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Hierarchical Magnetic Network Constructed 
by CoFe Nanoparticles Suspended Within “Tubes 
on Rods” Matrix Toward Enhanced Microwave 
Absorption

Chunyang Xu1, Lei Wang1, Xiao Li1, Xiang Qian1, Zhengchen Wu1, Wenbin You1, 
Ke Pei1, Gang Qin1, Qingwen Zeng1, Ziqi Yang1, Chen Jin1, Renchao Che1 *

HIGHLIGHTS

• Three-dimension hierarchical core–shell  Mo2N@CoFe@C/CNT composites were successfully constructed via a fast MOF-based 
ligand exchange strategy.

• Abundant magnetic CoFe nanoparticles suspended within “nanotubes on microrods” matrix exhibited strong magnetic loss capability, 
confirmed by off-axis electron holography.

• Hierarchical  Mo2N@CoFe@C/CNT composites displayed remarkable microwave absorption value of − 53.5 dB.

ABSTRACT Hierarchical magnetic-dielectric composites are prom-
ising functional materials with prospective applications in microwave 
absorption (MA) field. Herein, a three-dimension hierarchical “nanotubes 
on microrods,” core–shell magnetic metal–carbon composite is ration-
ally constructed for the first time via a fast metal–organic frameworks-
based ligand exchange strategy followed by a carbonization treatment 
with melamine. Abundant magnetic CoFe nanoparticles are embedded 
within one-dimensional graphitized carbon/carbon nanotubes supported 
on micro-scale  Mo2N rod  (Mo2N@CoFe@C/CNT), constructing a spe-
cial multi-dimension hierarchical MA material. Ligand exchange reaction 
is found to determine the formation of hierarchical magnetic-dielectric composite, which is assembled by dielectric  Mo2N as core and 
spatially dispersed CoFe nanoparticles within C/CNTs as shell.  Mo2N@CoFe@C/CNT composites exhibit superior MA performance 
with maximum reflection loss of − 53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz. The  Mo2N@
CoFe@C/CNT composites hold the following advantages: (1) hierarchical core–shell structure offers plentiful of heterojunction interfaces 
and triggers interfacial polarization, (2) unique electronic migration/hop paths in the graphitized C/CNTs and  Mo2N rod facilitate conduc-
tive loss, (3) highly dispersed magnetic CoFe nanoparticles within “tubes on rods” matrix build multi-scale magnetic coupling network 
and reinforce magnetic response capability, confirmed by the off-axis electron holography.
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1 Introduction

Coming into the fifth-generation (5G) wireless communi-
cation systems, the increasing usage of diverse electronic 
productions has caused severe electromagnetic radiation 
pollution, which results in an urgent pursuit for high-per-
formance microwave absorption (MA) materials [1–9]. 
Magnetic materials, including metals (Co, Ni, Fe) and 
metallic alloys (FeCo, NiCo, etc.), are generally used as 
microwave absorbents due to strong magnetic loss abil-
ity [10–18]. However, practical applications of magnetic 
materials suffer from their inherent drawbacks: undesir-
able chemical stability, severe aggregation and inferior 
impedance matching [19–21]. To tackle these obstacles, 
two typical strategies have been commonly employed to 
shape MA properties. One is to decorate magnetic compo-
nent with carbon materials to develop magnetic-dielectric 
system and thereby boost the MA performance by enhanc-
ing dielectric loss and improving impedance matching 
[22–31]. For example, Cao et al. designed Fe@NCNTs 
composite and showed MA performance of − 30.43 dB 
[32]. Shui et al. prepared CoFe/carbon fiber composite 
with high MA properties [13]. Tong et al. designed Co/C/
Fe/C composite which exhibited significantly improved 
MA abilities [11]. The other is to construct hierarchical-
structured materials with well-designed nano-units, thus 
achieving high dispersion of magnetic particles and pro-
ducing heterogeneous interface in multicomponent mate-
rials [33–37]. Among various hierarchical structures, the 
core–shell structures have attracted growing attention in 
the MA field [38–40] such as Co@C microspheres [10], 
 Fe3O4/C [41], Co@CoO [42],  Co20Ni80@TiO2 core–shell 
structure [43]. The delicately designed core–shell com-
posites can satisfy magnetic and dielectric loss simul-
taneously resulting from synergistic effects of different 
components within both core and shell [44, 45]. Besides, 
large interspace and heterogeneous interface created by 
core–shell structure can further enhance polarization 
loss and strengthen multi-reflection process [37, 44, 46]. 
Particularly, hierarchical 1D units assembled core–shell 
composites exhibit remarkable performance in MA appli-
cation [14, 47, 48]. For example, Che et  al. designed 
hierarchically tubular C/Co composite with abundant 
1D nanotubes and achieved highly uniform distribution 

of Co nanoparticles and outstanding MA performance 
[49]. Therefore, it is highly desirable to develop a facile 
and effective preparation strategy to construct magnetic 
metal–carbon composites with hierarchical core–shell 
structure.

Metal–organic frameworks (MOFs), with diverse micro-
structure and adjustable composition, have been widely 
utilized to construct various hierarchical composites 
[50–54]. MOF-derived materials demonstrate inherent 
advantages of abundant metal/carbon components, which 
endows them with great potential in MA application [40, 
55–60]. For example, Ji et al. developed MOF-derived 
one-dimensional sponge-like metallic Co and Co/C com-
posites with strong magnetic loss [61]. Du et al. presented 
a MOFs-derived method to construct hollow Co/C micro-
spheres as microwave absorbents [62]. Zhao et al. pre-
pared hierarchical Fe–Co/N-doped carbon/rGO compos-
ites derived from Fe-doped Co-MOF [63]. However, direct 
transforming MOFs into microwave absorbents leads to a 
much lower ratio of metal nanoparticles and poor graphiti-
zation degree of carbon or CNTs, which is unfavorable to 
the attenuation of microwave. To tackle these problems, 
the MOF precursor can be further extended by trans-
forming one kind of MOF into another via ion exchange 
reactions or ligand exchange reactions, introducing more 
magnetic metals and carbon components. For example, 
Hu et al. constructed hierarchical bimetallic  Co2[Fe(CN)6] 
hollow structure from a Co-MOF through ion exchange 
reactions [64]. This MOF-to-MOF strategy inspires us to 
construct bimetallic MOF-derived carbon-based absor-
bents with favorable hierarchical structure, which has 
rarely been reported in MA field.

Recently, transition metal molybdenum-based materials, 
such as  MoO2,  Mo2C,  MoS2 and  Mo2N, have emerged as 
effective candidates in the field of electrocatalysis, lithium 
batteries and supercapacitors due to its low cost, high con-
ductivity and chemical stability [65–72]. Such superior 
properties also make molybdenum compounds promising 
microwave absorbents. For example, owing to metallic-
like conductivity of  MoO2 materials, Huang et al. con-
structed C@MoO2/G composites for efficient MA [73]. Du 
et al. fabricated ternary  Mo2C/Co/C composites for MA 
[74] and Jin et al. prepared  MoS2-NS with high dielectric 
properties and MA performances [75]. However, the work 
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of employing  Mo2N as microwave absorbent has not been 
studied so far, although  Mo2N materials exhibit satisfied 
electrical conductivity displaying excellent performance in 
electrocatalysis and supercapacitors [66, 69]. Therefore, 
compositing molybdenum compounds into metal–carbon 
absorbents with designed hierarchical structure is expected 
to achieve first-rate MA performance.

Herein, for the first time, a 3D hierarchical “nanotubes 
on microrods” core–shell composite of magnetic CoFe nan-
oparticles suspended within one-dimensional graphitized 
C/CNTs supported on  Mo2N rod  (Mo2N@CoFe@C/CNT) 
is successfully achieved through a fast MOF-based ligand 
exchange strategy. The intermediate product of  MoO3@
hollow-CoFe-PBA composite plays an important role in 
not only providing Fe source for the growth of CoFe alloy 
and C/CNTs but also constructing hierarchical core–shell 
structure in final composite, thus achieving highly disper-
sive distribution of magnetic particles. The unique  Mo2N@
CoFe@C/CNT composite holds the dielectric  Mo2N as 
core and magnetic CoFe nanoparticles embedded C/CNTs 
as shell. Such 3D hierarchical magnetic network assem-
bled by CoFe nanoparticles suspended within “tubes on 
rods” matrix demonstrates strong magnetic loss capabil-
ity, which can be verified by off-axis electron holography. 
Besides, numerous  Mo2N rods and graphitized CNTs in the 
composite constitute dual conductive network to facilitate 
conductive loss. Moreover, large interfaces in hierarchical 
core–shell structure can trigger intensive polarization loss. 
Our hierarchical  Mo2N@CoFe@C/CNT composite dem-
onstrates superior MA performance with maximum reflec-
tion loss value of − 53.5 dB at the thickness of only 2 mm 
thickness and the effective absorption bandwidth can reach 
5.0 GHz. Therefore, the presented fast MOF-based ligand 
exchange strategy provides an effective method to fabricate 
multicomponent absorbents with well-controlled hierarchi-
cal structure for achieving excellent MA properties.

2  Experimental Section

2.1  Materials

All chemicals used were of analytical grade and were used 
directly without further purification. All chemicals were 
purchased from Sinopharm Chemical Reagent Co., Ltd.

2.2  Synthesis of  MoO3

In a typical synthesis, 0.5793 g ammonium molybdate tet-
rahydrate was dissolved in 30 mL of deionized (DI) water; 
then, 2.5 mL of  HNO3 was added. The solution was kept 
stirring for 10 min, then transferred into a Teflon-lined 
stainless autoclave (50 mL) and kept at 180 °C for 12 h. 
When the temperature of Teflon-lined stainless autoclave 
was cooled naturally, the precipitate was collected and 
washed repeatedly with DI water for at least three times 
before drying at 70 °C.

2.3  Synthesis of  MoO3@Co‑MOF

First, the solution A was prepared by 50 mg of  MoO3 and 
0.582 g  CoNO3·6H2O were dissolved in 20 mL of metha-
nol. Then solution B was prepared by dispersing 1.3132 g 
of 2-methylimidazole in 20 mL of methanol. The solution 
B was added into solution A under stirring and kept stir-
ring for 5 min then aged for 20 min at room temperature. 
The precipitate was collected and washed with ethanol for 
at least three times and dried at 70 °C.

2.4  Synthesis of  MoO3@hollow‑CoFe‑PBA

40 mg of  MoO3@Co-MOF was dissolved in 10 mL ethanol 
to get solution C. 40 mg of  K3[Fe(CN)6] was dissolved in 
20 mL DI water and 20 mL ethanol to get solution D. Then 
solution D was poured into solution C under stirring and 
kept stirring for 5 min. The precipitate was collected and 
washed with DI water and dried at 70 °C.

2.5  Synthesis of  Mo2N@CoFe@C/CNT

In a typical synthesis, 0.1 g of as-prepared  MoO3@hollow-
CoFe-PBA and 0.5 g of melamine were placed separately in 
a quartz boat where the melamine was placed at upstream 
side of the furnace. The furnace was heated to 600 °C at a 
rate of 2 °C  min−1 for 4 h under a hydrogen/argon atmos-
phere. Finally,  Mo2N@CoFe@C/CNT composite was 
obtained after cooling down to ambient temperature.
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2.6  Synthesis of  Mo2N and  Mo2N@Co/CNT

For comparison,  Mo2N and  Mo2N@Co/CNT were synthe-
sized by calcining the  MoO3 and  MoO3@Co-MOF with 
melamine, respectively.

2.7  Microwave Absorption Measurements

The measured samples were first prepared by adding the 
absorbents (20 wt%) into molten paraffin and uniformly mix-
ing them, followed by modeling into a coaxial ring with the 
outer diameter of 7.0 mm and inner diameter of 3.0 mm. 
Electromagnetic parameters (complex permittivity and 
complex permeability) were measured by a N5230C vector 
network analyzer over the range of 2–18 GHz. The reflec-
tion loss values were calculated based on the transmission 
line theory:

where εr and µr are the complex permittivity (εr= ε′ − jε′′) 
and permeability (µr= µ′ − jµ′′), respectively, f is the fre-
quency of microwave, c is the velocity of light, d is the 
thickness, and Zin is the normalized input impedance of the 
sample.

2.8  Characterizations

The crystalline phase and purity of the products was 
analyzed by powder X-ray diffraction (XRD, Bruker, 
D8-Advance X-ray diffractometer, Germany) using 

(1)Zin =

�

�r∕�r tanh
��
�
−j(2�fd∕c)

√
�r�r

��
�

(2)RL(dB) = −20 log ||Zin − 1∕Zin + 1||

Ni-filtered Cu Ka radiation. The morphology and structure 
of the products were examined by a field-emission scan-
ning electron microscopy (SEM) on a Hitachi S-4800 with 
an accelerating voltage of 5 kV and a field-emission trans-
mission electron microscope (TEM, JEOL, JEM-2100F, 
200 kV). The Raman spectra were acquired with a Renishaw 
Invia spectrometer using a 514 nm laser excitation. X-ray 
photoelectron spectroscopy (XPS) spectra were obtained on 
an ESCALab MKII X-ray photoelectron spectrometer using 
Al Kα X-ray as the excitation source. The hysteresis loops 
were performed with a superconducting quantum interfer-
ence device (MPMS(SQUID) VSM) magnetometer (Quan-
tum Design Company).

3  Results and Discussion

3.1  Fabrication and Characterization of  Mo2N@
CoFe@C/CNT Composites

The synthesis of the hierarchical  Mo2N@CoFe@C/CNT 
core–shell structure is illustrated in Fig. 1. First, the Co-
MOF is uniformly grown on  MoO3 rod to form  MoO3@
Co-MOF structure. Second, through a fast ligand exchange 
reaction with  K3[Fe(CN)6] in 5 min at room tempera-
ture,  MoO3@Co-MOF structure is in situ converted into 
 MoO3@hollow-CoFe-PBA core–shell composite. Followed 
by the carbonization of  MoO3@hollow-CoFe-PBA with 
melamine, the inner  MoO3 is transformed into  Mo2N rod 
and the outer hollow-CoFe-PBA turn into the CoFe@C/
CNTs architecture, where thermally reduced CoFe nano-
particles could catalyze the growth of graphitic carbon and 
CNTs with melamine as carbon source. Finally, the hier-
archical  Mo2N@CoFe@C/CNT composite with “tubes on 
rods” structure is successfully obtained. Moreover, through 
fast ligand exchange reaction, the intermediate product 

MoO3

RT, 20 min Fast ligand exchange 600 °C, 4 h
MelamineCo2+, C4H6N2 Fe(CN)6

3−

RT, 5 min

MoO3@Co-MOF MoO3@hollow-CoFe-PBA Mo2N@CoFe@C/CNT

Fig. 1  Schematic process of the fast MOF-based ligand exchange strategy for construction of 3D hierarchical  Mo2N@CoFe@C/CNT compos-
ites
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of  MoO3@hollow-CoFe-PBA core–shell structure plays 
a critical role in the formation of hierarchical  Mo2N@
CoFe@C/CNT composite, which will be explained in the 
following discussion.

As displayed in Fig. S1, as-prepared uniform  MoO3 rods 
demonstrate smooth surface and high phase purity. Then 
 MoO3 rods are covered with Co-MOF to form  MoO3@
Co-MOF structure. The SEM images reveal that the sur-
face of  MoO3 rods becomes rough (Fig. 2a). The core of 
 MoO3 and shell of Co-MOF can be clearly observed in 
TEM images (Fig. 2b, c). And both diffraction peaks of 
 MoO3 and Co-MOF are well detected in XRD pattern 
(Fig. S2), indicating that Co-MOF is successfully grown 
on the  MoO3 rods. To construct hollow CoFe-PBA on 
the  MoO3 rods, the  MoO3@Co-MOF samples are kept in 
 K3[Fe(CN)6] solution and stirred for just 5 min at room 
temperature to allow the ligand exchange reaction to pre-
pare  MoO3@hollow-CoFe-PBA structure. Firstly, the 
 MoO3@Co-MOF will slowly decompose in water/etha-
nol to release  Co2+ ions. Then the [Fe(CN)6]3− ions are 
injected into the reaction solution. The released  Co2+ ions 
can interact with [Fe(CN)6]3− ions to generate CoFe-PBA 
shell around the framework of the precursors (Co-MOF). 
Finally, the solid Co-MOF shell is completely converted 
into hollow CoFe-PBA, and  MoO3@hollow-CoFe-PBA 
core–shell composites are obtained. As displayed in 

Fig. 2d, the rather rough CoFe-PBA is grown on the  MoO3 
rods and some holes can be seen on the surface (as dis-
played in the yellow circles of Fig. 2d). Such unique shell 
of hollow CoFe-PBA can be further confirmed by TEM 
images. In Fig.  2e, f, the as-prepared  MoO3@hollow-
CoFe-PBA structure is consisted of the nanocage-assem-
bled CoFe-PBA shell and the  MoO3 core. XRD result also 
demonstrates that the sample is composed of  MoO3 and 
 Co2[Fe(CN)6] (Fig. S3) [64]. Such core–shell of  MoO3@
hollow-CoFe-PBA composite plays a significant role not 
only in providing the Fe source for the growth of CoFe 
alloys and CNTs but also in constructing the core–shell 
structure in the final multicomponent products. Subse-
quently, the  MoO3@hollow-CoFe-PBA composite is 
converted into  Mo2N@CoFe@C/CNT core–shell struc-
ture through the carbonization with melamine. For com-
parison,  Mo2N rod and  Mo2N@Co/CNT samples are also 
synthesized by calcining the  MoO3 and  MoO3@Co-MOF 
composite with melamine, respectively.

The chemical compositions of  Mo2N rod,  Mo2N@
Co/CNT, and  Mo2N@CoFe@C/CNT composites are 
measured by XRD, Raman and XPS techniques. As dis-
played in Fig. 3a, the diffraction peaks of  Mo2N rods are 
in accordance with reflections of molybdenum nitride 
 (Mo2N, JCPDS No. 25-1366) while the  Mo2N@Co/
CNT samples exhibit diffraction peaks of both  Mo2N and 

(a) (b) (c)

(d) (e)

1 µm

(f)

500 nm 200 nm

200 nm500 nm500 nm

Fig. 2  a SEM, b, c TEM images of  MoO3@Co-MOF, d SEM, e, f TEM images of  MoO3@hollow-CoFe-PBA composites
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cubic cobalt (JPCDS No. 15-0806). In the XRD pattern 
of  Mo2N@CoFe@C/CNT composites, apart from char-
acteristic peaks of  Mo2N, a diffraction peak at 26.1o can 
be observed clearly, attributing to the (002) plane of the 
graphitic carbon. Other peaks at around 45.2o, 65.8o, and 
83.3o match well with diffractions of the cubic cobalt iron 
(JPCDS No. 50-0795). Above-mentioned XRD results 
demonstrate that the  Mo2N@CoFe@C/CNT composite 
is consisted of  Mo2N, CoFe alloy and graphitic carbon. 
To reveal the graphitic feature and structural defects of 
as-prepared samples, Raman spectra are conducted. In 
Fig. 3b, the  Mo2N@CoFe@C/CNT composite exhibits 
the highest ID/IG value of 1.16 because a great number 
of defects are produced in such core–shell structure. The 
value of ID/IG is increased with more CNTs catalyzed by 
the CoFe alloy compared with less graphitic carbon by 
single metal Co in  Mo2N@Co/CNT sample, which could 
promote the electronic transportation ability. Chemical 
valence states of  Mo2N@CoFe@C/CNT are examined via 
XPS technique. In Fig. 3c, three peaks of C 1s spectrum 
correspond to the C–C (284.28 eV), C–N (285.16 eV) and 
C–O (189.73 eV) [76]. In the Co 2p spectrum, peaks at 
778.32 and 793.44 eV are ascribed to  Co0 in Co 2p3/2 and 
Co 2p1/2 and peaks at 780.82 and 796.67 eV belong to  Co2+ 

species. In Fig. 3e, the Fe 2p spectrum can be decomposed 
into two peaks of 707.22 eV for  Fe0 2p3/2 and 719.97 eV for 
 Fe0 2p1/2 and other two peaks of 711.06 and 724.85 eV for 
 Fe2+ 2p3/2 and 2p1/2, respectively [63, 77–79]. The bimetal 
CoFe with multiple valency in  Mo2N@CoFe@C/CNT 
sample could result in higher saturation magnetization. As 
shown in Fig. 3f, the saturation magnetization (Ms) value 
of  Mo2N@CoFe@C/CNT is 59.6 emu  g−1, which is higher 
than that of  Mo2N@Co/CNT sample. And the coercivity 
value is 449.6 Oe for  Mo2N@CoFe@C/CNT composite. 
Such high saturation magnetization and low coercivity of 
 Mo2N@CoFe@C/CNT hierarchical structure could boost 
magnetic storage and reinforce magnetic loss, further pro-
moting MA performance [57, 80].

The morphology and structure of  Mo2N rod,  Mo2N@
Co/CNT and  Mo2N@CoFe@C/CNT core–shell compos-
ites are further performed with SEM and TEM images. As 
displayed in Fig. 4, a large number of CNTs are produced 
and deposited on the core of  Mo2N rod which can be clearly 
observed in Fig. 4a–c with yellow arrows. In the follow-
ing TEM images, the rod-like core is seen and wrapped by 
outer shell of numerous CNTs. Particularly, the obvious void 
exists between the shell and core (Fig. 4d–f) and the CNTs 
are not directly grown on the  Mo2N rod but supported by the 
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shell of CoFe alloy embedded graphitic carbon layers. Such 
uniquely hierarchical  Mo2N@CoFe@C/CNT core–shell 
structure is reported for the first time and can be further 
confirmed by the magnified TEM and HRTEM images. 
Abundant CNTs can be seen and on the top of each CNT 
is encapsulated metal nanoparticles, which are wrapped by 
numbers of graphitic carbon layers (Fig. 5a–d). In Fig. 5e, 
the HRTEM image obtained from the shell of such  Mo2N@

CoFe@C/CNT structure (as marked in Fig. 5a with yellow 
square) demonstrates that the interplanar spacing of 0.20 nm 
can correspond to the (110) plane of CoFe alloy and 0.34 nm 
to the (002) plane of graphitic carbon, which convincingly 
confirms such unique shell of CoFe nanoparticles embedded 
graphitic carbon. The corresponding selected area electron 
diffraction pattern displays a series of diffraction rings which 
can be well indexed to diffraction planes of crystalline  Mo2N 

(a) (b) (c)

(d)

2 µm

(e) (f)

500 nm 500 nm

200 nm 200 nm 50 nm

Fig. 4  a–c SEM, d–f TEM images of  Mo2N@CoFe@C/CNT composites

(a) (b) (c)

(d) (e) (f)

100 nm

e

5 nm 2 nm 2 1/nm

50 nm

0.34 nm
C (002)

Mo2N
(222) (111)

0.20 nm
Co7Fe3 (110)

20 nm

Fig. 5  a–c The magnified TEM, d–e HRTEM images and f corresponding selected area electron diffraction of  Mo2N@CoFe@C/CNT compos-
ites
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and CoFe alloy (Fig. 5f). Clearly, based on the above results 
of morphology and composition, hierarchical  Mo2N@
CoFe@C/CNT “tubes on rods” architecture is successfully 
synthesized through a fast MOF-based ligand exchange strat-
egy. In the calcinating process of  MoO3@hollow-CoFe-PBA 
composite with melamine, the  MoO3 is converted into the 
core of  Mo2N rod and hollow-CoFe-PBA is transformed into 
the shell of CoFe alloy embedded C/CNTs with thermally 
reduced CoFe nanoparticles as catalysts and melamine as 
carbon source. For comparison,  Mo2N@Co/CNT sample is 
obtained by directly annealing  MoO3@Co-MOF composite 
with melamine. As shown in Fig. S4, the  Mo2N@Co/CNT 
composites maintain the rod structure but only few of CNTs 
are observed on the surface of  Mo2N rod without the shell of 
metal-embedded graphitic carbon framework. This evidence 
suggests that single Co nanoparticles could not effectively 
catalyze the growth of CNTs. Obviously,  MoO3@hollow-
CoFe-PBA structure constructed by ligand exchange reac-
tion critically determines the formation of CoFe nanoparti-
cles, graphitic C/CNTs and hierarchical core–shell structure. 
Rod-like  Mo2N are prepared through annealing  MoO3 rods 
with melamine, which displays uniformly smooth rod struc-
ture (Fig. S5). Remarkably, as-prepared hierarchical  Mo2N@
CoFe@C/CNT can be considered as both distinct conductive 
structure and magnetic network, which hold great potential 
to achieve superior MA ability.

3.2  Electromagnetic Parameters Analysis 
and Microwave Absorption Ability

Related electromagnetic parameters of as-prepared  Mo2N@
CoFe@C/CNT,  Mo2N@Co/CNT and  Mo2N samples are 
investigated to reveal the impacts of structure and composi-
tion on the MA performance. Generally, MA properties are 
highly determined by the complex permittivity and complex 
permeability of materials. It is acknowledged that the real 
parts of complex permittivity (ε′) and complex permeabil-
ity (μ′) indicate the capability of storing electromagnetic 
energy, while the imaginary parts (ε″, μ″) imply the ability 
to loss electromagnetic energy. As shown in Fig. S8, the pure 
 Mo2N sample displays real permittivity (ε′) ranging from 
12.06 to 10.92, suggesting the  Mo2N is a better dielectric 
material. And the ε′ values of  Mo2N@Co/CNT samples rise 
obviously from 19.40 to 12.76 due to the introduction of 
conductive CNTs. When more CoFe alloy embedded CNTs 

and graphitic carbon layers are introduced, the ε′ values of 
 Mo2N@CoFe@C/CNT sample range from 10.2 to 5.6 with 
the increase in frequency, demonstrating  Mo2N@CoFe@C/
CNT materials gain strong capability of energy storage and 
high dielectric polarization. And the ε″ values of  Mo2N@
CoFe@C/CNT also remain high from 3.78 to 2.56, which 
means a powerful dielectric loss ability. This can be ascribed 
to the hierarchical conductive network and enhanced interfa-
cial polarization resulting from unique core–shell structure 
of dielectric  Mo2N and conductive C/CNTs components. To 
further evaluate the dielectric loss property, the dielectric 
loss tangent δε (tan δε= ε″/ε′) was calculated. It is believed 
that higher tan δε value means more electric energy of inci-
dent microwaves would be dissipated. As shown in Fig. 
S9a, the tan δε values of  Mo2N@CoFe@C/CNT remain 
high, which offers the convincing evidence that the design 
of hierarchically core–shell structure with the combination 
of dielectric  Mo2N and graphitic C/CNTs components is an 
effective way to enhance the dielectric loss capacity. As for 
the real (µ′) and imaginary (µ″) parts of permeability, the 
µ′ and µ″ values of  Mo2N remain close to 1 and 0 due to 
its nonmagnetic property. Compared with  Mo2N@Co/CNT 
samples, the µ′ and µ″ of  Mo2N@CoFe@C/CNT are higher 
because of its enhanced magnetic CoFe alloy component and 
hierarchical 3D magnetic network. Therefore, the  Mo2N@
CoFe@C/CNT material is prone to generate favorable mag-
netic loss capability. Based on above discussion, as-prepared 
 Mo2N@CoFe@C/CNT composite is expected to exhibit 
superior MA capability originating from its both synergetic 
strong dielectric dissipation and magnetic loss.

The MA performance of absorbents is generally evalu-
ated with the maximum reflection loss (RL) value and effec-
tive absorption bandwidth. Figure 6 displays the 3D plots 
of RL values on different thickness of  Mo2N,  Mo2N@Co/
CNT and  Mo2N@CoFe@C/CNT samples. The  Mo2N rods 
exhibit good MA performance with the maximum RL value 
of − 25.9 dB at the thickness of 4.5 mm (Fig. 6a) due to 
its high dielectric property. With the introduction of Co/
CNTs components, the  Mo2N@Co/CNT materials exhibit 
MA with the maximum RL value of − 34.8 dB. Significantly, 
as displayed in Fig. 6c, the  Mo2N@CoFe@C/CNT demon-
strates the best MA performance with highest maximum RL 
value of − 53.5 dB at the thickness of only 2 mm thickness, 
and the effective absorption bandwidth can reach 5 GHz 
(from 12 to 17 GHz). Moreover, while tuning the thickness 
from 1.5 to 5.0 mm,  Mo2N@CoFe@C/CNT samples still 
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exhibit impressive MA performance with the maximum RL 
values all less than − 10 dB, revealing its tunable MA abil-
ity. These encouraging results demonstrate that as-prepared 
 Mo2N@CoFe@C/CNT composites hold excellent MA per-
formance owing to its strong microwave energy absorption, 
broad effective absorption bandwidth, lower thickness and 
tunable absorption frequency, which is superior to those 
reported metal/carbon microwave absorbents (Table S1).

3.3  Analysis of Microwave Absorption Mechanism

Accordingly, the rational design of 3D hierarchical 
core–shell structure of  Mo2N@CoFe@C/CNT absorber 
and the combination of dielectric  Mo2N, conductive C/
CNTs and magnetic CoFe alloy components contribute to 
the enhancement of electromagnetic storage and MA per-
formance. Related microwave energy absorption/conversion 
mechanisms of MA can be illustrated as followed in detail 
(Fig. 7).

3.3.1  Multiple Heterojunction Interfaces 
and Hierarchical Electronic Transportation Paths 
Boosted Dielectric Loss

3D assembly  Mo2N@CoFe@C/CNT composites possess 
plentiful heterojunction interfaces, which is necessary to the 
improvement of dielectric storage ability and polarization 
behaviors. Hierarchical  Mo2N@CoFe@C/CNT composite is 
made up of dielectric  Mo2N, graphitized C/CNTs and mag-
netic CoFe nanoparticles. In such “tubes on rods” matrix, 
there are at least three kinds of heterojunction interfaces, 
including CoFe-CNTs interfaces, graphitized carbon–CNTs 
interfaces and graphitized carbon–Mo2N interfaces (Fig. 7c). 
Due to differences in electrical conductivity among compo-
nents, free electrons gather around those contacting inter-
faces when applied variation of electromagnetic wave. This 
electronic migration/moment can produce intensive interfa-
cial polarization and relaxation causing the conversion from 
electromagnetic waves energy into thermal energy. Besides, 
numerous carbon heteroatoms groups (such as C-N and 
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C-O, Fig. 3c) in  Mo2N@CoFe@C/CNT could be regarded 
as active dipole sites. Related dipole polarization can also 
improve the MA performance. Therefore,  Mo2N@CoFe@C/
CNT composite exhibits higher dielectric polarization abil-
ity compared with  Mo2N@Co/CNT and  Mo2N materials 
owing to its multiple interfaces and multicomponent. In 
addition, both dielectric  Mo2N rod and graphitized C/CNTs 
can be also considered as a conductive network. Micro-scale 
 Mo2N rod displays high permittivity. When graphitized C/
CNTs grow on  Mo2N rod, numerous electronic transpor-
tation routes are formed between C/CNTs and  Mo2N rod 
(Fig. 7a, b). This conduction transportation network facili-
tates enhanced conduction loss capability, which is also 
favorable for MA performance.

3.3.2  Spatial Dispersed CoFe Nanoparticles Built 
Multi‑scale Magnetic Coupling Network

Spatial dispersed nano-scale CoFe alloy suspended within 
hierarchical micro-scale  Mo2N@C/CNTs rod construct 
a multi-scale magnetic network and could significantly 
contribute to the boosted magnetic responding capacity 
(Fig. 7d). Traditionally, magnetic nanoparticles could eas-
ily aggregate together due to their magnetic nature. Metal 
aggregation problem can hardly be avoided in the process 
of pyrolyzing MOFs directly. Herein, through our ligand 
exchange strategy, as-synthesized  MoO3@hollow-CoFe-
PBA structure can not only effectively reduce the aggrega-
tion of magnetic nanoparticles but also expand spatial mag-
netic distribution, thereby further increasing the responding 
scale of magnetic component in the final  Mo2N@CoFe@C/

CNT composite. As-fabricated hierarchical  Mo2N@C/CNT 
architecture provides a perfect nano/micro-matrix to support 
suspended CoFe nanoparticles (Figs. 4 and 5), thus forming 
a distributed magnetic network and strengthening magnetic 
permeability. The off-axis electron holography is performed 
to study the magnetic property of CoFe nanoparticles and 
related magnetic network in  Mo2N@CoFe@C/CNT com-
posite. As shown in Fig. 8a–c, the CoFe nanoparticles in 
the composite can radiate out high-density magnetic lines 
which could penetrate through the nonmagnetic graphitic C/
CNTs and expand magnetic responding regions beyond itself 
size. Furthermore, the neighbored CoFe nanoparticle sus-
pended within C/CNTs matrix displays magnetic coupling 
lines which could contribute to integral magnetic network, 
further strengthen magnetic dissipation capacity (Fig. 8d–f) 
[49]. Meanwhile, high loading and uniformly distribution of 
CoFe nanoparticles (Fig. 5) can also enhance the magnetic 
loss to promote MA performance. Therefore, compared with 
 Mo2N@Co/CNT and other magnetic metal/carbon compos-
ites reported previously, hierarchical  Mo2N@CoFe@C/CNT 
composite can successfully avoid magnetic metal aggrega-
tion problem and exhibit remarkable magnetic loss property.

3.3.3  Synergic Magnetic‑dielectric MA System 
and Multi‑dimension Hierarchical Structure

Hierarchical  Mo2N@CoFe@C/CNT composites can 
effectively dissipate the microwave energy via dielectric 
dissipation and magnetic loss. The assembled composite 
is constructed by dielectric  Mo2N as core and spatially 
dispersed CoFe nanoparticles within C/CNTs as shell and 
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thus demonstrate significantly improved MA performance 
resulting from both dielectric loss and magnetic loss, com-
pared with single  Mo2N material or  Mo2N@Co/CNT com-
posite with few metal nanoparticles. Meanwhile, because 
of the hierarchical structure and multi-scale size,  Mo2N@
CoFe@C/CNT assembly possess unique multi-reflection 
and multi-scattering (Fig. 7e). Abundant 1D CNTs, micro-
scale  Mo2N rod and 3D hierarchical core–shell structure 
could generate effective surface area and spacing effect. 
When incidence microwave permeates into this 3D archi-
tecture, expected large surface areas offer many active sites 
to produce multiple reflection and scattering. Such repeated 
reflection and scattering process of incident microwave can 
successfully attenuate microwave energy. Benefiting from 
above advantages of hierarchical structure and multi-loss 
mechanism, as-prepared  Mo2N@CoFe@C/CNT compos-
ites exhibit superior MA performance that surpass those 
reported metal–carbon microwave absorbents (Table S1).

4  Conclusion

In conclusion, as-prepared  Mo2N@CoFe@C/CNT com-
posites exhibit superior MA performance with maximum 
reflection loss value of − 53.5 dB at the thickness of only 
2 mm thickness and a broad effective absorption band-
width of 5 GHz. Such 3D hierarchical core–shell structure 
assembled by nano-scale magnetic CoFe nanoparticles sus-
pended within graphitic C/CNTs supported on micro-scale 
 Mo2N rod is rationally constructed via our effective ligand 

exchange strategy. The dielectric  Mo2N and C/CNTs com-
ponents can shape strong conductive loss and hierarchical 
core–shell structure offers large interfacial area to trigger 
polarization loss. Moreover, distributed magnetic CoFe 
nanoparticles embedded in C/CNTs matrix form multi-scale 
magnetic network and reinforce magnetic response capabil-
ity, which is verified by the off-axis electron holography. 
Firmly, the MOF-based ligand exchange strategy in this 
work can be utilized to construct various hierarchical struc-
ture of multicomponent metal–carbon system for enhanced 
MA performance.
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