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S1 Rheological Analysis of the 3D Printing Process 

To analyse the rheological behaviors of different precursor formulas during the 

process of 3D printing, we performed the measurements about stress and viscosity 

with respect to shear rates. All the precursor inks exhibit a pronounced shear-thinning 

behavior (Fig. 2g-i) and are promising candidates for 3D printing. We applied 

different parameters for 3D printing on precursor inks with different rheological 

properties, and all of them can be analyzed by power-law fluid model. In the region of 

1-100 s-1, we applied a power-law fluid model to describe the shear stress as a 

function of shear rates, τ = K ∙ �̇�n , where K and n refer to consistency index and 

exponent, respectively. Take Alg-Mellitic-4 as example (Fig. 2h), the exponent n of 

Alg-Mellitic-4 is calculated to be 0.24 by using a power-law fit. Then, when the 

power-law fluid flowing through a cylindrical tube of radius r we could perform the 

Rabinowitsch-Mooney equation to predict the shear rate �̇�, �̇� = (
3𝑛+1

4𝑛
)
4𝑄

𝜋𝑟3
, where Q 

refers to the volumetric flow rate. The tip diameter of 0.6 mm and an extrusion speed 

of 4 mm s-1 were chosen in this system. Calculation by the above equation, �̇� is 

about 95.6 s-1. Thus the corresponding viscosity from Fig. 2h is about 46 Pa s. 

Immediately after extrusion and assuming a shear rate of far below 1 s−1 , the 

viscosity increases to > 16,900 Pa s, and hence allows for shape fidelity and post-

printing stability. 

Likewise, the rheological behaviours of Alg-Mellitic-2 and Alg-Mellitic-6 during the 

3D printing process could also be explained. For Alg-Mellitic-2, the shear-thinning 

exponent n is calculated to be 0.2 and then by performing the Rabinowitsch-Mooney 

equation, the shear rate �̇� is predicted to be 80 s-1. Finally, the corresponding 

viscosity of the precursor ink from Fig. 2g is about 65 Pa s, showing liquid-like 
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properties that can be extruded easily. The viscosity could recover to > 4500 Pa s for 

the shape retention upon exiting. For Alg-Mellitic-6, the shear-thinning exponent n is 

calculated to be 0.15, and then by performing the Rabinowitsch-Mooney equation, the 

shear rate γ is predicted to be 93.65 s-1. Thus the relevant viscosity from Fig. 2i is 

about 3 Pa s that can be extruded from the needle readily. After extrusion, the 

viscosity is able to recover to 338 Pa s. 

S2 Supplementary Figures and Tables 

 

Fig. S1 Evaluation of shape fidelity by comparing the model files and our printed 

constructs (Scale bars: 5 cm) 

 

Fig. S2 FTIR spectra of the mellitic, sodium alginate, Alg-Mellitic-2, Alg-Mellitic-4, 

and Alg-Mellitic-6 in the regions of 4000-500 cm-1 

 

Fig. S3 (a) The oscillatory measurements (1 Hz) of the precursor ink (Alg-Mellitic-4), 

which sweep from 0.1% to 500% and back to 0.1% strain. (b) Continuous step-strain 

oscillatory measurements from 0.1% to 100% and back to 0.1% strain 
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Fig. S4 (a) Digital photos of 3D printed spiral coil and (b) photo after in situ growth 

of TbMOFs. (c) Digital photo of 3D printed heart and (d) photo after in situ growth of 

EuMOFs 

 

Fig. S5 a, b SEM images and size distribution of EuMOFs with ethanol as precipitant 

agents (Scale bar = 100 m). c, d SEM images and size distribution of TbMOFs with 

ethanol as precipitant agents (Scale bar = 100 m) 
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Fig. S6 Schematic diagram of crosslink between trivalent lanthanide ions and sodium 

alginate 

 

Fig. S7 (a) 3D printed scaffold (length: 10.5 mm) with the precursor ink of Alg-

Mellitic-4 and (b) after immersion in the lanthanide ions solutions (length: 9 mm)  

Note: The scaffold was printed with the smallest diameter muzzle (0.26 mm) and the 

pressure of 0.58 MPa based on the existing 3D printing system. When subsequently 

subjected the 3D scaffold into the lanthanide ions for the in-situ growth of LnMOFs 

and crosslink with alginate, the volume shrank evenly, further improved resolution 

(>260 μm). The volume shrinkage of the prints mainly occurs when immersed in 

metal solutions. We consider that there are two main reasons. One is caused by the 

crosslinking of lanthanide ions with alginate, and solvent exchange with ethanol 

causes the other. We estimate the volume shrinkage of the prints by measuring the 

shrinkage of the side length, the length shrinkage is about 14.3% (from 10.5 mm to 9 

mm), accordingly, the volume shrinkage is calculated about 37.0%.  
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Fig. S8 SEM images of (a) Alg-EuMOF-2, (b) Alg-EuMOF-4, (c) Alg-EuMOF-6 

with the post-printing treatment of Eu3+. Scale bars are100 m 

 

Fig. S9 SEM images of (a) Alg-TbMOF-2, (b) Alg-TbMOF-4, (c) Alg-TbMOF-6 

with the post-printing treatment of Tb3+. Scale bars are 100 m 
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Fig. S10 TGA traces of EuMOF, Alginate, Alg-EuMOF-2, Alg-EuMOF-4, and Alg-

EuMOF-6 

 

Fig. S11 Mechanical properties of 3D printed scaffold before (Alg-Mellitic-4) and 

after (Alg-EuMOF-4) immersed in the solution of Eu3+ ions 

 

Fig. S12 Luminescent emission spectra of the 3D printed LnMOFs with various molar 

ratios of Eu3+ and Tb3+ (λexc = 254 nm) corresponding to Fig. 4a 
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Fig. S13 (a) Coding principles of Morse code. (b) Illustration of in-situ generated 

LnMOFs that are used as Morse code encoder. (c) Representative encrypted letter 

examples of “J” and “O” 

Note: International Morse code is a character encoding language used in 

telecommunication that encodes text information as a series of signals called “dots” 

and “dashes” in various forms such as on-off tones, lights, clicks, or electrical signals 

(Fig. S13a). In our work, the red and green fluorescent EuMOF and TbMOF can 

respectively represent “dots” and “dashes” signals, as Fig. S13b shows. Dripping Ln3+ 

and Tb3+ ions in a specific sequence can generate specific fluorescent color signals, 

simple Morse code information such as letters “J” and “O” can be transmitted (Fig. 

S13c). 

 

Fig. S14 Photographs of 3D printed structure with the post-printing treatment of 

mixed metals by polarized optical microscopy (POM) 
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Fig S15 The 5D0 → 7F2 transition intensity changes in response to various content 

acetone among five repetitive experiments (λexc = 254 nm) 

Note: We estimated the limit of detection (LOD) with the linear plot in Fig. S14, as 

mostly used in sensing evaluation [S1, S2]. Thus, limit of detection = 3σ/slope = (3 x 

627) / 490 = 3.83 μL. (σ represents sample standard deviation for the blank without 

the addition of acetone and is calculated to be 627, sample number = 5).  

 

Fig. S16 Time-dependent emission spectra for the 3D EuMOF scaffold in response to 

acetone (50 μL) 
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Fig. S17 (a) The relative luminescence intensities of the 5D0 → 7F2 transition of the 

3D scaffold before (grey) and in response to different solvents (red). (b) The relative 

luminescence intensities of the 5D0 → 7F2 transition of the 3D scaffold before (grey) 

and in response to a mixture of 5 vol% other solvent with 95 vol% acetone (red). I and 

I0 represent instant emission intensity and original emission intensity, respectively. 

Note: When the same content of different solvents was added (including methanol, 

isopropanol, CH2Cl2, THF, acetonitrile, DMF, DMSO and acetone), the intensity of 

the main transition 5D0 → 7F2 is more or less affected by solvent. Particularly, the 3D 

scaffold exhibited the strongest quenching effect in response to acetone, indicating the 

selectivity to acetone. We subsequently studied a possible interference of various 

similar molecules on selective quenching of the luminescence of the sensor caused by 

acetone. It was found that there is no significant impact of other small amounts of 

similar molecules (e.g., 5 vol%) on the quenching of the fluorescence caused by 

acetone. 

 

Fig. S18 Relative 5D0 → 7F2 transition intensity changes (λex = 254 nm) in five 

quenching-recovery cycles. I and I0 represent instant emission intensity and original 

emission intensity, respectively 
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Table S1 Summary of resolution with works related to 3D printed MOFs 

Ink composition 3D printing technology 
Resolution 

(μm) 
Refs.  

Sodium 

alginate/gelatin/CuBTC 
Direct Ink Writing (DIW) 210  [S3] 

TOCNF/sodium 

alginate/ZIF-8 
Direct Ink Writing (DIW) 410  [S4] 

Silica/PVA/MOF (Ni-BT 

and ZIF-7) 
Direct Ink Writing (DIW) 850  [S5] 

PLA/TPU/ZIF-8 
Fused Deposition Modeling 

(FDM) 
400 [S6] 

Co-kaolin Direct Ink Writing (DIW) >700 [S7] 

Co-MOF-F127 Direct Ink Writing (DIW) 200 [S8] 

Acrylates/UIO-66 Direct Ink Writing (DIW) >1 mm [S9] 

PVA/Clay/MOF (MOF-74 

and UTSA-16) 
Direct Ink Writing (DIW) 850 [S10] 

Aromatic 

monomer/crosslinker/ Cu-

BTC 

Digital Light Processing (DLP) 100 [S11] 

Fumed silica/MOF (MIL-

100 and HKUST-1) 
Direct Ink Writing (DIW) 450 [S12] 

ABS/MOF (HKUST-1 and 

ZIF-8) 

Fused Deposition Modeling 

(FDM) 
>700 [S13] 

Methylcellulose/ 

bentonite/ZIF-8 
Direct Ink Writing (DIW) 250 [S14, S15] 

Nylon-12/HKUST-1 Selective Laser Sintering (SLS) Not given [S16] 

Torlon/MOF (MOF-74 and 

HKUST-1) 
Direct Ink Writing (DIW) >500 [S17] 

Sodium alginate/mellitic 

acid (ligand of LnMOFs) 
Direct Ink Writing (DIW) 260  This work 
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Table S2 Comparison of sensing properties for acetone using different sensors related 

to MOFs 

MOFs Selectivity  Sensitivity  Reversibility  
Response 

rate 
Refs. 

[Tb4(μ6-L)2(μ-

HCOO)(μ3OH)3(μ3-

O)(DMF)2(H2O)4]n 

Yes  Not given Not given Not given [S18] 

[Eu5(DBA)3]n Yes  

Detection 

limit: 1.24 

μM (3mg) 

Not given Not given [S2] 

[Me2NH2]2[(Eu)2(ofdp)2 

(DMF)(H2O)].7H2O.D

MF 

Yes  

Detection 

limit: 7.4 

vol% 

Not given  Fast  [S19] 

MOF-808-Tb Yes  

High 

(fluorescence 

intensity 

reduced to 

almost 50% 

with a 

concentration 

of below 500 

ppm)  

Yes  Rapid  [S20] 

[Tb(FDA)1.5 

(DMF)]DMFn 
Yes  

Fluorescent 

intensity 

almost 

disappeared at 

an acetone 

content of 14 

vol% 

Not given Yes  [S21] 

[Cd(dcba)(DMA)]·DM

A 
Yes  

Ksv:8.4 × 104 

M-1 
Rapid  Yes  [S22] 

DhaTab-COF-EuIL Yes  

Detection 

limit: 1.0 

vol% 

Not given Not given [S23] 

Eu/Tb@Bi-MOF Yes  Not given Not given Not given [S24] 

Eu–BPDA Yes  

Luminescenc

e intensities 

decreased to 

50% (EC50) at 

an acetone 

content of 

0.028 vol% 

Yes  Fast [S25] 

[Tb(L)2·2H2O]·Cl·4H2

O (L = 4-carboxy-1-(4-

carboxybenzyl)pyridini

um) 

Yes  
Ksv:2.0263 × 

104 M−1 
Yes  Not given [S26] 

3D printed EuMOF 

scaffold 
Yes  

Limit of 

detection: 

3.83 μL  

Yes  Rapid  
This 

work 
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Movie S1 3D printing process for 2D patterns and 3D scaffolds 
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