Supporting Information for

Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended within "Tubes on Rods" Matrix Toward Enhanced Microwave Absorption

Chunyang Xu¹, Lei Wang¹, Xiao Li¹, Xiang Qian¹, Zhengchen Wu¹, Wenbin You¹, Ke Pei¹, Gang Qin¹, Qingwen Zeng¹, Ziqi Yang¹, Chen Jin¹, Renchao Che¹, *

⁴Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China

*Corresponding author. E-mail: rcche@fudan.edu.cn (Renchao Che)

Supplementary Figures and Table

Fig. S1 a, b SEM images and c XRD patterns of MoO3 samples

Fig. S2 XRD patterns of MoO₃@Co-MOF

Fig. S3 XRD patterns of MoO₃@hollow-CoFe-PBA samples

Fig. S4 a, b SEM c, d TEM images of Mo₂N@Co/CNT samples

Fig. S5 a, b SEM images of Mo₂N samples

Fig. S6 a, b SEM images of samples calcined at 700 °C We have also prepared the sample obtained under 700 °C. As displayed in Fig. S6, MoO₃@hollow-CoFe-PBA samples were unstable at 700 °C and decomposed into irregular structure. Even some samples could retain rod-like structure, there were no CNTs on the surface.

Fig. S7 SEM images of samples calcined under different weight ratio of MoO₃@hollow-CoFe-PBA to melamine: **a-b** 1:1, **c-d** 1:3, **e-f** 1:5, **g-h** 1:7

We have prepared samples under different weight ratio of MoO₃@hollow-CoFe-PBA to melamine, including 1:1, 1:3, 1:5, and 1:7. Under the carbonization of MoO₃@hollow-CoFe-PBA with the same weight of melamine (1:1), there is no CNTs produced on the Mo₂N rod due to less melamine as carbon sources. Increase the content of melamine (1:3), few CNTs can be seen on the Mo₂N rod. When the weight ratio of MoO₃@hollow-CoFe-PBA to melamine is 1:5, a large number of CNTs are produced and deposited on the core of Mo₂N rod, forming Mo₂N@CoFe@C/CNT core-shell structure. Increasing the weight ratio to 1:7, too many CNTs are produced and core-shell structure cannot be maintained.

Fig. S8 Electromagnetic parameters of **a** Mo₂N, **b** Mo₂N@Co/CNT and **c** Mo₂N@CoFe@C/CNT samples

Fig. S9 a Dielectric loss tangent and **b** magnetic loss tangent of Mo₂N, Mo₂N@Co/CNT, and Mo₂N@CoFe@C/CNT samples

 Table S1 Microwave absorption performance of metal/C absorbents and molybdenumbased materials in previous references and this work.

Absorbents	Thickness (mm)	Maximum RL (dB)	EAB (GHz)	Refs.
FeCo/C/BaTiO ₃	2.0	-41.7	4.2	[S1]
NiFe@C	2.8	-51	3.97	[S2]
Co/NPC@Void@CI	2.2	-49.2	6.72	[S3]
MOF (Fe)/PANI	2.0	-41.4	5.5	[S4]
MWCNT/Fe	4.3	-39.0	2.7	[S5]
Fe/C	3.0	-36.0	0.9	[S6]
Fe/C	2.0	-22.6	5.3	[S7]
Co/N-C NF	2.0	-41.7	4.2	[S8]
CoZn@NCNTHS/G	1.5	-47.3	4.0	[S9]
CMT@CNT/Co	2.0	-52.2	5.1	[S10]
C@MoO ₂ /G	1.5	-35.4	4.5	[S11]
$Mo_2C@C$	1.9	-48.0	4.1	[S12]
Mo ₂ C/C NCs	2.6	-49.2	4.6	[S13]
Mo2N@CoFe@C/CNT	2.0	-53.5	5.0	This work

Supplementary References

- [S1] J. Jiang, D. Li, D. Geng, J. An, J. He et al., Microwave absorption properties of core double-shell FeCo/C/BaTiO₃ nanocomposites. Nanoscale 6, 3967-3971 (2014). https://doi.org/10.1039/C3NR04087A
- [S2] Z. Yang, H. Lv, R. Wu, Rational construction of graphene oxide with mofderived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9, 3671-3682 (2016). https://doi.org/10.1007/s12274-

016-1238-z

- [S3] B. Quan, X. Liang, G. Ji, J. Ma, P. Ouyang et al., Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Inter. 9, 9964-9974 (2017). https://doi.org/10.1021/acsami.6b15788
- [S4] Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang et al., Conducting polymer coated metal-organic framework nanoparticles: Facile synthesis and enhanced electromagnetic absorption properties. Synthetic Met. 228, 18-24 (2017). https://doi.org/10.1016/j.synthmet.2017.04.009
- [S5] F. Wen, F. Zhang, Z. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115, 14025-14030 (2011). https://doi.org/10.1021/jp202078p
- [S6] T. Wang, H. Wang, X. Chi, R. Li, J. Wang, Synthesis and microwave absorption properties of Fe-C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon 74, 312-318 (2014). https://doi.org/10.1016/j.carbon.2014.03.037
- [S7] R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic frameworkderived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426-13434 (2015). https://doi.org/10.1039/C5TA01457C
- [S8] H. Liu, Y. Li, M. Yuan, G. Sun, H. Li et al., In situ preparation of cobalt nanoparticles decorated in n-doped carbon nanofibers as excellent electromagnetic wave absorbers. ACS Appl. Mater. Inter. 10, 22591-22601 (2018). https://doi.org/10.1021/acsami.8b05211
- [S9] X. Zhang, J. Xu, X. Liu, S. Zhang, H. Yuan et al., Metal organic frameworkderived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon 155, 233-242 (2019). https://doi.org/10.1016/j.carbon.2019.08.074
- [S10] Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- [S11] C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO₂ clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16, 2001686 (2020). https://doi.org/10.1002/smll.202001686
- [S12] Y. Wang, X. Han, P. Xu, D. Liu, L. Cui et al., Synthesis of pomegranate-like Mo₂C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312-320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
- [S13] S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous-carbon-based Mo₂C nanocomposites as excellent microwave absorber: A new exploration. Nanoscale 10, 6945-6953 (2018). https://doi.org/10.1039/C8NR01244J