Supporting Information for

Band Engineering and Morphology Control of Oxygen-incorporated Graphitic Carbon Nitride Porous Nanosheets for Highly Efficient Photocatalytic Hydrogen Evolution

Yunyan Wu^{1, 2, #}, Pan Xiong^{1, #}, Jianchun Wu^{2, 3}, Zengliang Huang², Jingwen Sun¹, Qinqin Liu², Xiaonong Cheng², Juan Yang^{1, 2, *}, Junwu Zhu^{1, *}, Yazhou Zhou^{2, *}

¹Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China

²School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

³Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China

[#]Yunyan Wu and Pan Xiong have contributed equally to this work

*Corresponding authors. E-mail: <u>yangjuan6347@mail.ujs.edu.cn</u> (J. Yang); <u>zhujw@njust.edu.cn</u> (J. Zhu); <u>yazhou@ujs.edu.cn</u> (Y. Zhou)

S1 Quantum Efficiency Calculations

The apparent quantum yield (AQY) for hydrogen evolution was measured under monochromatic light irradiation (400, 420, 435, and 450 nm) using a 300W Xenon lamp with specific band-pass filters. Depending on the amount of hydrogen produced in one hour, the AQY was calculated from Eqs. (S1)-(S4):

$$AQY = \frac{\text{Number of evolved hydrogen molecules} \times 2}{\text{Number of incident photons}} \times 100\%$$
(S1)

Number of evolved hydrogen molecules= $2 \times M \times N_A$ (S2)

Number of incident photons $=\frac{E \times \lambda}{h \times c} \times 100\%$ (S3)

$$AQY = \frac{2 \times M \times N_A \times h \times c}{S \times P \times \lambda \times t} \times 100\%$$
(S4)

Where, *M* is the mole number of hydrogen molecules (mol), N_A is Avogadro constant (6.022×10²³ mol⁻¹), *h* is Plank constant (6.626×10⁻³⁴ J S), *c* is the speed of light (3×10⁸ m s⁻¹), λ is the monochromatic light wavelength (m), *P* is the average intensity of irradiation, *S* is the irradiation area (cm²), and *t* is the photoreaction time (s).

Table S1 Calculated apparent quantum efficiency (AQE) at different wavelengths

Wavelength	H ₂ Evolved (µmol)	Light Intensity	AQE
λ=400nm	60.95	12.53 mW	26.96%
λ=420nm	10. 88	13.41 mW	4.28%
λ=435nm	4.42	14.55 mW	1.55%
λ=450nm	0	15.12 mW	0%

$AQE(\%) = \frac{\text{the number of reacted electrons}}{\text{the number of incident photos}} \times 100\%$	$\sqrt[6]{e} = \frac{2 \times the number of evolved H_2 molecules}{N} \times 100\% =$
$=\frac{2N_AC}{N} \qquad (N=\frac{E\lambda}{hc}=\frac{Pt\lambda}{hc})$	
C: H ₂ production amount	N _A : Avogadro constant
P: Light intensity	t: Photocatalytic reaction time
λ : The wavelength of light	h: Planck constant
c: The speed of light	
(a) $\lambda = 400 \text{ nm}$	
$N = \frac{E\lambda}{hc} = \frac{12.53 \times 10^{-3} \times 3 \times 3600 \times 400 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 2.722 \times 10^{20}$ $AOF = \frac{the number of reacted electrons}{100\%} \times 100\% = 100\%$	2×the number of evolved H_2 molecules × 100%—
$\frac{1000}{2\times6.02\times10^{23}\times60.95\times10^{-6}} = 26.96\%$	N ~10070-
$(b) \lambda = 420 \text{ nm}$	
$N = \frac{E\lambda}{hc} = \frac{13.41 \times 10^{-3} \times 3 \times 3600 \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 3.0598 \times 10^{-9}$) ²⁰
$AQE = \frac{\text{the number of reacted electrons}}{\text{the number of incident photos}} \times 100\% = \frac{2 \times 6.02 \times 10^{23} \times 10.88 \times 10^{-6}}{3.0598 \times 10^{20}} = 4.28\%$	$\frac{2 \times the \ number \ of \ evolved \ H_2 \ molecules}{N} \times 100\% =$
(c) $\lambda = 435 \ nm$	
$N = \frac{E\lambda}{hc} = \frac{14.55 \times 10^{-3} \times 3 \times 3600 \times 435 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 3.438 \times 10^{20}$	
$AQE = \frac{\text{the number of reacted electrons}}{\text{the number of incident photos}} \times 100\% = \frac{2 \times 6.02 \times 10^{23} \times 4.42 \times 10^{-6}}{3.438 \times 10^{20}} = 1.55\%$	$\frac{2 \times the \ number \ of \ evolved \ H_2 \ molecules}{N} \times 100\% =$
(d) $\lambda = 450 \ nm$	
$N = \frac{E\lambda}{hc} = \frac{15.12 \times 10^{-3} \times 3 \times 3600 \times 450 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 3.697 \times 10^{20}$	
$AQE = \frac{\text{the number of reacted electrons}}{\text{the number of incident photos}} \times 100\% = \frac{2 \times 6.02 \times 10^{23} \times 0 \times 10^{-6}}{3.697 \times 10^{20}} = 0\%$	$\frac{2 \times the \ number \ of \ evolved \ H_2 \ molecules}{N} \times 100\% =$

S2 Supplementary Tables and Figures

Table S2 XPS	comparison of	of element of	contents of	the different s	samples
--------------	---------------	---------------	-------------	-----------------	---------

Sample type	N content (at%)	O content (at%)	C content (at%)
OCN -1	60.29	0.84	38.86
OCN -2	59.88	1.02	39.10
OCN -3	59.07	1.62	39.31
OCN -4	58.04	2.07	39.88

Sample type	O_2 content (%)	H_2O content (%)	C-O content (%)
OCN -1	23.12	47.45	29.42
OCN -2	19.62	44.66	35.71
OCN -3	15.83	42.52	41.63
OCN -4	14.63	42.46	42.91

Table S3 O bond proportions of the different samples

Table S4 H_2 evolution rate of other reported CN-based photocatalysts

Composite type	Dopant /cocatalysts	Reactant solution and sacrificial agent	Light source	Activity (µmolg ⁻¹ h ⁻¹)	Refs.
NiMo/g-C ₃ N ₄	1 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	Xe-lamp (300 W), λ > 420 nm	1785	[S1]
MS-550	3 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	Xe-lamp (300 W), λ > 420 nm	661	[S2]
T-CN	3 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	Xe-lamp (300 W), λ > 420 nm	332	[83]
CN-Na-7	3 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	Xe-lamp (300 W), λ > 420 nm	169	[S4]
CNQ680	3 wt% Pt	300 mL aqueous solution, TEOA (10vol%)	Xe-lamp (300 W), λ > 440 nm	310	[85]
U-CN-6	3 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	300 W Xenon lamp, $\lambda > 420 \text{ nm}$	812	[S6]
g-C3N4 @PDA	3 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	300 W Xe-lamp, λ > 420 nm	377.7	[S7]
3DCN1	3 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	300 W Xenon lamp, $\lambda > 420 \text{ nm}$	1681	[S8]
P-DCN	3 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	300W Xeon-lamp, $\lambda > 420 \text{ nm}$	2092	[89]
CNU _{0.075}	1 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	300W Xenon arc lamp, $\lambda > 420 \text{ nm}$	1003.9	[S10]
Co(Mo-Mo ₂ C)/g- C ₃ N ₄	2 wt% Pt	10 mL aqueous solution, TEOA (20 vol%)	300W Xenon arc lamp, $\lambda > 420 \text{ nm}$	4291	[S11]
OCN	3 wt% Pt	100 mL aqueous solution, TEOA (10 vol%)	300W Xenon arc lamp, $\lambda > 420 \text{ nm}$	3519.6	Our Work

Fig. S1 a-e Optimized atomic structure view and energy of O-doped g-C_3N_4 and f-j O-adsorbed g-C_3N_4

Fig. S2 a SEM, b-d AFM images of OCN-4

Fig. S3 a FT-IR, b survey, c-d C1s and N1s XPS spectra of OCN

Fig. S4 a-d Digital photographs of powders: **a** precursor urea, **b** OCN-1, **c** OCN-2, **d** OCN-3

Fig. S5 a-d Nitrogen adsorption/desorption isotherms of a OCN-1, b OCN-2, c OCN-3, d OCN-4

Fig. S6 a-d Pore size distribution curves of a OCN-1, b OCN-2, c OCN-3, d OCN-4

Fig. S7 a-b TEM images of MCN, **c** nitrogen adsorption/desorption isotherms and **d** pore size distribution curves of OCN-1, MCN

Fig. S8 a-b SEM images of OCN-3 before and after cyclic photocatalytic H_2 evolution tests

Fig. S9 XRD patterns of OCN-3 before and after cyclic photocatalytic H₂ evolution tests

Fig. S10 a-b ESR spectra of e^- and h^+ for various times of OCN-3 under visible light irradiation

Fig. S11 a-c Density of state (DOS) of **a** pristine g-C₃N₄, **b** O-doped g-C₃N₄ and **c** O-adsorbed g-C₃N₄

Supplementary References

[S1] X. Han, D. Xu, L. An, C. Hou, Y. Li et al., Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C₃N₄. Appl. Catal. B: Environ. 243, 136-144 (2019). https://doi.org/10.1016/j.apcatb.2018.10.003

- [S2] J. Yang, Y. Liang, K. Li, G. Yang, K. Wang et al., One-step synthesis of novel K⁺ and cyano groups decorated triazine-/heptazine-based g-C₃N₄ tubular homojunctions for boosting photocatalytic H₂ evolution. Appl. Catal. B: Environ. 262, 118252 (2020). https://doi.org/10.1016/j.apcatb.2019.118252
- [S3] J. Yang, Y. Liang, K. Li, G. Yang, K. Wang et al., Cyano and potassium-rich g-C₃N₄ hollow tubes for efficient visible-light-driven hydrogen evolution. Catal. Sci. Technol. 9, 3342-3346 (2019). https://doi.org/10.1039/C9CY00925F
- [S4] Y. Shang, Y. Ma, X. Chen, X. Xiong, J. Pan, Effect of sodium doping on the structure and enhanced photocatalytic hydrogen evolution performance of graphitic carbon nitride. Molecular Catal. 433, 128-135 (2017). https://doi.org/10.1016/j.mcat.2016.12.021
- [S5] P. Niu, M. Qiao, Y. Li, L. Huang, T. Zhai, Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 44, 73-81 (2018). https://doi.org/10.1016/j.nanoen.2017.11.059
- [S6] C. Dong, Z. Ma, R. Qie, X. Guo, C. Li et al., Morphology and defects regulation of carbon nitride by hydrochloric acid to boost visible light absorption and photocatalytic activity. Appl. Catal. B: Environ. 217, 629-636 (2017). https://doi.org/10.1016/j.apcatb.2017.06.028
- [S7] H. Wang, Q. Lin, L. Yin, Y. Yang, Y. Qiu et al., Biomimetic design of hollow flower-like g-C₃N₄@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small 15, 1900011 (2019). https://doi.org/10.1002/smll.201900011
- [S8]J. Sun, F. Yao, L. Dai, J. Deng, H. Zhao et al., Task-specific synthesis of 3D porous carbon nitrides from the cycloaddition reaction and sequential selfassembly strategy toward photocatalytic hydrogen evolution. ACS Appl. Mater. Inter. 12, 40433-40442 (2020). https://doi.org/10.1021/acsami.0c14097
- [S9] D. Zhang, Y. Guo, Z. Zhao, Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl. Catal. B: Environ. 226, 1-9 (2018). https://doi.org/10.1016/j.apcatb.2017.12.044
- [S10] Q. Xu, B. Zhu, B. Cheng, J. Yu, M. Zhou et al., Photocatalytic H₂ evolution on graphdiyne/g-C₃N₄ hybrid nanocomposites. Appl. Catal. B: Environl. 255, 117770 (2019). https://doi.org/10.1016/j.apcatb.2019.117770
- [S11] Y. Zheng, J. Dong, C. Huang, L. Xia, Q. Wu et al., Co-doped Mo-Mo₂C cocatalyst for enhanced g-C₃N₄ photocatalytic H₂ evolution. Appl. Catal. B: Environl. 260, 118220 (2020). https://doi.org/10.1016/j.apcatb.2019.118220