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Schottky photodiode using submicron thick diamond 
epilayer for flame sensing 
Y. Koide1,*, M. Y. Liao1,**, J. Alvarez2, M. Imura3, K. Sueishi4 and F. Yoshifusa4 

The sensing of a flame can be performed by using wide-bandgap semiconductors, which offer a 
high signal-to-noise ratio since they only response the ultraviolet emission in the flame. Diamond is 
a robust semiconductor with a wide-bandgap of 5.5 eV, exhibiting an intrinsic solar-blindness for 
deep-ultraviolet (DUV) detection. In this work, by using a submicron thick boron-doped diamond 
epilayer grown on a type-Ib diamond substrate, a Schottky photodiode device structure- based 
flame sensor is demonstrated. The photodiode exhibits extremely low dark current in both forward 
and reverse modes due to the holes depletion in the epilayer. The photodiode has a 
photoconductivity gain larger than 100 and a threshold wavelength of 330 nm in the forward bias 
mode. CO and OH emission bands with wavelengths shorter than 330 nm in a flame light are 
detected at a forward voltage of -10 V. An alcohol lamp flame in the distance of 250 mm is directly 
detected without a focusing lens of flame light. 
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Solar ultraviolet (UV) radiation with wavelength shorter than 

280 nm (i.e. UV-C) is completely absorbed by the stratospheric 

ozone layer above the Earth’s surface. An optical sensor, which 

selectively detects the deep-ultraviolet (DUV) light and remains 

blind to the light with wavelength larger than 280 nm is called a 

solar-blind DUV photosensor. Since the hydrocarbon flame has 

CO and OH emission bands with wavelength smaller than 350 

nm, such a DUV photosensor can be applied as a flame sensor 

even in the presence of solar radiation. The commercialized 

flame sensor is the photocathode tube with a high sensitivity to 

the light with wavelength ranging from 230 to 280 nm. The 

disadvantages of the photocathode tube are the high operation 

voltage (> 400 V), difficulty in sensitivity control by changing 

the bias voltage, readily deterioration under continuous 

DUV-light illumination, and a weak glass body. Thus, the 

development of solid-state flame sensors is mandatory in order 

to overcome these disadvantages. 
There exist a few reports to demonstrate the flame sensors 

using semiconducting SiC and AlxGa1-xN [1,2]. However, the 

drawbacks of these SiC and AlGaN-based flame sensors are 

low responsivity to DUV light and low discrimination ratio of 

the responsivity between the DUV and visible lights. In 

addition, in some cases such as a spark in the welding process, 

no deterioration is essential to continuously detect the strong 

flame. Hence, an extremely robust material, which is stable 

under long-term or strong DUV illumination, is necessary for 
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flame sensing. Semiconducting diamond with a bandgap of 5.5 

eV is an attractive material due to its weak sensitivity in the 

visible wavelength range and high sensitivity in the DUV range 

(i.e., it has solar blindness). 

Intrinsic diamond shows a cut-off wavelength of 225 nm 

beyond the flame UV emission. It is basically difficult to use 

only thick intrinsic diamond for flame sensing. However, the 

submicron thin film technology and impurity engineering 

provide the opportunity to apply diamond to flame sensing. By 

using submicron thick boron-doped homoepitaxial diamond 

layers on type-Ib diamond substrates and proper device 

structures, it is able to tune the overall properties of diamond 

photodetectors [3]. For example, the dark current can be 

extremely low due to the depletion of free holes in the 

submicron epilayer [4]. The threshold wavelength of the 

diamond detector can be tailored to be larger than 225 nm [4-7]. 

The photoconductivity gain can be as larger as 100 upon DUV 

light illumination. Thus, the diamond photosensor developed is 

able to detect the CO and OH emission bands in the 

hydrocarbon flame.  
In this work, we demonstrate the solid-state flame sensor 

by using the high- sensitivity diamond DUV photosensor. In 

addition, we show the flame sensing performance of the 

diamond photosensor. 

The p-diamond epilayers were homoepitaxially grown on 

Ib-type nitrogen-containing diamond (100) substrates with a 

dimension of 2.5×2.5×0.5 mm by a microwave plasma- 

enhanced chemical vapor deposition technique. The growth 

conditions were described in the previous paper [5,6]. The 

thickness of the epilayer was about 0.5 �m, and the [B] in the 
epilayer and the [N] in the substrate were measured by 

secondary-ion mass spectroscopy to be mid 1015 and mid 1019 

cm-3, respectively. Prior to fabricating the device, the surfaces 

of the epilayers were oxidized in a boiling acid solution of 

H2SO4 and HNO3 to remove the surface conductive 

hydrogenated layers. Planar-type Schottky photodiodes (SPD) 

with semi-transparent WC Schottky and annealed Ti/WC 

Ohmic contacts were fabricated on the epilayer [5,6]. A WC 

Schottky contact with a nominal thickness of 3-5 nm was 

deposited in a defined circle pattern with a diameter of 0.98 mm. 

The interspacing between the Schottky and Ohmic contacts was 

10 �m. Finally, the photodiode chip was packaged in a 

TO5-type can with a sapphire window.  
The current-voltage characteristics were measured in a 

vacuum chamber at a pressure of 0.1 Pa by using a two-point 

probe method. The photoresponse properties were measured by 

illuminating monochromatic light with a wavelength between 

210 and 630 nm using a 500-W xenon lamp. The incident light 

power was calibrated using a UV-enhanced Si photodiode. The 

time response of the SPD photodiode was measured by a digital 

oscilloscope. The flame sensing properties were measured using 

an alcohol lamp. Photoluminescence of the alcohol lamp flame 

was measured using the spectrometer system. 

Figure 1 shows luminescence spectra of alcohol lamp flame 

and solar radiation through a room window glass. The major 

peaks of the flame are OH- and H-related emissions at 310 and 

590 nm, and a shoulder band from 240 to 300 nm is observed in 

the DUV wavelength region [8]. In order to detect the flame 

optically under the existence of solar radiation, we have to 

develop the DUV photosensor with a large responsivity for 

 

FIG. 1. Luminescent spectra of an alcohol lamp flame and solar radiation 
through a room window. 

 

FIG. 2. (a) Schottky photodiode based on submicron boron-doped epilayer 
grown on a type-Ib HPHT diamond substrate and (b) responsivity of 220 and 
280nm lights as a function of applied voltage, where negative and positive 
applied voltages correspond to forward and reverse biasing modes, respectively.
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wavelengths lower than 300 nm and a large discrimination ratio 

between the DUV and visible light. 

 
 
FIG. 3. (a) Transient behavior of the SPD to the pulsed 220 nm light at a forward 
bias of -10 V and (b) the reference signal of the pulsed 220 nm light. 

Figure 2(a) illustrates the Schottky photodiode by using 

submicron boron-doped p-type diamond grown on a HPHT 

type-Ib diamond substrate. Figure 2(b) depicts the 

responsivities of the diamond photosensor for 220 and 280 

nm-lights illumination as a function of applied bias voltage, 

where forward and reverse biases correspond to negative and 

positive voltages, respectively. The dark current of the 

photosensor was lower than 0.1 pA in the forward and reverse 

bias modes. Since the nitrogen in the diamond was known to 

behave as a donor with thermal activation energy of 1.7 eV [9], 

the high density of nitrogen in the Ib-type substrate is believed 

to deplete the hole in the thin epilayer, which results in the 

extremely low current even in the forward bias mode. Note that 

this leads to enhancement of the detectivity by using the Ib-type 

substrate. The voltage dependence of responsivity shows the 

clear rectifying properties, which indicates that the current 

transport is controlled by photo-generated holes. This is the 

characteristic feature of the diamond SPD as reported 

previously [5]. The responsivities as large as 136 A/W for 220 

nm light and 38 A/W for 280 nm light is obtained in a forward 

bias voltage of -10 V. The corresponding quantum efficiency �� 
values are 7.7×104 % for 220 nm light and 1.7×104 % for 280 

nm light, which indicates the photoconductivity gain property 

as reported previously [4,5]. The gain mechanism is explained 

by existence of electron trap with high capture rate and low 

emission rate, which provides the significant increment of the 

hole lifetime and the hole concentration [3,6]. This model is 

supported by the predominant current transport due to hole. 

Since we also observed the gain property of the MSM 

photoconductor at an applied voltage lower than 1 V [7], the 

interaction between the epilayer and the Ib-substrate is believed 

to be responsible for the kinetic gain mechanism.  
Figure 3 shows time dependences of (a) responsivity of 220 

nm light at -10 V, where curve (b) shows the 220 nm light pulse 

for comparison. The transient behavior to the 220 nm light of 

the current circled SPD is similar to the interdigitated SPD 

operated at forward biases [4]. The response time is evaluated 

to be as small as 5 ms. The response time for 280 nm light pulse 

is absolutely the same as that for the 220 nm light. Note that the 

present SPD has the high DUV-sensitivity and the response 

speed enough to detect the flame. 
The d.c. spectral response of the SPD at a forward bias of 

-10 V is shown in Fig. 4. Differed from the reported diamond 

photodetectors [5,7], the threshold wavelength shifts from 270 

nm to around 330 nm. This value does not change as the 

Schottky contact diameter increases from the previous 400 �m 

to the current 980 �m [4]. However, the visible-blind ratio 
(210/400 nm) increases greatly as the Schottky diameter 

increases. This value reaches up to around eight orders of 

magnitude in the present SPD due to the increased UV 

sensitivity. The cut-off wavelength and the high visible-blind 

ratio offer the current diamond SPD a potential candidate for 

flame sensing.  

 

FIG. 4. Spectral response of the SPD at a forward bias of -10 V. 

Figure 5 is a photograph of sensing the alcohol lamp flame 

by the diamond SPD under bulb light illumination background, 

where an inside photograph shows the photosensors packaged 

in the TO5 can. The diamond photosensor is set on the left-hand 

side at 250 mm in length apart from the alcohol lamp flame. 

The photosensor is able to detect the flame in the distance of 

250 mm at a forward voltage of -10 V, and the photocurrent 

level is around 100 pA. Note that the flame can be detected 

without using a focusing lens. Since the threshold wavelength 
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of the present SPD was around 330 nm, the CO and OH 

emission bands with wavelength shorter than 330 nm is 

believed to be predominantly detected. This is the distinct 

demonstration which is really capable of sensing the 

hydrocarbon flame using the diamond DUV photosensor. 

In summary, by using a submicron thick boron-doped 

diamond epilayer on a type-Ib diamond substrate, the cut-off 

wavelength of the diamond SPD was extended to be around 330 

nm at forward biases. By virtue of this property, we developed 

the flame sensor by using the diamond SPD packaged in the 

TO5 can with the sapphire window and demonstrated sensing 

the alcohol lamp flame. Although we did not use the focusing 

lens of DUV light, the photosensor was able to detect the flame 

reproducibly in the distance of 250 mm. The development of 

the flame sensor opened a new application avenue for diamond 

photosensors.  
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FIG. 5. Photograph demonstrating the diamond photosensor to detect the alcohol
lamp flame. 
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