Among the as-prepared
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LiFePO4 materials, the disk-like crystal showed the
most excellent performance, with the capacity reaching
121.5 mAh g−1 at 30 C. Saravanan et al. [71] reported
LiFePO4 nanoplates with a uniform amorphous carbon
coating of 5 nm surface by the solvothermal method.
The thickness of the nanoplates along the b-axis was
found to be 30-40 nm. The LiFePO4/C nanoplates de-
livered the initial discharge capacity of about 165 mAh
g−1 at 0.1 C and about 50 mAh g−1 at 30 C. Lee et al.

reported on the evolution of a hollow sphere secondary
structure of spherical nanoparticles by a solubilization-
reprecipitation mechanism based on the difference of
solubility products (K

sp
) of two different precipitates

[72]. Carbon-coated nanoparticles of olivine structure
LiFePO4 served as the primary nano-blocks to build
the secondary nano-architecture (Fig. 9). The size of
the secondary particles was about 300 nm, which was
developed in a shape of hollow sphere with its shell con-
sisting of the primary particles (about 25 nm). The car-
bon layer wrapping primary particles was clearly shown
with the thickness of 3 to 5 nm. By controlling the mor-
phology of the electrode materials, the hollow LiFePO4

spheres showed good rate performances. The high rates
charging were achieved 133 mAh g−1 at 10 C and 100
mAh g−1 at 50 C.

Decreasing the particle size to increase the electrode-
electrolyte interface is the most effective method to en-
hance electrochemical performances of LiFePO4, par-
ticularly at high rate charge-discharge. Unfortunately,
because of the surface lattice relaxation and self-
aggregation, nano-sized LiFePO4 usually exhibit low
capacitance retention and low tap density or volumetric
energy density. Meanwhile, there are also some prob-
lems existed in large-scale production, separation and
admixing with carbon black [9].

Preparation of porous materials

In order to introduce fast ionic permeation and high
electronic conductivity into the Li-ion battery materi-
als, new concepts of electrode structuring are needed
[73]. Recently, the porous LiFePO4 material has at-
tracted comprehensive researchs. In a porous material,
the pore-to-pore distance determines the solid-state dif-
fusion of Li+. Apparently, this distance has a similar
value as the average diameter of nano-particles in par-
ticulate materials [74]. While, porous LiFePO4 par-
ticles provide good contact with electrolyte and, in
principle, are easier to bind than isolated nano-sized
LiFePO4 particles [75]. Meanwhile, such porous struc-
ture is more useful if the pores are decorated with an
electronic conductor, especially with a thin carbon film
[76]. Solid electron-conducting carbon will be homoge-
neously distributed within the final composite materials
[77].

Dominko et al. [78] prepared microsized porous

LiFePO4/C particles by sol-gel techniques, using
Fe(III) citrate as a precursor. The particles inter-
nal porosity in the range of 4-200 nm was controlled
by appropriate selection of several synthesis param-
eters. Within this sol-gel technique the increase in
heating rate lead to a more interlaced pore system, a
smaller mesoporous volume, and a larger number of sur-
face apertures, although the micropore volume did not
change significantly. These features resulted in a bet-
ter electrochemical rate performance of 120 mAh g−1

at 5 C rate. Doherty et al. [79] used a novel method to
prepare nanostructured hierarchically porous LiFePO4

electrode materials. A meso/macroporous carbon
monolith with bimodal porosity was nanocasted from
a hard silica template, which was used to provide a
conductive framework for LiFePO4 and increase the
electrode/electrolyte interface. The surface area of the
sample detected by Brunauer-Emmet-Teller (BET) was
200 m2 g−1 with a pore volume of 0.3 cm3 g−1. This
type of structure was potentially ideal as electrode ma-
terials to improve the rate capability of the batteries.
The as-prepared sample displayed a capacity of 100
mAh g−1 at discharge rate of 5 C. Drummond et al.

[80] reported a hierarchically porous LiFePO4 electrode
materials via a colloidal crystal templates technique.
Beads of polymethylmethacrylate (PMMA) were syn-
thesized with diameters of 100, 140, and 270 nm and
used to form colloidal crystal templates to produce
LiFePO4, which featured pores spanning from 10 to
100 nm (Fig. 10). The materials with the largest pores,
around 100 nm diameters, presented the highest dis-
charge capacities of 160 mAh g−1 at 0.1 C and 115
mAh g−1 at 5 C. Sinha et al. [81] achieved a meso-
porous LiFePO4/C composite with dual porosity by a
solution-based polymer templating technique. Pluronic
acid was used as the templating agent in the pres-
ence of a cosurfactant in an emulsion medium. The
LiFePO4/C composite prepared at 700℃ contains dual
porosity with pore-size distributions spread around 4
and 50 nm, which exhibited a high rate capability and
stable capacity retention upon cycling. It delivered 60
mAh g−1 reversible capacities even at a current rate of
14.7 C.

Template-free techniques have also been developed
to prepare porous LiFePO4 cathode materials. Yu et

al. [82] prepared porous micro-spherical aggregates
of LiFePO4/C nanocomposites via a sol-gel-spray dry-
ing method without employing any surfactants or tem-
plates. The as-obtained LiFePO4 porous microspheres
had an average pore size of 45 nm and gave large spe-
cific surface area (20.2 m2 g−1). The particles could
be easy to bring into contact with electrolyte, facilitate
the electron and lithium ion diffusion. The as-obtained
sample delivered a large reversible discharge capacity
of 138 mAh g−1 at 0.1 C and a good rate capacity of 54
mAh g−1 at 10 C (Fig. 11). Qian et al. [83] suggested
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that the ideal structure of LiFePO4 with both high vol-
umetric energy density and high rate capability should
be a microsphere composed of nanocrystallites tightly
compacted to form three-dimensional electronic and
ionic channels. They prepared nanoembossed meso-
porous LiFePO4 microspheres by a template-free hy-
drothermal process. The microspheres showed a uni-
form size distribution of ∼3 μm and were composed of
many densely aggregated ∼100 nm nanoparticles and
interconnected nanochannels. This mesoporous struc-
ture allowed better irrigation of electrolyte, and there-
fore provided a huge electrochemically available surface
for enhancing the rate capability of the lithium inser-

tion/deinsertion reaction. The discharge capability of
LiFePO4 microspheres reached 115 mAh g−1 at a high
rate of 10 C. Recently, we adopted the supercritical car-
bon dioxide (scCO2) to modify the size and morphology
of hydrothermally synthesized LiFePO4 [84]. After the
scCO2 treatment, aggregation was largely reduced, dif-
ferent morphologies were obtained and impurities were
almost removed. The effects of the formation of porous
LiFePO4 had also been found after the scCO2 treat-
ment. Meanwhile, a possible crystal dissolution forma-
tion mechanism was proposed from theoretical mod-
els [85]. The electrochemical performance of porous
LiFePO4 had been significantly improved. At the

100 nm 500 nm 1 μm

(a) (b) (c)

Fig. 10 (a) TEM image of 140 nm bead-templated LiFePO4 calcined at 320℃ and (b) calcined at 600℃. (c) SEM image of
270 nm bead-templated LiFePO4 calcined at 700℃ [80].
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discharge rate of 5 C, the discharge capacity was 105
mAh g−1 [86].

The porous structure could be depicted as an inverse
picture of nanoparticles arrangement, where pores serve
as paths for Li-ion supply and the distance between
the pores determines the materials kinetics [87]. The
porous structure is also the critical factor for affect-
ing high power capability of LiFePO4, so optimization
of the porous structure by controlling synthesis meth-
ods and technological conditions is the key step to im-
prove electrochemical properties of LiFePO4 at high
rates [88].

Preparation of composites

As a kind of carbon materials, graphene has attracted
attention in increasing the electrochemical performance
of LiFePO4 because of its large specific surface area
(theoretical value of 2630 m2g−1), flexible structure,
superior chemical/thermal stability, and most impor-
tantly excellent electric conductivity [89-94]. With the
help of graphene, the electrons could be transferred eas-
ily between the LiFePO4 particles and current collec-
tors, reducing the internal resistance and enhancing the
power density of the batteries [95, 96].

Zhou et al. [97] described a graphene-modified
LiFePO4 composite for a Li-ion battery cathode ma-
terial. The composite was prepared with LiFePO4

nanoparticles and the relatively simple availability of
graphene oxide nanosheets using spray-drying and an-
nealing processes. The LiFePO4 primary nanoparticles
embedded in micro-sized spherical secondary particles
with diameters of 2-5 μm were wrapped homogeneously
and loosely with a graphene 3D network. The carbon

film had a thickness of about 2 nm and consisted of
3-5 layers of graphene, which was shown in Fig. 12.
Such structure supported the maximum fulfilment of
graphene’s functionality, because electrons were easily
transferred between the surface of LiFePO4 nanocrys-
tals and graphene, and moved unobstructed over the
nanoparticles to attain a high rate capability. The com-
posite delivered a capacity of 70 mAh g−1 at 60 C dis-
charge rate and showed a capacity decay rate of < 15%
when cycled under 10 C charging and 20 C discharg-
ing for 1000 times. Su et al. [98] reported a novel
LiFePO4/graphene/carbon composite by an in situ

solvothermal method to synthesize LiFePO4/graphene
powders as precursors and then followed by a carbon-
coating process. The ethanol adopted in the exper-
iment acted as a reducing agent, which was used to
avoid the formation of undesirable ferric impurities in
the solvothermal [99]. The results indicated that the
co-modification of LiFePO4 with graphene and carbon
coating could construct an effective conducting net-
work, which significantly enhanced the electrochemical
activity of LiFePO4/carbon based composite. The com-
posite with a low content of graphene exhibited a high
initial discharge capacity of 163.7 mAh g−1 at 0.1 C
and 114 mAh g−1 at 5 C, as well as an excellent cycling
stability. Ha et al. [100] mixed chemically activated
graphene (CA-graphene) with LiFePO4 to prepare the
composite for lithium ion batteries. CA-graphene in
the composite provided abundant porous channels for
the diffusion of lithium ions. Moreover, it acted as a
conducting network for easy charge transfer and as a
divider, preventing the aggregation of LiFePO4 parti-
cles. The CA-graphene/LiFePO4 composite exhibited
remarkably better rate capability and stable cycling
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Fig. 12 (a-f) SEM and TEM images of the LFP/G particles; (g) Comparison of rate capability of LFP/G, LFP/C, and
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Fig. 13 SEM and TEM (inset) images of LiFePO4-unfolded graphene nanocomposites obtained with different annealing
time: (a) 2 h; (b) 6 h; (c) 12 h and (d) 24 h. (e) Schematic image of LiFePO4 growth on the unfolded graphene [105].

performance compared to the conventional
graphene/LiFePO4 composite and bare LiFePO4. The
as-obtained sample delivered 73 mAh g−1 of discharge
capacity at 25 C. Shi and co-workers [101] described an
advanced microwave-assisted hydrothermal route for
preparation of a highly ordered LiFePO4/C/graphene
nano-composite. LiFePO4/C nanoparticles were em-
bedded in the conductive and interconnected graphene
networks, and exhibited a discharge capacity of 88 mAh
g−1 at 10 C.

On the other hand, in order to improve the lithium
ion diffusion of the electrode materials, the modi-
fied graphene with 3D conducting matrix are devel-
oped to grow and anchor on the insulating LiFePO4

materials [102, 103]. Sun et al. [104] successfully
prepared a three-dimensional porous self-assembled
LiFePO4/graphene (LFP/G) composite using a facile
template-free sol-gel approach. Graphene nanosheets
were dispersed into the porous hierarchical network
homogenously, which greatly enhanced the efficient
use of the active materials, leading to an outstand-
ing electrochemical performance of the hybrid cath-
odes. The LFP/G composite had a reversible capac-
ity of 65 mAh g−1 at 5 C rate. One year later,

Sun’s group [105] reported that the unfolded graphene
was used as a three dimensional (3D) conducting net-
work for LiFePO4 nano-particle growth (Fig. 13). The
use of unfolded graphene improved the dispersion of
LiFePO4 and restricted the LiFePO4 particle size at the
nanoscale. Meanwhile, it enabled both Li-ion and elec-
trons to migrate and sufficiently utilized the LiFePO4

active materials. This facile designed composite showed
both high specific capacity and rate performances. The
discharge capacity of the nanocomposite remained sta-
ble at relatively high rate (75 mAh g−1 at 10 C and 60
mAh g−1 at 15 C, respectively).

Carbon nanotubes, with high electrical conductiv-
ity, large surface area and high aspect ratio, are also
considered as the promising materials to form high
electrical conductivity and enhance the ion transport
for LiFePO4 [106, 107]. Sun and his colleagues [108]
synthesized 3D nitrogen-doped CNTs modified porous
LiFePO4 by a sol-gel method without templates or sur-
factants. Nitrogen doped CNTs possessed many ac-
tive defects and hydrophilic properties, which brought
to intimate contact with active materials. Meanwhile,
in nitrogen doped CNTs, nitrogen atom provided elec-
tron carriers for the conduction band, which further
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improved the electronic conductivity [109-111]. The
as-prepared LiFePO4/nitrogen-doped CNTs exhibited
excellent rate performance of 80 mAh g−1 at the
rate of 5 C. Toprakci et al. [112] reported that the
LiFePO4/CNT/C composite nanofibers were synthe-
sized via a combination of electrospinning and sol-gel
methods, where polyacrylonitrile (PAN) was used as
the electrospinning media and carbon source. Electro-
spinning was an effective way to minimize the aggrega-
tion of LiFePO4 particles and promote the formation
of a conducting carbonaceous layer. CNTs were found
to be well-dispersed in the carbonaceous matrix and in-
creased the electrochemical performance of the compos-
ite nanofibers. The average reversible capacities of the
above composites were obtained as 134 mAh g−1 and
121 mAh g−1 at 1 C and 2 C, respectively. Zhou et al.

[113] prepared the highly-conductive 3D nanotube net-
works combined with interlaced porous LiFePO4 elec-
trodes by an in situ sol-gel technique. This design
developed the manifold benefits of CNTs to create a
highly-conductive 3D network united with the porous
LiFePO4. At high rate of 6 C, the composite material
retained a capacity of 110 mAh g−1.

From the above papers we can see that the compos-
ites electrode materials are believed to be one of the
most promising cathode materials for lithium ion bat-
teries.

Others

During the synthesis process of LiFePO4 material,
some conductive impurities and amorphous phases may
be produced [114]. These metal impurities play an im-
portant role in increasing electronic conductivity and
evidently improving the electrochemical performance.
Xu et al. [115] prepared LiFePO4/C materials by
a reformative solid-coordination method. Fe2P phase
arised as an impure phase among the LiFePO4/C ma-
terials when they were prepared at relatively high an-
nealing temperature of 725℃. The discharge capacity
of the above sample was 10% higher than the pristine
LiFePO4. Kang and Ceder [116] created a fast ion-
conducting surface phase of Li4P2O7 through controlled
off-stoichiometry. The as-prepared LiFePO4 exhibited
excellent rate performance of 136 mAh g−1 and 60 mAh
g−1 at 50 C and 400 C, respectively. However, Goode-
nough et al. doubted that the announced battery was
impossible to reach high recharging rate capability for a
Li-ion battery of 9 s, although the authors responded to
the unsupported claims of ultrafast charging of Li-ion
batteries [117, 118]. This debate is not yet clear.

Conclusions

The olivine LiFePO4 has been considered as the most
promising cathode materials for EVs and PHEVs appli-

cations due to its inherent merits including low toxicity,
low material cost, flat voltage profile, long cycle abil-
ity and high safety compared to other cathode materi-
als. However, LiFePO4 has severe disadvantages of low
intrinsic electronic conductivity of LiFePO4 and small
diffusion coefficient of lithium ion, which are the main
demerits that make it difficult to be applied in high-
rate battery. In this paper, we have reviewed some
of the recent progress and advances in improving the
rate performance of LiFePO4 from peer-reviewed jour-
nal publications. Carbon coating on the LiFePO4 par-
ticle surface is one of the most important techniques
used to improve its electronic conductivity between par-
ticles. Doping with cations and anions can greatly
improves the intrinsic electronic conductivity of ma-
terials, although the mechanism and effect of doping
on electronic conductivity reported are still in contro-
versy. Both carbon coating and doping do not solve
the problem of the low intrinsic ionic conductivity of
LiFePO4, which could be addressed by downsizing the
particles. In order to introduce fast ionic permeation
and high electronic conductivity into the Li-ion battery
materials, porous structure and the composites elec-
trode materials are depicted to improve the high rate
electrochemical properties of LiFePO4. With regard to
the large-scale industrial production, a reliable, low-
cost, highly effective synthetic method for preparing
LiFePO4 cathode materials with high rate performance
is still highly desirable. With comprehensive research,
we believe that LiFePO4 will be widely used for the
Li-ion battery and practical application of EVs.
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