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Printable Zinc‑Ion Hybrid Micro‑Capacitors 
for Flexible Self‑Powered Integrated Units
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Xin Guo1 *

HIGHLIGHTS 

• This work is a new guide for the design of on-chip energy integrated systems toward the goal of developing highly safe, economic, 
and long-life smart wearable electronics.

• The biomass kelp-carbon based on unique 3D micro-/nanostructure combined with multivalent ion storage contributes to high capacity 
of the Zn-ion hybrid capacitor.

• The flexible solar-charging self-powered system with printed Zn-ion hybrid micro-capacitor as energy storage module exhibits fast 
photoelectric conversion/storage rate, good mechanical robustness, and cyclic stability.

ABSTRACT Wearable self-powered systems 
integrated with energy conversion and storage 
devices such as solar-charging power units 
arouse widespread concerns in scientific and 
industrial realms. However, their applications 
are hampered by the restrictions of unbefitting 
size matching between integrated modules, 
limited tolerance to the variation of input cur-
rent, reliability, and safety issues. Herein, flex-
ible solar-charging self-powered units based 
on printed Zn-ion hybrid micro-capacitor 
as the energy storage module is developed. 
Unique 3D micro-/nano-architecture of the 
biomass kelp-carbon combined with multivalent ion  (Zn2+) storage endows the aqueous Zn-ion hybrid capacitor with high specific capacity 
(196.7 mAh g−1 at 0.1 A g−1). By employing an in-plane asymmetric printing technique, the fabricated quasi-solid-state Zn-ion hybrid micro-
capacitors exhibit high rate, long life and energy density up to 8.2 μWh  cm−2. After integrating the micro-capacitor with organic solar cells, the 
derived self-powered system presents outstanding energy conversion/storage efficiency (ηoverall = 17.8%), solar-charging cyclic stability (95% after 
100 cycles), wide current tolerance, and good mechanical flexibility. Such portable, wearable, and green integrated units offer new insights into 
design of advanced self-powered systems toward the goal of developing highly safe, economic, stable, and long-life smart wearable electronics.
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[14, 15]. Various univalent metal ion hybrid capacitors, 
such as lithium-ion hybrid capacitors, sodium-ion hybrid 
capacitors, and potassium-ion hybrid capacitors, have been 
studied [16]. Nevertheless, alkali metals (Li, Na, and K) are 
extremely reactive, and introduced organic electrolytes are 
flammable, causing security risks. In recent years, multiva-
lent ion storage mechanisms (e.g.,  Zn2+,  Mg2+,  Ca2+, and 
 Al3+) have been put forward, which may provide fast charge 
transfer dynamics, high capacity, and energy density [17]. 
Among them, Zn-ion hybrid capacitors (ZHCs) are consid-
ered as research hotspot by virtue of their unique merits 
including high safety, low-cost, high capacity, and long cycle 
life [18, 19]. Safety is a main concern for wearable electronic 
devices. Exploiting ZHCs based on quasi-solid-state aque-
ous electrolyte can surmount the hazards of flammability and 
electrolyte leakage, while improve energy density.

To match wearable electronics, power sources with traits 
of miniature, planar, reliable, and easy to integrate are 
demanded [20]. Micro-ZHCs based on planar interdigital 
structure can meet the above requirements. However, the 
studies on asymmetric micro-devices are still in their nascent 
stage owing to the difficulty in building micro-asymmetric 
configuration and processing with different electrode materi-
als. To the best of our knowledge, solar-charging self-pow-
ered system based on micro-ZHCs as the energy storage 
module has not been reported yet.

Herein, we fabricate aqueous ZHCs and quasi-solid-state 
micro-ZHCs, targeting flexible solar-charging self-powered 
system. The aqueous ZHCs are constructed with distinctive 
biomass kelp-carbon as cathode, Zn foil as anode and zinc 
trifluoromethane sulfonate [Zn(CF3SO3)2] aqueous solution 
as electrolyte. The unique 3D micro-/nano- architecture of 
the kelp-carbon enables a high-rate and long-life ZHC; the 
asymmetric cell structure and multivalent ion  (Zn2+) stor-
age result in a high specific capacity and energy density of 
the device. Further, flexible quasi-solid-state micro-ZHCs 
based on the screen printed kelp-carbon cathode, Zn powder 
anode and Zn(CF3SO3)2/polyacrylamide (PAM) hydrogel 
electrolyte are fabricated on polyimide (PI) substrate. Screen 
printing technique is considered as a universal approach and 
applicable for scaled-up fabrication, which has the prospect 
of commercialization and gets rid of the cost dilemma faced 
by wearable self-powered devices in practical applications. 
The fabricated micro-ZHCs possess the virtues of inte-
grated planar interdigital structure, excellent electrochemical 

1 Introduction

Wearable electronics need to be miniature, portable, highly 
integrated, and conformable to human skin or other tissues 
[1, 2]. Various human–machine interfaces, mobile power 
supplies, and display devices are expected to be integrated 
as multifunctional wearable systems, which would signifi-
cantly improve the quality of our lives [3–5]. To build an 
independent functional wearable system, an energy conver-
sion/harvesting–storing module serving as a power supply 
is prerequisite to other functional system components [6, 7].

In terms of energy conversion module, photovoltaic 
devices that convert solar energy to electric energy are omni-
present for harnessing clean and massive solar energy [8]. 
Yet solar energy is intermittent, unpredictable, and avail-
able only during the daytime. The unstable output energy 
is incapable of powering functional system persistently. 
Consequently, energy requires to be stored in a trustworthy 
module for subsequent use. Among numerous burgeoning 
energy storage devices, supercapacitors with high power 
density, fast charge-discharge rate, particularly the satisfying 
tolerance to variation of input current, have attracted great 
attention [9, 10]. Following characteristics make them very 
suitable to store the converted solar energy by photovoltaic 
devices to build self-powered systems: (i) two devices (i.e., 
photovoltaic device and supercapacitor) complement each 
other. Photovoltaic devices continuously power the super-
capacitors to resolve the shortcoming of low energy density 
for supercapacitors; the converted energy by photovoltaic 
devices is stored by the supercapacitor for use to resolve its 
shortcoming of intermittent source; (ii) it is a green energy 
system that does not need extra charging equipment, which 
has referential significance to other energy integration 
systems.

Supercapacitors suffer from relatively low energy den-
sity compared with various batteries, hindering their practi-
cal applications in advanced wearable electronics. Thus, to 
improve energy density is an eternal research objective for 
supercapacitors, and promising strategies care: (i) increas-
ing the capacitance by introducing pseudocapacitive elec-
trode materials; (ii) enhancing cell voltage by using novel 
electrolytes or constructing asymmetric devices [11–13]. 
Hybrid capacitors (a type of asymmetric supercapacitors) 
with one battery-type electrode as energy source and one 
capacitive electrode as power source are double-benefited 
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performances, low cost, and high security. Moreover, direct 
printing such micro-ZHCs on chip with flexible organic solar 
cells (OSCs) enables the construction of solar-charging self-
powered units with simplified configurations and mechani-
cal robustness. The derived integrated system exhibits fast 
photoelectric conversion/storage characteristics, wide cur-
rent tolerance, continuous self-powering and wearable fea-
tures, demonstrating potential for applications in healthcare, 
human-machine interfaces, and intelligent robotics.

2  Experimental Section

2.1  Materials Preparation

2.1.1  Preparation of Kelp‑Carbon

The preparation method of kelp-carbon refers to our previ-
ous work [21]. Kelp blades (for food) were purchased from 
local farmers’ market. Before using, they were washed with 
deionized water and dried at 70 °C overnight. For carboniza-
tion, the kelp-blades were heated to 600 °C for 2 h under Ar 
atmosphere in a tube furnace. For activation, the carbona-
ceous precursor was ground into powders and then impreg-
nated in KOH solution with a mass ratio of 1:4 (carbon: 
KOH). The mixed slurry was heat-treated at 120 °C for 24 h 
in a vacuum oven and then was heated to 800 °C for 3 h 
under Ar flow in a tube furnace. Afterward, the activated 
samples were thoroughly washed with 10 wt% HCl solution 
and deionized water, until neutral pH was achieved. After 
drying, kelp-carbon was obtained. Compared with our previ-
ous work [21], the main difference in the preparation process 
lies in the activation temperature for the kelp-carbon. Higher 
activation temperature benefits to widen the pore size of the 
activated carbon.

2.1.2  Preparation of Zn(CF3SO3)2‑PAM Hydrogel 
Electrolyte

Acrylamide monomer powders (4.2 g) were dissolved in 
deionized water (21 mL) with stirring for 0.5 h to obtain 
a uniform solution. Then, N,N’-methylenebisacrylamide 
(0.01  wt%), N,N,N’,N’-tetramethylethylenediamine 

(0.09 wt%), and ammonium persulfate (0.1 wt%) were added 
into the solution and stirred uniformly. After degassing by 
ultrasonic treatment and vacuum, the obtained solution 
was poured into a glass mold and heated at 60 °C for 8 h. 
Afterward, the as-prepared polymer gel was soaked in 2 M 
Zn(CF3SO3)2 aqueous solution for more than 24 h to reach 
the ion balance point.

2.2  Devices Preparation

2.2.1  Assembly of Aqueous ZHCs

Aqueous ZHCs were assembled using a typical coin cell struc-
ture (CR2016), with kelp-carbon as cathode material and Zn 
foil (thickness of 70 μm) as anode. The cathode was prepared 
by coating electrode slurry (the mass ratio of kelp-carbon/
PVDF was 9:1) on stainless foil. The specific mass loading of 
the cathode material was 0.57–1.13 mg cm−2, the thickness of 
the cathode was ~ 0.02 mm, and the diameter of the electrode 
was 10 mm. 2 M Zn(CF3SO3)2 aqueous solution was used as 
the electrolyte (with a pH value of ~ 5.5), and commercial poly-
propylene film (MPF30, NKK) was utilized as the separator. 
For control experiment, ZHCs based on commercial activated 
carbon as cathode [TF-B520//2 M Zn(CF3SO3)2 //Zn] were 
also assembled.

2.2.2  Construction of Flexible Quasi‑Solid‑State 
Micro‑ZHCs

Firstly, interdigital Au layer (200 nm in thickness) acting as 
current collector was patterned on flexible PI substrate with 
designed mask by using magnetron sputtering (Amod, Ang-
strom Engineering Inc.). Next, kelp-carbon paste (80% kelp-
carbon and 20% organic vehicle composing of butyl carbitol, 
ethyl-cellulose, terpineol, din-butyl phthalates, and span85) 
was screen-printed (PHP-1515, Hotting Screen Printing Equip-
ment Co. LTD) on the one side of the Au current collector fin-
gers, and Zn paste (80% Zn powder and 20% organic vehicle) 
was screen-printed on the other side of the Au current collec-
tor fingers to fabricate the asymmetric microelectrodes. The 
printed micro-device was annealed at 200 °C for 2 h to remove 
the organic vehicle. Finally, a piece of Zn(CF3SO3)2-PAM 
hydrogel electrolyte was coated on the interdigital electrodes 
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with copper tape employed as the wire lead, and encapsulated 
with polyethylene film (20 μm in thickness).

2.2.3  Preparation of Flexible OSCs

The detailed preparation process of flexible OSCs was pro-
vided in supporting information.

2.2.4  Construction of Flexible Solar‑Charging Integrated 
Units

To deliver required working voltage, a micro-ZHC and four 
OSCs connected in series are integrated onto flexible poly-
ethylene terephthalate (PET) substrate (110 μm in thickness) 
with copper foil tape as the interconnected wire. The active 
areas of the micro-ZHC and the four-junction OSCs are 0.0352 
and 0.3 cm2, respectively. The entire device was sealed with 
polyethylene film.

2.3  Materials and Characterizations

Materials and characterizations on the morphology, struc-
ture, and porosity of kelp-carbon, electrochemical meas-
urements, and calculations are provided in supporting 
information.

3  Results and Discussion

3.1  Configuration of the Solar‑Charging Self‑Powered 
Unit

Figure 1a illustrates the configuration of the constructed 
flexible self-powered unit consisting of a piece of flexible 
PET substrate, energy conversion module (i.e., flexible 
OSCs) and an energy storage module (i.e., flexible micro-
ZHC). Once the integrated unit is exposed to sunlight, the 
OSCs convert photo-irradiation into electricity and charge 
the micro-ZHC (solar-charging). The self-powered unit can 
power electronic devices during daylight, in doors and even 
at the time of discontinuous illumination or no light with-
out external charging supply. As individual component is 
flexible and the entire integrated unit complies with an in-
plane design, it endows the system high flexibility. Figure 1b 
shows a proof-of-concept demonstration, the integrated unit 
can function as a reliable power source to drive a portable 
electronic watch. The multivalent ion storage mechanism of 
the developed ZHC is presented in Fig. 1c. Highly revers-
ible and fast ion  (Zn2+ and  CF3SO3

−) adsorption/desorption 
storage mechanism occurs on the kelp-carbon cathode,  Zn2+ 
depositing/stripping reaction occurs on the Zn anode, and 
Zn(CF3SO3)2 aqueous solution acts as the electrolyte.

3.2  Characteristics of the Kelp‑Carbon

Kelp as a kind of brown algae is an extensive seafood 
worldwide. The biological structure of kelp blade is com-
posed of meristoderm, outer cortex, inner cortex and 
medulla (Fig. 2a). To carry out effective photosynthesis 
in the sea, the surface layer (meristoderm) of kelp blade 
contains lots of chromatophores, which are made up of 
stacked nanolayered membranes and provide a high sur-
face area. The cellulose and hemicellulose in the cell walls 
of the meristoderm, outer cortex, inner cortex, and medulla 
are pyrolyzed during carbonization, and form hierarchical, 
porous, and interconnected micro-/nano- architecture after 
activation (Fig. 2a, b).

The kelp-carbon presents ridge-like surface morphol-
ogy consisting of stacked carbon nanosheets (Fig. 2c), cor-
responding to the meristoderm cellularity in the surface 
layer of kelp blade. The interior of the kelp-carbon owns 
a 3D cellular-like architecture (Fig. 2b, d), which consists 
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Fig. 1  a Graphical illustration of the solar-charging self-powered 
unit. b Proof-of-concept demonstration of the flexible solar-charging 
self-powered unit. c Working mechanism of the developed ZHC
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of quadrilateral/pentagon-like cells and cell walls (carbon 
nanosheets). The sizes of the polygonal cells rang from ten 
to dozens of microns. Transmission electron microscope 
(TEM), Raman spectroscopy, and X-ray diffraction (XRD) 
investigations indicate the disordered (amorphous) carbon 
microstructure of the kelp-carbon (Fig. S1). X-ray photo-
electron spectroscopy (XPS) confirms the presence of C, 
O, N, S, and P elements in the kelp-carbon (Fig. S2a). The 
atomic fractions of C, O, N, S, and P are 88.81%, 9.89%, 
0.8%, 0.46%, and 0.05%, respectively. The contents of N, 
S, and P elements are relatively low. The high-resolution C 
1 s spectrum (Fig. S2b) exhibits strong sp2 carbon bonding 
(284.35 eV) and relatively weak C–O bonding (286.4 eV). 

The O 1 s spectrum (Fig. S2c) indicates the existence of 
a certain amount of oxygen-containing functional groups, 
including  H2O–OH bonding (531.4  eV), adsorbed  H2O 
molecules (532.5  eV) and C–O groups (533.8  eV). 
Brunauer–Emmett–Teller (BET)-specific surface area of the 
kelp-carbon reaches a high value of 3047 m2 g−1 according 
to  N2 adsorption/desorption measurement (Fig. 2e). A hys-
teresis loop in the relative pressure range between 0.4 and 
0.99 suggests the existence of mesopores and macropores. 
The pore size distribution curve (Fig. 2f) shows that the con-
tent of macropores is very low, micropores (0.74 cm3 g−1) 
and mesopores (1.1 cm3 g−1) occupying the most propor-
tion. The total pore volume is as high as 1.87 cm3 g−1. The 
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polygonal cell walls and quadrilateral/pentagon-like chan-
nels in the kelp-carbon could provide sufficient pathways for 
the fast electron and ion diffusion.

3.3  Electrochemical Properties of the Aqueous ZHCs

Figure 3a shows the cyclic voltammetry (CV) curves at vari-
ous scan rates of the assembled aqueous ZHC (kelp-carbon//
Zn(CF3SO3)2//Zn) in a cell voltage range of 0.1–1.7 V (in a 
wider voltage range, water decomposition may occur, Fig. 

S3) [22]. A pair of redox peaks located at 1.25 and 1.0 V are 
observed in the CV curves corresponding to the reactions of 
Zn/Zn2+ depositing/stripping on Zn anode [19]. The shapes 
of the CV curves and positions of the redox peaks do not dis-
tort obviously with increasing scan rates, manifesting good 
rate capability of the hybrid capacitor [23].

Galvanostatic charge–discharge (GCD) measurement was 
devoted to evaluate the specific capacity, energy density, 
and power density of the ZHC. The GCD curves (Fig. 3b) 
present basically symmetrical, and the maximum specific 
capacity (based on the mass of kelp-carbon) is calculated 
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to be 196.7 mAh g−1 (445 F  g−1 in specific capacitance) 
at 0.1 A g−1, and still holds 97.2 mAh g−1 (219 F g−1) at 
10 A g−1. The maximum energy density of the ZHC is up 
to 111.5 Wh kg−1 at 1300 W kg−1. High power densities of 
1.3–6.9 kW kg−1 within 35–219 s can be obtained for the 
cell, which are much higher than those of common zinc-
ion batteries [24, 25]. It is worth mentioning that the spe-
cific capacity and energy density of our aqueous ZHCs are 
superior to those of the reported aqueous ZHCs based on 
carbon cathodes, such as commercial activated carbon [18], 
N-doped carbon [26], N-doped hollow carbon [27], and 
B/N-codoped carbon [28], and even precede those of some 
aqueous Zn-ion batteries [29–31]. Electrochemical imped-
ance spectroscopy (Fig. S4a) reveals reasonable equivalent 
series resistance (Rs = 13 Ω) and charge transfer resistance 
(Rct = 23.4 Ω) for the ZHC [26, 32], implying good conduc-
tivity of the electrode materials and fast transport of electro-
lyte ions in the electrode and at the interfaces between the 
electrode and electrolyte.

The specific capacity of ZHC is mainly determined by the 
cathode material (kelp-carbon). Activated carbons with par-
tial micropores are recommended for enhancing ion-trapping 
[33], while a certain proportion of mesopores/macropores 
is prerequisite to reduce the ion diffusion resistance (espe-
cially for ions with relatively large ion radius) and could 
serve as reservoirs for electrolyte ions [21]. Pore structure 
is like a filter for electrolyte ions (i.e., ion sieving effect) and 
the dimensions of pores and ions should match each other 
[33, 34]. As depicted in Fig. 2f, although the micropore 
sizes of the kelp-carbon (0.9–2 nm) are already larger than 
the hydrated ionic radii of  CF3SO3

− ( > 0.58 nm) [35] and 
 Zn2+(0.43 nm) [36]. In the actual ion adsorption/desorption 
process, a large number of bottleneck-type micropores gen-
erally exist in the activated carbons, which may block the 
rapid transport of electrolyte ions at high current densities 
and lead to poor rate capability [37]. Such phenomenon is 
announced from the control experiment by using commer-
cial activated carbon (TF-B520) as cathode for the ZHCs. 
TF-B520 mainly contains micropores with an average pore 
size of 0.82 nm (Fig. S5). Due to the bottleneck effect of 
micropores and part of the micropores being underused, 
the ZHC based on TF-B520 cathode shows relatively low 
discharge-specific capacity (129 mAh g−1), worse rate per-
formance, and higher Rct (35 Ω) (Fig. S6).

The Warburg region of the Nyquist plots (Fig. S7a) 
was further analyzed by replotting Z′ (the real part of the 

collected impedance) as a function of ω −1/2 (ω is the angu-
lar frequency) to reveal the ion diffusion resistivity in the 
kelp-carbon electrode. The slope of the linear fitting line is 
equal to diffusion resistivity, which reflects the ion diffusion 
impedance in the nanoporous carbons [38]. As shown in 
Fig. S7b, we can see that the slope of kelp-carbon is smaller 
than that of TF-B520, meaning reduced diffusion resistivity 
of ions in kelp-carbon electrode. Hence, we can conclude 
that the smaller Rct and diffusion resistivity of kelp-carbon 
render its better rate capability performance (Figs. S4b and 
S6c). In our kelp-carbon, mesopores occupying the highest 
percentage (58%) contribute to the fast diffusion/transport of 
relatively large electrolyte ions  (CF3SO3

− and  Zn2+). Except 
for the hierarchical pore structure, owing to the interior 3D 
cellular-like geometry of the kelp-carbon, the interconnected 
cell walls and interpenetrating quadrilateral/pentagon-like 
channels are able to offer sufficient pathways for achiev-
ing rapid electron transfer and ion diffusion at the same 
time (Fig. 3d). The above characteristics are important for 
achieving high specific capacity and good power density. In 
addition, the working voltage window of our aqueous ZHC 
(1.6 V) is wider than that of common aqueous Zn-ion batter-
ies (about 1 V) [39, 40]. High specific capacity combining 
with wide working voltage window contributes to the high 
energy densities of our ZHCs.

Considering supercapacitors generally present better 
capacitance retention at high current densities due to the 
limitation of diffusion rate and limited reactions. Cycling 
stability of the aqueous ZHC was investigated at a moderate 
current density of 2 A g−1 (Fig. 3e), which may announce 
more realistic cyclic stability of the cell. The specific capac-
ity of the ZHC retains 89% of its initial value, and the cou-
lombic efficiency holds 105% after 4,000 charge/discharge 
cycling test. The coulombic efficiency above 100% is due 
to the hydrogen evolution reaction (electrolysis of water) 
on Zn anode during discharging. Hydrogen evolution con-
sumes electrons and promotes the zinc anode oxidation and 
generates more electrons to reach the cutoff voltage of 0.1 V. 
Such reaction may contributes extra discharge capacity [41]. 
The reduction of capacity retention indicates some nega-
tive side-reactions occurred in the cycling process. In the 
mild acid electrolyte [2 M Zn(CF3SO3)2 aqueous solution 
with a pH value of ~ 5.5], side-reactions for the aqueous 
ZHCs are mainly related to the inevitable hydrogen evo-
lution reaction on Zn anode and the generation of poorly 
conductive by-products on electrodes. After 4,000 cycles, 
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plate-like Zn on Zn foil anode (Fig. 4a, b) and some thin 
nanosheets on the surface of kelp-carbon cathode (Fig. 4e, 
f) are observed. However, no obvious Zn-dendrites generates 
on Zn anode in the mild acid electrolyte, because Zn-den-
drites problem generally happens in alkaline electrolyte [42]. 
Energy-dispersive spectrometer (EDS) mapping (Fig. 4c, 
d) and XRD analysis (Fig. 4g, h) reveal that by-product of 
Zn(CF3SO3)2[Zn(OH)2]3·xH2O generated on both electrodes 
[43, 44]. During discharging,  Zn2+ cations strip from the Zn 
anode and are adsorbed on the porous kelp-carbon cathode; 
during charging,  Zn2+ cations deposit on the Zn anode and 
 CF3SO3

− anions are adsorbed on the kelp-carbon cathode. 
 Zn2+ cations shuttle between the two electrodes. The precipi-
tation/dissolution of Zn(CF3SO3)2[Zn(OH)2]3·xH2O partici-
pates forms according to reaction Eq. (1):

Existence of Zn(CF3SO3)2[Zn(OH)2]3·xH2O on both 
electrodes indicates enhanced pH value of the Zn(CF3SO3)2 
electrolyte and generation of  OH− induced by hydrogen evo-
lution reaction in our aqueous ZHCs, yet it is a common 

(1)4Zn
2+ + 6OH

− + 2
(

CF
3
SO

3

)−
+ xH

2
O ⇔ Zn

(

CF
3
SO

3

)

2

[

Zn(OH)
2

]

3
⋅ xH

2
O ↓

phenomenon in aqueous Zn-ion hybrid capacitors and Zn-
ion batteries [18, 43]. The acceptable cycling stability of the 
aqueous ZHC at moderate current density benefits from the 
unique 3D hierarchical porous structure of the kelp-carbon 
and ample unimpeded pathways (interconnected cell walls 
and interpenetrating quadrilateral/pentagon-like channels) 
available for rapid electron and ion transport (Fig. 3d). Con-
trol experiment (Fig. S8) confirms that the microstructure 
of kelp-carbon is beneficial to alleviate the influence of by-
product precipitations on cycling stability of the aqueous 
ZHC. When using TF-B520 as the cathode, the capacity 
retention of the aqueous ZHC reduces to only 49% after 
4,000 cycles. Different from the 3D cellular-like geometry 
and hierarchical pore structure of kelp-carbon, commercial 
activated carbon TF-B520 has a solid and micropore struc-

ture. The micropores on the surface of TF-B520 can be eas-
ily blocked by by-product precipitations, and lack of open 
interpenetrating channels in TF-B520 results in poor cycling 
stability of the cell.
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3.4  Construction of Flexible Micro‑ZHCs via Screen 
Printing

In quest to miniaturized, lightweight, and wearable energy 
storage devices, we developed flexible quasi-solid-state 
micro-ZHCs via a facile and economic screen-printing tech-
nique. Figure 5a describes the simple preparation process. 
The Au current collectors were deposited by magnetron 

sputtering, followed by screen printing kelp-carbon cathode 
and Zn powder anode, and coating the printed interdigital 
electrodes with Zn(CF3SO3)2-PAM hydrogel electrolyte 
finally. The crosslinked PAM polymer chains can form an 
ion conductive network with superb water absorption abil-
ity and flexibility, as exhibited in Fig. S9. The ionic con-
ductivity of the Zn(CF3SO3)2-PAM hydrogel electrolyte is 
up to 12.2 mS cm−1, as determined by the electrochemical 
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impedance test (Fig. S10). The surface morphology of the 
obtained interdigital electrodes after screen printing (print-
ing one layer) is shown in Fig. S11a. The width of one elec-
trode finger and interspace between the cathode and anode 
fingers are 400 and 250 μm, respectively (Fig. S11b, c). The 
thicknesses of the kelp-carbon cathode and the Zn pow-
der anode determined by SEM are about 10 and 10.35 μm, 
respectively (Fig. S12).

To evaluate the electrochemical performances of the 
printed quasi-solid-state micro-ZHCs, CV and GCD meas-
urements with a voltage range from 0.1 to 1.7 V were carried 
out. The CV curves (Fig. 5b) with a pair of redox peaks are 
in line with the results of Fig. 3a, attributed to the hybrid 
energy storage mechanism. Even at high scan rates, the 
quasi-rectangle shapes are well maintained, indicating excel-
lent rate capability of the micro-ZHCs. Compared with the 
aforementioned stacked ZHCs, in-plane micro-ZHCs pos-
sess better rate capability due to the architecture of inter-
digital microelectrodes, which could reduce the ion transport 
path and make full use of the active materials. The GCD 
curves demonstrate symmetrical triangular shapes with no 
apparent internal resistance drop. The highest areal capac-
ity of the device (based on the total area of positive and 
negative electrodes) reaches 10.28 μAh cm−2 at a current 
density of 0.1 mA cm−2 (Fig. 5c, d). The micro-ZHC has an 
areal energy density of 8.2 μWh cm−2 at a power density of 
40 μW cm−2 and still maintain 3.9 μWh cm−2 at 4 mW cm−2. 
It is worth mentioning that we just print one layer of elec-
trode materials on the Au current collectors. However, the 
thickness and mass loading of the active electrode material 
can be further increased by multiple printing [45, 46]. This is 
an advantage by using screen printing technology. Even so, 
the areal energy density of our micro-ZHC is comparable to 
those of the recently reported in-plane micro-supercapacitors 
based on carbon materials [47–51]. More information on 
the specific capacity/capacitance and energy/power density 
of the micro-ZHC based on different metrics (areal or volu-
metric performance) is summarized in Table S1 for cross-lab 
comparison.

Moreover, the voltage window or output current of the 
device can be enlarged by printing the electrode arrays in 
series or parallel to meet the energy/power requirement. 
Figures 5e and S13a show that the operating voltage and 
output current are readily doubled when two micro-ZHCs 
are connected in series and in parallel, respectively. In series 
connection, the voltage window reaches up to 3.2 V which 

is twice the value of a single ZHC, and there is a degrada-
tion in the output current due to the increased resistance. 
In parallel connection, the ZHCs provide nearly twice the 
output current of a single ZHC, while holding the same volt-
age window as that of the single cell. Owing to the flex-
ibility of the microelectrodes and hydrogel electrolyte, the 
fabricated micro-ZHCs could subject to mechanical bend-
ing with maintained capacitive functionality. To evaluate 
the mechanical robustness of the printed micro-ZHC, the 
device was subjected to mechanical bending from 0° to 180° 
(Figs. 5f and S13b) and repeated bending at 120° for 100 
cycles (Fig. S14), the CV and GCD curves resemble the ones 
under flat state with capacity retention close to 100%. The 
negligible effect of bending on the electrochemical proper-
ties of the micro-ZHC indicates good adhesion between Au 
current collector and electrodes. Such printed micro-ZHCs 
with impressive mechanical and electrochemical stabilities 
promise multi-field integration applications.

3.5  Integration of Flexible Solar‑Charging 
Self‑Powered Units

To build a solar-charging self-powered unit, micro-ZHC 
serving as the energy storage module and four-junction 
OSCs working as the energy conversion component are inte-
grated on PET substrate. The performance and the photovol-
taic parameters of the single flexible OSC under different 
light sources (AM 1.5G and LED) are provided in Fig. S15 
and Table S2. The energy conversion efficiency of the OSC 
reaches 21.2% at the indoor light intensity (0.135 mW cm−2). 
Considering that the standard sunlight intensity is not always 
available (such as cloudy and rainy days), and we usually 
work and live in the indoor environment, it is very necessary 
to evaluate the performance of the self-powered integrated 
unit at weak light intensities. The solar-charging/discharging 
performance of the integrated system was evaluated under 
varied indoor light intensities (0.135–4.14 mW cm−2) with 
homologous discharge current density (Fig. 6a). The sys-
tem worked well in a wide range of light intensities with no 
obvious IR drop observed in the solar-charging/discharging 
curves (thus low energy loss), and the charging time can be 
adjusted according to the light intensity. The output cur-
rent density of the OSCs corresponding to light intensity 
is shown in Fig. 6b. The highest energy conversion/storage 
efficiency (ηoverall) of the integrated unit reached 17.8% at a 
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light intensity of 0.135 mW cm−2. As shown in Fig. 6c, the 
integrated unit can be charged to 1.6 V in 23 s, demonstrat-
ing fast photoelectric conversion rate. Moreover, the inte-
grated unit was discharged at different current densities from 
0.5 to 8 mA cm−2, and the diploid discharge time implies a 
favorable rate performance.

We further investigated the mechanical stability of the 
integrated system. Figure  6d shows the solar-charging 
(0.84 mW cm−2)/discharging (0.5 mA cm−2) profiles at 
various bending angles (60°, 90°, 120°, 150°, and 180°). 
The roughly superposed charge/discharge curves demon-
strate excellent flexibility and electrochemical stability of 
our self-powered unit. The mechanical durability was further 
explored by repeatedly bending the device at 120° for 50 

cycles (Fig. 6e). The capacity retained 86% of its original 
value after 50 bending cycles, indicating decent mechani-
cal stability of the self-powered unit. The cycling stabil-
ity of the system was firstly investigated at a solar-charging 
intensity of 1.63 mW cm−2 and discharge current density 
of 1 mA cm−2 (Fig. 6f). Impressively, the system exhibits 
superb cycling stability with a capacity retention of 95% 
after 100 cycles. Then, we conducted the cycling test on the 
system at a higher solar-charging intensity of 4.14 mW cm−2 
(which is the highest light intensity that our indoor light 
source, i.e., LED lamp can provide) and discharge current 
density of 2 mA cm−2 (Fig. S16). The system presents a 
capacity retention of 91% after 100 cycles, slightly lower 
than the value at a solar-charging intensity of 1.63 mW cm−1 
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(95%) due to the higher charge–discharge current densities 
for the micro-ZHC. Considering the good flexibility and 
electrochemical stability of the self-powered unit, it is befit-
ting to be applied in wearable scenarios. We utilized the flex-
ible self-powered unit as a “wearable wristband” to power 
an electronic watch (1.5 V). The electronic watch could 
work for a long time when the wristband was exposed to 
indoor natural sunlight after fast charging at a light intensity 
of 12 mW cm−2 (Fig. 6g). Moreover, energy stored in the 
micro-ZHC could power the electronic watch for more than 
6 min in dark, after that the system could return to normal 
work just by solar-charging again, demonstrating a green 
energy system.

4  Conclusions

A low cost, safe, durable, and flexible solar-charging inte-
grated unit is developed. The system consists of OSCs 
and a micro-ZHC acting as energy conversion and storage 
module, respectively. The in-plane asymmetric printing 
technology employed by micro-ZHCs is an economic, 
facile, and versatile fabrication method. The unique 3D 
hierarchical architecture of kelp-carbon and multivalent 
ion storage mechanism endow the micro-ZHCs with high 
areal capacity of 10.28 μAh cm−2 and high energy density 
of 8.2 μWh cm−2. The integrated unit exhibits fast pho-
toelectric conversion characteristic (charged to 1.6 V in 
23 s) with tolerance for a wide variation of light intensity 
(0.135–4.14 mW cm−2). It shows excellent mechanical 
robustness and cycling stability (with a capacity retention 
of 95% after 100 cycles). Moreover, the integrated unit 
can power an electronic watch easily under indoor natural 
light, demonstrating its wearability and practicality. Such 
portable, wearable, and green self-powered unit is believed 
to be a new guide for design of energy integrated systems 
toward the goal of developing highly safe, light weight, 
economic, and long-life smart wearable electronics.
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