Supporting Information for

Remote Tracking Gas Molecular via the Standalone-Like Nanosensor

-Based Tele-Monitoring System

Han Jin^{1, 2, †,} *, Junkan Yu^{3, †}, Daxiang Cui^{1, 2, †}, Shan Gao^{4, †}, Hao Yang^{4, †}, Xiaowei Zhang^{3, †}, Changzhou Hua^{3, †}, Shengsheng Cui¹, Cuili Xue¹, Yuna Zhang¹, Yuan Zhou¹, Bin Liu¹, Wenfeng Shen⁵, Shengwei Deng⁶, Wanlung Kam⁷, Waifung Cheung⁷

¹Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

²National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China

³School of of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, People's Republic of China

⁴State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, People's Republic of China

⁵Ningbo Materials Science and Technology Institute, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China

⁶College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

⁷Qi Diagnostics Ltd, Hongkong, People's Republic of China

†These authors contributed equally to this work: Han Jin, Junkan Yu, Daxiang Cui, Shan Gao, Hao Yang, Xiaowei Zhang, Changzhou Hua

*Corresponding author. E-mail: jinhan10@sjtu.edu.cn (Han Jin)

Supplementary Figures and Table

Fig. S1 Flow chart of synthesis \mathbf{a} CsPbX₃ QDs and \mathbf{b} MOF derived ZnO

Fig. S2 Photographic image of each functional unit

Fig. S3 Algorithm flow chart of the Li-Fi communication in which a high-resolution camera is used to capture the signal transmitted by the standalone-like smart device

Fig. 4 a Photograph of the patrol car that loaded with RFID reader and camera; **b.** illustration of the smart device operated at awake mode; **c, d.** Demonstration of the smart device operated at the awake mode

Fig. S5 a Photographic image of the set-up to characterize the antenna that integrated in the smart device; **b**, **c** the simulated radiation patterns of the flexible antenna measured at XOY or XOZ plane

Fig. S6 Lifetime of the CsPbCl₃ QDs induced photoluminescence

Fig. S7 Error analysis for the camera captured signal, at the viewing angel of 0-80° and the viewing distance of 0-30 m

Fig. S8 a Photographic image captured by the camera; **b** Photographic image processed by the image recognition algorithm; **c** Signal transmitted by traditional Li-Fi; **d** Signal transmitted by photoluminescence (PL) enhanced Li-Fi

Fig. S9 EDS elemental analysis of the MOF derived ZnO

Fig. S10 Cross-sensitivity of the MEMS nanosensor that using hollow polyhedral ZnO, recorded at light on or off

Fig. S11 Variation of the response magnitude and 90% response/recovery time on the operating temperature

Fig. S12 Experimental set-up to simulate the remote tracking the variation of air pollutant

Table S1 Sensing characteristics of the created smart device to NO ₂ in the range of
2.5-50 ppm, operated at the intermittent mode

Measurement condition	No.	Response				
		2.5 ppm	5 ppm	12.5 ppm	25 ppm	50 ppm
Fluorescent lamp light on (simulated daytime)	1	3.64	9.68	22.10	47.20	90.10
	2	3.67	9.65	21.50	48.80	89.80
	3	3.42	9.82	21.70	47.50	91.00
	4	3.57	9.65	22.50	47.40	89.40
	5	3.40	9.55	22.40	47.40	89.10
	6	3.75	9.69	22.10	47.50	90.70
Fluorescent lamp light off (simulated nighttime)	7	3.68	9.60	22.20	47.30	89.20
	8	3.90	9.57	20.90	47.80	90.50
	9	3.74	9.66	23.50	48.90	91.10
	10	3.97	9.56	22.60	47.20	91.10
	11	3.68	9.45	21.90	48.90	91.20
	12	3.44	9.71	21.20	46.00	90.90

Fig. S13 Stability of the smart device consisting of the MEMS nanosensor that using MOF-derived hollow polyhedral ZnO, operated at 300 °C for 95 days