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Abstract: α−MoO3 ordered nanosheets have been synthesized under hydrothermal conditions using com-
mercial MoO3 and hydroquinone as structuring agent. X-ray diffraction (XRD), scanning electron microscope
(SEM) and transmission electron microscopy (TEM) were used to analyse the obtained material. The con-
ductivity mechanism of the Molybdenum ordered nanosheets has been investigated using combined complex
impedance and modulus formalism.

The temperature dependence of the conductivity, which was between 473 and 573 K, is very close to the

Arrhenius’ law, with an activation energy of 0.76 eV. However, the conductivity of the material increases

with temperature. It shows a typical negative temperature coefficient resistance (NTCR) similar to that of a

semiconductor. The dielectric properties of the MoO3 compound have been studied in the temperature range

of 473-573 K as well as the frequency range of 10 Hz to 13 MHz. The ac-conductivity for high frequency σac(ω)

obeys the universal power law.
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Introduction

The control of the morphology and size of nanoma-
terials has become a dominant theme of study in the
material physics field since these parameters are the
key elements that determine the physical properties of
nanomaterials. Low dimensional nanostructures, such
as nanowires, nanorods, nanotubes, nanobelts, and
nanosheets are increasingly being given more attention
due to their novel electrical, magnetic and optical prop-
erties [1-8]. Nanosheet materials have been synthesized
using various methods: the vapor-liquid-solid (VLS)
process [9], chemical vapor deposition (CVD [10], the
solution based method [11] and the Langmuir-Blodgett
(LB) technique [12].

It must be noted that the layered transition ox-

ides have been given considerable attention in differ-
ent applications such as in the electrosynthesis of elec-
trochromic molybdenum oxide [13], in gas sensing [14],
in catalysis [15], the pillaring method [16] and inactive
electrode materials [17]. Among the layered transition
metal oxides, orthorhombic MoO3 has been receiving
considerable attention within the field of solid state ma-
terials chemistry owing to its fascinating properties and
its great potential to be used in many fields such as: in
ammonia sensing [18], in alkane dehydrogenation cat-
alysts [19], in supercapacitors [20] and in active anode
materials for batteries [21].

In this paper we study, on the one hand, the syn-
thesis and the characterization of the molybdenum ox-
ide nanosheets; and on the other hand, the electrical
properties of this nanomaterial. The details concern-
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ing the dielectric response of α-MoO3 as a function of
frequency and temperature has been investigated. Due
to its layered structure being favorable to lithium in-
sertion, α-MoO3 nanomaterial appears promising for
lithium battery applications.

Methods

Sample preparation

The synthesis was carried out using the hydrothermal
process. Sigma-Aldrich molybdenum trioxide (1313-27-
5) (0.262 g) and hydroquinone (HDQ) HO-C6H4-OH
(0.2 g) were introduced in 10 ml of distilled water. The
molar ratio of these three components is (1:1:300). This
mixture was treated in a Parr bomb at 180℃. The re-
action time is 96 h. The cooling time of this system
was fixed at 24 h. The pH of the reaction mixture was
kept at 7. The resulting black powder was washed with
ethanol in order to remove the residual hydroquinone,
and then dried at 80℃ for 8 h.

Characterization techniques

X-ray diffraction patterns were recorded for all sam-
ples using the Panalytical “X’Pert Pro” diffractometer,
using Cu Kα radiation (λ=1.54056 Å). The texture of
the prepared sample was examined using a Scanning
Electron Microscope (SEM) Quanta 200. Transmission
electron microscopy (TEM) results were recorded on a
JEOL 100 CX II electron microscope operated at 200
kV.

A polycrystalline sample of α-MoO3 was crushed and
pressed at room temperature into a tablet of 13.06 mm
in diameter and 1.01 mm in thickness. Dense pellets
suitable for electro-physical measurements were heated
at 100℃ for 24 h. Metallic silver was deposited on
both sides and served as electrodes. The pellet was
placed between two blocking electrodes in a tubular fur-
nace and subjected to a temperature regulator. Con-
ductivity measurements were carried out from 473 K
to 573 K in 5∼20℃ intervals by checking the complex
impedance spectroscopy with a Hewlett Packard 4129A
impedance analyzer. The signal frequency ranged from
10 Hz to 13 MHz.

Results and discussion

Powder X-ray diffraction

The XRD pattern of the resulting product (Fig. 1(b))
differs from that measured on the commercial molyb-
denum oxide precursor (Fig. 1(a)). This means that
the structure of the obtained material is different from
that of the precursor, indicating that the intercalation
of HDQ is taking place during the present process. The

obtained material is well defined as a pure phase of
MoO3 that crystallizes in the orthorhombic system with
Pnma space group symmetry (JCPDS data, card num-
ber 65-2421). The lattice parameters were refined using
the WinCELL program with a=3.9728 Å, b=13.8023 Å
and c=3.6710Å. It is to be noted that three intense re-
flections (020), (040) and (060) were observed in the
XRD pattern, indicating the formation of a layered
structure of MoO3. Figure 2 shows the projection of
the layered structure of molybdenum oxide along the
(001) direction.
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Fig. 1 XRD patterns of commercial molybdenum oxide (a)
and the obtained product (b).
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Fig. 2 Crystal structure for MoO3 nanosheets.

SEM and TEM

The SEM micrograph of the obtained material
(Fig. 3) proves the presence of a stratified structure.
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5μm

Fig. 3 SEM image of the synthesized sample for MoO3

nanosheets.
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Fig. 4 TEM images of the synthesized sample for MoO3

nanosheets.

This morphology is confirmed by the TEM micrographs
which show the presence of well-ordered regular sheets
composed of a series of flake sheets. The layered struc-
ture can be clearly seen in (Fig. 4(a)) and (Fig. 4(b)).
This result is corroborated by the increase of the 0k0
peaks observed in the XRD pattern of the synthesized
phase, indicating the well-orientated structure of the
material. Yi Jing et al. [22] have synthesized a similar
phase by intercalating a long chain of alkylamine in the
pre-treated molybdenum trioxide with p-(N-ethyl-N-
ethylamino trimethylquaternary ammonium methylsul-
fate salt)-p’-(nitro)-o’-(chloro) azobenzene (GTL). Tak-
ing into account the absence of polarity and the strong
electronegativity of the oxygen in the hydroxyl group
in the organic precursor used, we can explain the insta-
bility of the layer.

Complex impedance analysis

Figure 5 shows the results of the research performed
on the electrical properties of MoO3, using impedance
analysis. Figure 5(a) shows the complex impedance
spectra (Nyquist plots) at different temperatures for the
MoO3 nanomaterials. The impedance spectrum is char-
acterized by the appearance of a single parabola with a
radius that decreases with increasing temperature. The

intercept of the parabola with the real axis (Z′) gives
us an estimated resistance (Rb) for the material. It
has been observed that the resistance decreases with
increasing temperature for MoO3 nanomaterials. The
result may be interpreted as a negative temperature
coefficient resistance (NTCR) similar to that observed
in a semiconductor. The electrical behavior observed
in the material may be represented by an equivalent
electrical circuit as shown in Fig. 5(a) (Inset).

Figure 5(b) shows the variation of the real part of
impedance (Z′) as a function of frequency at different
temperatures. It has been observed that the impedance
value is higher at low temperatures in the low frequency
domain; but gradually decreases with increasing tem-
perature. The decrease in Z′ with a rise in tempera-
ture and frequency indicates a possible increase of the
ac-conductivity with the increase in temperature and
frequency.

Figure 5(c) represents the variation of the imaginary
part of Z′′ (impedance loss spectrum) with frequency. It
is characterized by the appearance of peaks at a partic-
ular frequency in the temperature range [473∼573 K].
The appearance of a peak in the loss spectrum is an
indication of the beginning of electrical relaxation in
the material at different temperatures. The peaks that
appear are asymmetric and their positions appear to
be shifting towards the higher frequency side with in-
creasing temperature. The variation of the conductiv-
ity, calculated from the complex impedance plots, with
reciprocal temperature for MoO3 is shown in Fig. 5(d).
The conductivity obeys the Arrhenius’ law (σ=Cexp(-
Ea/kT), where Ea is the activation energy and k is the
Boltzmann constant. The corresponding activation en-
ergy Ea=0.76 eV.

Electrical conductivity analysis

Figure 6 shows ac-conductivity σac(ω) vs. frequency
plots for different temperatures. Inspection of these
plots over the measured temperature range reveals the
presence of a low frequency conductivity plateau, fol-
lowed by high frequency conductivity dispersion with
a change in gradient. The temperature at which grain
resistance dominates over grain boundary resistance is
marked by a change in gradient of ac-conductivity with
frequency. The frequency at which the change in gra-
dient takes place is known as the critical or hopping
frequency. The hopping frequency shifts to higher fre-
quencies with increasing temperature, suggesting a pos-
sible enhancement in the carrier-hopping rate of the
mobile charge carriers with a rise in temperature. It is
seen from Fig. 6 that σac increases with increasing fre-
quency and becomes independent of frequency at higher
values where the ac electrical conductivity (σac) values
are very close to each other. These results suggest that
the nature and mechanism of the conductivity
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Fig. 5 (a) Nyquist diagrams at different temperatures; (b-c) Z′ and −Z′′ versus frequency at different temperatures; (d)
dependence of Ln(σT) on temperature for MoO3 nanosheets.
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Fig. 6 Dependence of Ln(σac) on frequency at different
temperatures for MoO3 nanosheets.

dispersion of MoO3 nanosheets can be analysed us-
ing Jonscher’s power law defined as: σac(ω) =
σdc[1 + (ω/ωH)n] (1) [23-25], where σdc is the dc-
conductivity in a particular range of temperatures, n

is the temperature-dependent exponent in the range
0≤ n ≤1 of the interionic coupling strength and ωH

is the hopping frequency at which a change in gradi-

ent of the conductivity occurs. The required σdc values
were obtained from the σac(ω) spectrum in equation (1)
by using σac(ωH) = 2σdc(2).

Dielectric analysis

Figure 7 shows the variation of the dielectric constant
(ε′ and ε′′) as a function of frequency at selected tem-
peratures (473∼573℃) for MoO3 nanosheets. Figure
7(a) shows that the dielectric constant (ε′) decreases
at lower frequencies and remains constant at higher
frequencies. The constant decrease of the value of
the dielectric constant with increasing frequency may
be attributed to electronic, ionic and interfacial po-
larization at low frequencies [26]. Generally, the ob-
served dielectric dispersion at low frequencies can be
explained based on the Maxwell-Wagner model of in-
terfacial polarization [27]. According to the Maxwell-
Wagner model, the dielectric structure of ferrites con-
sists of two layers: the first layer consists of a large
number of grains and acts as a conducting layer at
higher frequencies, while the second layer consists of
grain boundaries that act as a highly resistive medium
at lower frequencies. At low frequencies, the polariza-
tion process in MoO3 nanoparticles can be explained
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Fig. 7 (a) ε
′ versus frequency at different temperatures for MoO3 nanosheets; (b) ε

′′ versus frequency at different temper-
atures for MoO3 nanosheets.
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Fig. 8 (a) M′ versus frequency at different temperatures; (b) M′′/M′′

max versus frequency at different temperatures; (c) M′

and M′′ versus frequency at 200 ℃.

by the dipole orientation in the direction of the ap-
plied field. Whereas, at high frequencies, the dipole
orientation cannot follow the fast alternating field and
therefore its contribution to polarization ceases.

In Fig. 7(b) we can observe that the MoO3

nanosheets show a decrease in the complex dielectric
constant value of ε′′ with increasing frequency until
reaching a constant value. For nanometer-sized par-
ticles, the contribution of the interfacial loss and the
loss from electrical conductivity is dominant at lower
frequencies, however, at high frequencies, these losses

are negligible. This may be the reason for the decrease
in the dielectric constant value (ε′′) at high frequen-
cies. The large value of the dielectric constant ε′′ at
lower frequencies is due to the predominance of many
species such as oxygen vacancies and grain boundary
defects [28].

Modulus formalism

The electrical response of the MoO3 nanomaterial has
also been analyzed via the complex electric modulus
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M*(ω) formalism [29]. The complex modulus is defined
as M*=iωC0Z

∗, where C0 is the vacuum capacitance
of the cell, ω=2πf and i2 = −1. This formalism was
adopted because it ignores the electrode polarization
and other interfacial effects in solid electrolytes [30-34].

For a given temperature and frequency, the real part
(M′) and the imaginary part (M′′) of the M* complex
modulus (M*=M′+jM′′) have been calculated from the
complex data (Z*=Z′-jZ′′) using the relations M′ =
ωC0Z

′′ and M′′=ωC0Z′. A plot of log M′ and the nor-
malized M′′/M ′′

max
imaginary part of the complex mod-

ulus versus frequency (in a logarithmic scale) are given
in Fig. 8(a) and Fig. 8(b) for the [200∼300℃] tempera-
ture range. Whatever the temperature, the value of M′

reaches a maximum (M′

∞
=1/ε∞) at high frequencies.

At low frequencies, it decreases sharply and approaches
zero, indicating that the electrode polarization phenom-
ena make a negligible contribution to M*(ω) and may
be ignored when the electric data is analyzed in this
way.

In Fig. 8(b), we introduce the (M′′/M′′

max
) depen-

dence of log f relative for the MoO3 nanomaterial at
various temperatures. Inspection of these plots over
the measured temperature range reveal the presence of
a peak which shifts from low to high frequency as the
temperature is raised. The modulus peak maxima is
defined by τωmax=1, where τ is the most probable re-
laxation time [35-36]. The relaxation process probably
originates from the charge carrier hopping mechanism.
Observation of the M′′/M′′

max plots shows the absence
of any additional peaks at lower frequencies, which in-
dicates a negligible contribution of grain boundary and
electrode effects to the total conductivity. In these fig-
ures we observe a maximum in the imaginary part,
which corresponds to an inflexion in the curve of the
real part of Fig. 8(c). This behavior indicates the pres-
ence of a relaxation phenomenon.

Conclusion

In this investigation we have developed a simple
method for the synthesis of molybdenum trioxide
nanosheets, at a relatively low temperature via a hy-
drothermal process. It has been outlined in this report
that this nanostructure is well-ordered and oriented.
We suggest that the role of the organic precursor is fun-
damental in structuring the molybdenum oxide layers.
Due to its structure, the electrical conductivity could
be the most important bulk property of the molybde-
num trioxide. Indeed, the temperature dependence of
the conductivity between 473 and 573 K of the MoO3

nanomaterial indicates that it obeys the Arrhenius’ law,
with activation energy of 0.76 eV. The frequency de-
pendence of the ac-conductivity is approximated by a
universal power law.
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