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Identifying Heteroatomic and Defective Sites 
in Carbon with Dual‑Ion Adsorption Capability 
for High Energy and Power Zinc Ion Capacitor
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HIGHLIGHTS

• A unique dual-ion adsorption mechanism for zinc ion capacitor is enabled by a carbon cathode with defect-rich tissue, dense heter-
oatom dopant and immense surface area.

• The active sites on carbon surface for reversible dual-ion adsorption are identified by in-depth characterizations and DFT simulations.

• The zinc ion capacitor delivers unrivaled combination of high energy and power characteristics. The superb energy, power and cycla-
bility are achieved in multiple cell configurations including coin cell and flexible solid-state pouch-/cable-type cells.

ABSTRACT Aqueous zinc-based batteries (AZBs) attract tremen-
dous attention due to the abundant and rechargeable zinc anode. 
Nonetheless, the requirement of high energy and power densities 
raises great challenge for the cathode development. Herein we con-
struct an aqueous zinc ion capacitor possessing an unrivaled com-
bination of high energy and power characteristics by employing a 
unique dual-ion adsorption mechanism in the cathode side. Through 
a templating/activating co-assisted carbonization procedure, a rou-
tine protein-rich biomass transforms into defect-rich carbon with 
immense surface area of 3657.5 m2 g−1 and electrochemically active heteroatom content of 8.0 at%. Comprehensive characteriza-
tion and DFT calculations reveal that the obtained carbon cathode exhibits capacitive charge adsorptions toward both the cations 
and anions, which regularly occur at the specific sites of heteroatom moieties and lattice defects upon different depths of discharge/
charge. The dual-ion adsorption mechanism endows the assembled cells with maximum capacity of 257 mAh g−1 and retention of 
72 mAh g−1 at ultrahigh current density of 100 A g−1 (400 C), corresponding to the outstanding energy and power of 168 Wh kg−1 
and 61,700 W kg−1. Furthermore, practical battery configurations of solid-state pouch and cable-type cells display excellent reliability 
in electrochemistry as flexible and knittable power sources.
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1 Introduction

Owing to the high energy, high safety, low cost and poten-
tiality of device flexibility, the aqueous zinc-based batteries 
(AZBs) become prospective candidates in the application 
scenarios of grid scale energy storage, electric vehicles and 
wearable flexible devices [1–4]. The advantages largely 
originate from the low redox potential, high gravimetric/
volumetric capacity and moderate chemical activity of the 
zinc metal anode, as well as the non-flammable, low-cost 
aqueous electrolyte [5–8]. Based on the universal zinc 
anode and aqueous electrolyte, the diversity of the cath-
odes creates various derivative battery systems, includ-
ing aqueous zinc-air battery [9–11], zinc-nickel battery 
[12, 13], zinc-manganese battery [14–17], zinc-vanadium 
battery [18–21], etc. The most essential difference among 
these well-defined battery systems lies in the charge storage 
mechanisms in the cathode side, which can be categorized 
into electrocatalysis [22–25], conversion reactions [26], 
intercalation reactions [27, 28], phase transformations 
[14, 29], etc. Regardless of the multifarious charge storage 
mechanisms employed in the cathodes, the ultimate objec-
tive being pursued is to obtain combined characteristics of 
high energy and power densities for the AZBs, which yet 
remains a significant challenge.

By introducing the capacitive charge storage mechanism 
in the cathode side of AZBs, the coupling of cathode and 
zinc anode assembles into a hybrid zinc ion capacitor, 
which is considered as a promising configuration to make 
the high energy and high power compatible [30–32]. Theo-
retically, the zinc anode can deliver a battery-level energy 
associated with the zinc plating/striping processes, while 
the facile kinetics of the capacitive cathodes guarantees 
a supercapacitor-mode power, which creates the possibil-
ity of combining the advantages of two stand-along tech-
nologies [33–36]. The practical implement of this strat-
egy raises high requirements for the capacitive cathode 
material. First, the specific capacity of the cathode mate-
rial should be as high as possible to match the zinc anode 
counterpart (820  mAh  g−1), thus minimizing the total 
active mass. Therefore, the routine HelmHoltz double-
layer capacitance is inadequate in this circumstance, but 
a synergy of various Faradic/non-Faradic charge storage 
mechanisms is highly desired. Second, the high power trait 

requires excellent capacity retention capability for the cath-
ode at the extreme discharge/charge rates [37]; therefore, 
the sluggish kinetics of ion diffusion and charge transfer 
should be substantially eliminated.

Carbonaceous material is an important category of elec-
trode material in various energy storage systems [38–42]. 
The wide applications are benefited from the high ten-
ability in morphology, graphitic microstructure, porosity, 
surface chemistry, etc., for fulfilling different charge stor-
age demands [43–46]. Carbon materials, for instance hol-
low carbon sphere [47], chemical activated graphene [30], 
heteroatoms doping porous carbon [48–50], etc., were 
attempted in hybrid zinc ion capacitors as the capacitive 
cathodes. These pioneering works are highly inspiring and 
reveal the great potential of applying carbons in advanced 
AZBs. Yet exploring carbons for high energy and power 
zinc ion capacitor is still in the infancy stage. According to 
our thorough literature survey, the current carbon cathodes-
based zinc ion capacitors exhibited limited energy density of 
around 130 Wh  kg−1. Also, the devices typically performed 
at moderate current densities of below 20 A  g−1, leading 
to the power lower than 30 kW kg−1. More importantly, 
as aforementioned, the energy/power behaviors of AZBs 
correlate closely with the charge storage mechanism in the 
cathode. By far there is a shortage of systematical study on 
the charge storage mechanism of carbon cathode in zinc ion 
capacitors, which significantly obstructs the material design 
and device performance promotion.

In this work, we utilized a common biomass of protein-
rich bone glue for carbon preparation. Via a templating/
activating co-assisted carbonization procedure, the opti-
mized carbon exhibits highly defect-rich graphitic tissue, 
3657.5 m2 g−1 surface area, hierarchical porous structure 
and electrochemically active heteroatom doping of 8.0 at%. 
The zinc ion capacitor employing BGC cathode delivered 
maximum energy and power densities of 168 Wh kg−1 and 
61,700 W kg−1, respectively. Both experiments and den-
sity function theory calculation illustrate that the superior 
electrochemical performance is essentially attributed to the 
unique dual-ion adsorption mechanism. The massive het-
eroatom moieties and lattice defects distributing on carbon 
surface provide large population of sites for both  Zn2+ and 
 CF3SO3

− adsorption, which exhibit capacitive kinetics in 
nature.
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2  Experimental Section

2.1  Materials Synthesis

The bone glue biomass was purchased from Hunan Jusuo 
Biotechnology Co., Ltd. Sodium phytate and sodium 
hydroxide were received from Shanghai aladdin Biochemi-
cal Technology Co., Ltd. and Sinopharm Chemical Reagent 
Co., Ltd. The bone glue-derived carbons (BGCs) were pre-
pared using bone glue as biomass precursor, sodium phytate 
as salt template and sodium hydroxide as activating agent. 
In a typical synthesis process, two solutions were firstly pre-
pared by dissolving 2 g bone glue and 0.5 g sodium phytate 
in 20 and 5 mL deionized water at 60 °C, respectively. The 
solutions were mixed together and stirred at 60 °C for 4 h, 
and the obtained composite was loaded in an oven at 100 °C 
for 6 h to evaporate the residual water. The dried mixture 
was calcined at 450 °C for 1 h under argon atmosphere. The 
heating rate is 5 °C min−1. After grinding the pre-carbonized 
products with sodium hydroxide in a mortar in a mass ratio 
of 1: 2, carbonization of the mixture was processed under 
650/750/850 °C for 2 h with a heating rate of 5 °C min−1 
in argon. The obtained products were washed by HCl and 
deionized water for several times and dried at 80 °C for 12 h. 
The as-prepared bone glue-derived carbon was named as 
BGC-T, where T is the temperature in the second carboniza-
tion step. A commercial activated carbon (named AC) was 
utilized as received.

2.2  Materials Characterization

To observe the morphology and microstructure of the 
carbons, a scanning electron microscope (SEM, Hitachi, 
S4800, 5 kV, Japan) and a transmission electron microscopy 
(TEM, JEOL, JSM-2100F, 200 kV, Japan) were employed. 
The X-ray diffraction (XRD) spectra were collected by 
Bruker D8 Advanced X-ray diffractometer (Bruker Corp., 
Billerica, MA, USA) with Cu Kα radiation. The gas absorp-
tion–desorption isotherm was characterized via autosorb 
iQ instrument (Quantachrome, US) at 77 K with nitrogen 
as adsorbate. The specific surface area of the carbons was 
estimated by Brunauer–Emmett–Teller (BET) method. The 
pore volume and pore size distribution were determined on 
the basis of density functional theory (DFT) model. Raman 
spectra were obtained using a Raman spectrometer (Lab 

RAM HR800, laser wavelength: 532 nm, laser power: 5 
mW). X-ray photoelectron spectrometer (Axis Supra X, 
Japan) with Al Kα radiation (1486.6 eV) was used to col-
lect X-ray photoelectron spectroscopy (XPS). For XPS ex 
situ electrodes preparation, sodium carboxymethyl cellulose 
(CMC) and alcohol solution were utilized as binder and 
solvent. After charging/discharging to the target voltage, the 
cell disassembly was completed within 30 s. The collected 
active materials were washed repeatedly with deionized 
water and vacuum-dried before XPS tests.

2.3  DFT Calculation

The involved calculations were proceeded via the Vienna 
Ab initio Software Package (VASP 5.3.5) code based on 
the density functional theory (DFT), in which the Per-
dew–Burke–Ernzerhof (PBE) generalized gradient approxi-
mation and projected augmented wave (PAW) method were 
employed [51–53]. The plane wave cutoff energy was set to 
400 eV in the all calculations. The Brillouin zone of the unit 
cell was sampled by Monkhorst–Pack (MP) method with 
Gamma centered in the 3 × 3 × 1 Monkhorst–Pack grid [54]. 
A k-point mesh was used for graphene structure optimiza-
tions, in which the convergence criterion for the electronic 
self-consistent iteration and force was set to  10–5 eV and 
0.01 eV Å−1, respectively [55]. In this study, we constructed 
a 5 × 5 graphene surface supercell, including an atomic layer, 
to simulate the graphitic lattice. A vacuum layer of 12 Å 
was constructed to prevent the interaction between periodic 
layers. The ion adsorption energy (Eads) at various surface 
sites was estimated as follows:

in which the Etotal, Esurface and Especies are representative 
of the total energy of the adsorbed species with graphene 
surface, the energy of the empty graphene surface and the 
energy of the specific adsorbed species in the gas phase, 
respectively.

3  Results and Discussion

3.1  Morphology and Physicochemical Characterization

Scheme 1 demonstrates the transformation of the bone glue 
precursor into the carbonaceous materials (BGCs). Bone 

(1)Eads = Etotal − Esurface − Especies
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glue is a daily protein biomass mainly composed of polypep-
tide chains. The abundant elements of nitrogen and oxygen 
in the polypeptide can create intrinsic heteroatom doping for 
the obtained carbons. The preparation route involves two-
step carbonization with the co-assistance of template and 
activation agents. It is of great importance that the bone 
glue melts above the temperature of 60 °C, when the gelati-
nous precursor can easily achieve uniform blend with the salt 
template of sodium phytate. The sodium phytate template 
not only generates macro-/meso-porosity after scarifying 
but also aids the sodium hydroxide to maximize the activa-
tion effect. According to the controlling experiments, the 
temperature in this templating/activating co-assistant car-
bonization procedure plays a vital role in tuning the phys-
icochemical properties of the obtained carbon, as will be 
further discussed.

Figure 1a shows the scanning electron microscopy (SEM) 
image of the optimized BGC sample with carbonization tem-
perature of 750 °C (BGC-750), highlighting the honeycomb-
like macroporous morphology. The SEM image with higher 
magnification (Fig. S1a) reveals the abundant 0.3–1 μm 
voids in the carbon bulk, which is largely attributed to the 
synergy of salt template removal and intense activating etch 
[43, 56]. As comparison, the BGC-650 shows visibly fewer 
macrovoids or cavities since the low temperature has much 
weaker activation effect (Fig. S1b). On the contrary, 850 °C 
is too high for activation; thus, the carbon framework col-
lapsed and isolate macropores were largely destroyed [57], 
as evidenced by the mostly closed morphology of BGC-850 
(Fig. S1c). The commercial activated carbon (AC) baseline 

exhibits solid micron-size particle morphology without any 
observable open macroporosity (Fig. S1d). Figure 1b dem-
onstrates the transition electron microscopy (TEM) image of 
BGC-750. The interconnected macroporosity below 500 nm 
in the carbon bulk can be better observed. The high-reso-
lution TEM image in Fig. 1c displays a highly disordered 
graphitic microstructure of BGC-750. Negligible continuous 
graphene fringe appears. Instead, massive micropores and 
defects clearly present on the surface.

The graphitic structure of BGCs and AC was first stud-
ied by XRD. Figure 1d exhibits the resulted spectra. The 
BGCs and AC all demonstrate broad (002) and (100) humps 
that are resulted from the amorphous carbonaceous tissue. 
In order to distinguish the delicate difference in graphitic 
microstructure among the samples, we utilized an empirical 
parameter R as an indicator of the number of carbon sheets 
arranged as single layers [58]. The method for R calcula-
tion and the corresponding values are shown in Fig. S2 and 
Table S1. Basically a lower R value is reflective of more 
randomly stacked graphene layers without ordered orienta-
tions, which closely correlates with the degree of disorder. 
Referring to Fig. 1f, the R values of BGCs almost linearly 
increase upon higher carbonization temperature. Nonethe-
less, AC has an exceptionally high R value. This is the first 
evidence of the more disordered graphitic microstructure 
of BGCs as comparing to AC. Figure 1e shows the Raman 
spectra of BGCs and AC. All spectra have characteristic D 
and G bands, which, respectively, represents the defective 
graphitic microstructure and the sp2-hybridized graphitic 
domains [46, 59]. Therefore, the degree of graphitic disorder 

Scheme 1  A schematic illustrating the preparation procedure of the bone glue-derived carbons (BGCs)
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and the defect concentration can be quantitatively evaluated 
by the intensity ratio of the two bands (i.e., ID/IG) [60]. As 
demonstrated in Fig. S3, the ID/IG values were calculated 
based on the integral areas under curves. The large ID/IG 
values of BGCs (Table S1) indicated the high degree of dis-
order and large population of defects in their graphitic lat-
tices [43, 60, 61]. As shown in Fig. 1f, the ID/IG also fits into 
a linear relationship with carbonization temperature. AC has 
a distinctly lower ID/IG value that largely deviated from the 
BGC line. Both R and ID/IG values reveal that BGCs have 
larger degree of disorder containing much higher population 
of defects than the routine active carbons. We claim that the 
unique synthesis procedure aforementioned for BGC plays 
crucial role in creating such a special carbon tissue.

To characterize the porous structures of BGCs and AC, 
nitrogen adsorption/desorption isotherms analysis was 

performed. In Fig. 1g, the BGCs and AC present a typical 
type IV and I adsorption/desorption isotherms, respectively. 
For BGCs, the sharp rise of gas adsorption at relatively low 
pressure range (P/P0 < 0.01) and the continuous increase at 
medium pressure range (0.1 < P/P0 < 0.5) are due to the exist-
ence of the micropores. The distinct hysteresis loop at the 
pressure range of 0.5–0.95 is reflective of mesoporosity [49, 
62]. Specific to BGC-750, a slight rise at the high pressure 
range (0.95 < P/P0 < 0.99) can be observed, which proves the 
existence of the macropores [63], whereas for AC, the plat-
form occupying the whole pressure region of the isotherm 
indicates that the porosity is mainly composed of micropores 
[64]. These observations are in line with the SEM and TEM 
results. As shown in Table S1, the temperature significantly 
alters the Brunauer–Emmett–Teller (BET) surface areas and 
pore volumes of BGCs. At lower temperature of 650 °C, 

Fig. 1  a SEM micrograph of BGC-750. b TEM micrograph of BGC-750. c High-resolution TEM micrograph of BGC-750. d XRD patterns of 
BGCs and AC. e Raman spectra of BGCs and AC. f ID/IG and R values of BGCs and AC. g Nitrogen adsorption–desorption isotherms of BGCs 
and AC. h The corresponding pore size distributions. i O1s and N1s XPS spectra of BGC-750
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the activation effect is too weak to generate massive pores, 
leading to the low surface area and pore volume for BGC-
650, whereas the high temperature of 850 °C accelerates 
the graphitization which can seal the micropores and small 
mesopores [57, 65]. The optimized temperature of 750 °C 
maximizes the templating/activating effect and hence leads 
into the highest surface area and pore volume of 3657.5 and 
2.428  cm3 g−1, 2.9 and 4.5 times the values of commercial 
AC. Figure 1h displays the pore size distribution of BGCs 
and AC. AC is almost mesopore free, while BGCs possess 
both micro- and meso-porosities. BGC-750 has distinct mes-
oporosity with diameters of 2.5, 3.5 and 5.7 nm. Combining 
with the micro-/meso-pores and macro-size voids, BGC-750 
exhibits a favorable hierarchical porous architecture.

The surface chemistries of the carbons were investigated 
by X-ray photoelectron spectroscopy (XPS). As expected, 
the protein-rich precursor results into heteroatom-doped 
BGCs (Fig. S4a and Table S1). BGC-750 has moderate 
contents of both nitrogen (2.28 at%) and oxygen (5.72 at%) 
among BGCs; nonetheless, the highest surface area signifi-
cantly magnifies the surficial heteroatom moieties exposed 
to electrolyte. The heteroatom information is also revealed 
in the high-resolution C 1s spectra. Per Fig. S4b-e, the com-
ponents of C=C/C–C, C–O/C–N, C=O, and COOH could be 
clearly discriminated [64, 66]. The deconvolution of BGC-
750 O 1s and N 1s spectra is shown in Fig. 1i. The three 
peaks in O 1s represent quinone-type groups (C=O, O-I), 
phenol groups/ether groups (C–OH/C–O–C, O-II) and car-
boxylic groups (COOH, O-III) [67]. For N 1s, the four peaks 
present pyridinic-N (N-6), pyrrolic-N (N-5), quaternary-N 
(N-Q) and oxidized N (N-X), respectively [63, 67, 68]. Other 
BGCs exhibit identical functional group configurations (Fig. 
S5), but there are diversities in the relative ratios of differ-
ent oxygen and nitrogen species as a result of temperature 
change (Table S2). For BGC-750, O-I and N-5 occupy the 
largest proportions, which are 40.05% and 40.81% of all 
oxygen and nitrogen groups. For comparison, commercial 
AC is oxygen containing but totally nitrogen free.

3.2  Electrochemical Performance of BGC‑ 
and AC‑Based Zinc Ion Capacitors

We constructed aqueous zinc ion capacitors by cou-
pling the BGCs, AC as cathodes and zinc foils as anodes. 
Zn(CF3SO3)2 aqueous solution (3 M) was utilized as the 

electrolyte, which ensures high Zn plating/stripping round-
trip efficiency in the system [30]. Figure 2a shows the 
cycling voltammetry (CV) curves of BGCs and AC-based 
zinc ion capacitors at 20 mV s−1. All the curves exhibit 
near-rectangular shapes in the voltage window of 0.1–1.8 V 
with negligible evidence of oxygen or hydrogen evolution 
side reactions. Some sub-structures in the CV curve, for 
instance, the small cathodic humps at 1.0/1.2 V, are reflec-
tive of certain redox processes involved [69]. As shown in 
Fig. S6, the near-rectangular shape of CV curve maintained 
well for BGC-750 as the scan rate increased to 500 mV s−1, 
while severe distortions appeared for other BGCs and AC. 
This phenomenon is a clear evidence of the more facile ion 
transport kinetics in BGC-750 than that of in others, which 
is largely benefited from the wide-open hierarchical poros-
ity [62, 64, 70]. The galvanostatic charge–discharge (GCD) 
tests were conducted at current densities from 0.5 to 100 A 
 g−1. Figure 2b exhibits the obtained GCD profiles at 1 A  g−1. 
The symmetrical quasi-triangular shape of the profiles is in 
line with the CV curves and also demonstrates the outstand-
ing Coulombic efficiency (CE) [69]. The IR drop reflects 
the resistance of charge transfer in the electrode. As shown 
in Fig. S7 and Table S3, the IR drop values of BGC-750 
are comparable to that of the highest graphitized BGC-850, 
distinctly lower than BGC-650 and AC. In addition, the IR 
drop of all the samples increased at higher current density 
resulted from the higher charge transfer resistance.

Figure 2c includes the gravimetric capacities of BGCs and 
AC cathodes at various current densities. The GCD profiles 
for first three cycles of these electrodes are shown in Fig. 
S8. In these initial cycles, the charge capacities are typically 
larger than discharge capacities. This phenomenon and the 
resulted Coulombic efficiency lower than 100% (Fig. S9) 
are largely due to the side reaction of oxygen evolution [30, 
71]. The measurements were taken at unprecedented high 
rates of 200–400 C (50–100 A  g−1). BGC-750 performs best 
throughout the whole rate range. Remarkably, maximum 
capacity of 257 mAh  g−1 was obtained at starting rate of 2 C, 
and capacities of 126, 99 and 72 mAh  g−1 were obtained at 
rates of 80 C, 200 C and 400 C, respectively.  In addition, the 
gravimetric capacitances of BGCs and AC are calculated by 
integrating the enclosed area between discharge curves and 
the horizontal time axis (Fig. S10). The equation utilized is 
listed in the supporting information. These extreme current 
densities were never been employed in our previous zinc-air 
or compound cathodes-based zinc ion batteries [72, 73]. The 
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capacities of the BGC-650 and BGC-850 cathodes are lower 
than those of BGC-750 with BGC-850 as the more inferior 
one. AC has the lowest surface area and degree of graphitic 
disorder. Yet the high content of microporosity (i.e., 87.83% 
of the total pore volume) of AC is expected to endow higher 
utilization of the surface area and heteroatomic/defective 
sites, because the wall of microporosity is probably more 
favorable for charge adsorption in capacitors than that of 
meso-/macroporosity [74, 75]. As a result, the capacities of 
AC are only slightly lower than those of BGC-850 at all cur-
rent densities. Given the moderate content of heteroatom and 
degree of graphitic disorder for BGC-750, this comparison 
reveals that the surface area and porosity structure are more 
important in determining the specific capacities of the BGC 

cathode. This phenomenon to some extent indicates that the 
charge storage should largely be a surficial process, since the 
much higher surface area of BGC-750 (around twice of other 
BGCs) can expose much more active sites on the cathode 
surface. Also, the hierarchical porous structure consisted of 
open macropores, interconnected mesopores and macropores 
can effectively facilitate the ion diffusion, which endows the 
cathode with excellent capacity retention at the extreme rates 
[46, 47, 50, 76]. The more facile ion transport in BGC-750 
can also be supported by the electrochemical impedance 
spectroscopy (EIS) analysis. Figure S11a shows the Nyquist 
plots of BGCs and AC, where the semicircular curves in the 
high-frequency region refer to the charge transfer resistance 
(Rct), while the slope lines in the low-frequency range link 

Fig. 2  Electrochemical performance of BGCs and AC cathodes-based zinc ion capacitors. a CV curves at 20 mV s−1. b Galvanostatic charge–
discharge profiles at 1 A  g−1. c Specific capacities at various current densities. d Rate performance comparison of BGC-750-based zinc ion 
capacitors versus literature reported values. e Ragone plot of BGCs and AC-based zinc ion capacitors. f Maximum energy density of BGCs ver-
sus the state-of-the-art carbon cathodes. g Normalized contribution ratio of capacitive capacities at different scan rates. h Cyclabilities of BGCs 
and AC at 5 A  g−1
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to the Warburg impedance (ZW) [36]. The equivalent cir-
cuit employed for the data analysis is shown in Fig. S11b, 
where Re and CPE denote the total ohmic resistance and the 
constant phase element, respectively. The BGC-750 exhibits 
the smallest Rct (67.6 Ω) than BGC-650 (71.3 Ω), BGC-
850 (96.2 Ω) and AC (124.1 Ω). Moreover, BGC-750 curve 
exhibits a nearly vertical straight line at the ion diffusion 
controlled low-frequency range, which is reflective of the 
unimpeded ion transportation [48, 49].

It is instructive to compare the electrochemical perfor-
mance of BGC-750 with that of the state-of-the-art carbon 
cathodes in hybrid zinc ion capacitors. Table S4 summarizes 
the properties of the reported carbon-based zinc ion capaci-
tors in literature by far, including electrolyte, cell configura-
tion, capacity, energy/power and cyclability. First, the rate 
performance of BGC-750 outperforms most existing carbon 
cathodes (Fig. 2d) [47–50, 64, 77–80]. After counting into 
the working potential, the Ragone plots of the BGCs and 
AC-based zinc ion capacitors are shown in Fig. 2e (The 
calculation methods used for calculation are in Supporting 
Information). The cell with BGC-750 cathode delivers a spe-
cific energy density of 168 Wh  kg−1 at a power density of 
327 W kg−1. At an extremely high power of 61,700 W kg−1, 
energy density of 45 Wh  kg−1 still remains. According to 
the side-by-side comparison in Fig. 2f, this energy level is 
substantially superior to other carbon cathodes-based zinc 
ion capacitors, for instance activated carbon [64], chemical 
activated graphene [30], heteroatoms doping carbons [48, 
50], hierarchical porous carbons [47, 49], polymer aerogels 
[80], etc.

An effective approach to understand the intrinsic kinetics 
of the charge storage in electrodes is to mathematically ana-
lyze the change of active current as a function of potential 
scan rate. The relationship between the two variables may 
be expressed as i = avb, where i, v, a, and b are on behalf 
of the current, scan rate and two adjustable constants [81]. 
The linear relationship (b = 0.5) indicates a diffusion lim-
ited process. Conversely, a b value of 1 originates from a 
surface capacitive behavior that dominates the charge stor-
age process [82, 83]. The values of current (i) and scan 
rate (v) were read from the CV curves (Fig. S12), and the 
indicative b value can be represented by the slope of log i 
versus log v profiles (Fig. S13). The calculated b values of 
cathodic and anodic peaks of BGCs and AC are 0.91–0.99 
and 0.85–0.92, respectively. These b values indicate that the 
charge storage processes in BGC cathodes are capacitive in 

nature occurring on the carbon surface with negligible ion 
diffusion action in carbon bulk, which agrees with the afore-
mentioned observation. Meanwhile, the contribution of the 
capacitive charge storage was quantitatively calculated via 
dividing the current response into two parts (proportional to 
v1/2 and v) as following equation: i = k1v + k2v1/2 [63]. Vari-
ables k1 and k2 represent the proportions of the capacitive 
and non-capacitive contributions. As shown in Fig. S14, the 
capacitive contributions of BGC-650, -750 and -850 at a 
scan rate of 10 mV s−1 are 67.8%, 68.9% and 71.1%. In addi-
tion, the proportion of the capacitive contribution increases 
at high scan rates, exceeding 91% at 100 mV s−1 (Fig. 2g). 
The high proportion of capacitive charge storage is favorable 
for achieving high power AZBs [84, 85]. Furthermore, as 
shown in Fig. 2h, the BGCs cathodes also exhibit excellent 
cyclability upon extremely long cycling by virtue of such a 
capacitive ion storage process absent of bulk ion intercala-
tion/extraction, which inevitably leads to volume change and 
interfacial resistance increase. Also, the GCD profiles for 
first three cycles are shown in Fig. S15.

3.3  Charge Storage Mechanism Investigation 
and Active Sites Identification

To explore the reasons for the electrochemistry and bet-
ter understand the charge storage mechanisms of carbon 
cathodes in zinc ion capacitors, we performed systematic 
experiments and calculations to investigate the capacitive 
charge storage behavior of BGCs. First, XPS was employed 
to characterize the surface components at different charge 
and discharge states. To rule out the interference of fluo-
rine in PVDF, we utilized sodium carboxymethyl cellulose 
(CMC) as the binder in the ex situ electrodes. Figure S16 
displays the galvanostatic profiles and rate capacities of 
BGC-750 electrode using CMC binder. As comparing to 
Figs. 2c and S8b, the changing of binder from PVDF to 
CMC made negligible effect on the electrochemical perfor-
mance of BGC-750. As shown in Fig. 3b, c, seven critical 
voltage points were selected in the first discharging and the 
second charging. Elements of C, O, F, S, N, Zn are detected 
in the XPS survey spectra, which exhibit distinct fluctuations 
in contents at different charge/discharge states. The signal 
of Zn 2p and F 1s is the descriptors of reflect to track the 
movement of  Zn2+ cation and  CF3SO3

− anion in the system. 
The typical open-circuit voltage of as-assembled zinc ion 
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capacitor is around 1.1 V. As shown in Fig. 3e, upon the first 
discharge, the intensity of Zn 2p signal gradually increased 
from state a (full charge state, 1.8 V) to state d (full dis-
charge state, 0.1 V), which clearly reveals the  Zn2+ cation 
adsorption on BGC surface. The high intensity of Zn 2p in 
spectrum d indicates the large amount of  Zn2+ accumulated 
on the cathode upon the deepest discharging. Meanwhile, 
the F 1s signal corresponding to the  CF3SO3

− anion dis-
plays gradual attenuation upon discharge and thoroughly 
disappears at 0.67 V (point c). This phenomenon indicates 
the  CF3SO3

− anions desorption from BGC surface. In the 
reverse charging process (Fig. 3f), the F 1s signal starts to 
reappear after point f (1.23 V) instead of from the primary 
d, e points. Therefore, the adsorption of  CF3SO3

− anions is 
discovered to occur only at high voltage region. The attenu-
ation of Zn 2p peaks starts from the lowest voltage of 0.1 V 
and lasts the whole 1.7 V voltage range, indicating that the 
 Zn2+ desorption could occur at any potential. It is worth 
noting that trace  Zn2+ (< 0.1 at%) is detected at full-charge 
states (a & g), which may be attributed to the residue  Zn2+ 
trapped in carbon sub-surface. We also conducted the same 
ex situ characterization on the AC baseline. The resulted 
XPS survey spectra are shown in Fig. S17. The trends of 
increasing in  Zn2+ signal upon discharging (a to c to d) and 
decreasing in  Zn2+ signal upon charging (d to e to g) agree 
well with the observation in Fig. 3e, f, proving the reversible 
 Zn2+ ions adsorption on AC. The very weak F 1s signals in 
the fully charge states of a and g indicate the restricted anion 
adsorption in AC. Considering the large spatial dimensions 
of  CF3SO3

− anion [86] and the majority of microporosity 
with size below 1 nm in AC, it is expected that there is 
severe steric hindrance for  CF3SO3

− anion diffusion within 
microporosity which increases the voltage polarization of 
 CF3SO3

− adsorption and leads to very small amount of anion 
adsorption on AC at cutoff voltage of 1.8 V. We further ana-
lyzed the high-resolution C 1s spectra of BGC-750 to under-
stand the possible charge transfer process involved in the 
aforementioned adsorption/desorption (Fig. 3g). Notably, 
the spectra show a pronounced C–O–Zn bonding compo-
nent at 287.4 eV, which is resulted from the Faradic reaction 
between  Zn2+ and C–OH or C=O [48, 87, 88]. The evolution 
of the peak intensity ratio of C–O–Zn to C–OH and C–O–Zn 
to C=O was evaluated and is plotted in Fig. 3h. The data 
indicate the increased C–O–Zn bonds and decreased C–OH/
C=O groups upon discharge, and this well-defined trend is 
reversible in the charge process. This observation reveals a 

representative oxygen groups involved charge transfer pro-
cess that contributes capacity. More comprehensive analysis 
was conducted by the aid of first principle calculation as 
shown below.

Based on the preceding analyses, we claim that the BGC 
cathode undergoes a reversible dual-ion adsorption pro-
cess in zinc ion capacitors. Both the cation and anion act 
as charge carriers for energy storage, yet they function at 
different voltage regions (Fig. 3a, d). As discharging from 
1.8 to 1.23 V, the desorption of anion and the adsorption 
of cation take place simultaneously. As discharged below 
0.67 V, the anion desorption completes together with the 
continuing cation adsorption. The charge storage below 
0.67 V is simply responsible by the cations. In the charging 
process, the dual-ion adsorption follows the opposite path 
of the discharging. The majority of the cation desorption 
distributes in the low voltage. The anion adsorption occurs 
only as the cathode enters the high voltage region.

To determine the specific active sites for the dual-ion 
adsorption in the BGC cathodes, we calculated the rela-
tive adsorption energy (ΔEa) values of  Zn2+ cation and 
 CF3SO3

− anion at the atomic heterogeneous sites and 
defective sites as comparing to that of on flawless gra-
phene surface (Table S5). As revealed by XPS, Raman and 
BET results, BGCs are rich in heteroatoms and defects, 
the populations of which are significantly amplified by the 
immense surface areas. For the heteroatom sites, we choose 
nitrogen-5, -6 and oxygen-I, -II as the structure models. For 
the lattice defects, a representative defect of divacancy is 
employed for calculation [89, 90]. An individual  Zn2+ or 
 CF3SO3

− ion was placed close to each site, and the opti-
mized geometry structure is ascertained in light of the cal-
culated ΔEa. As shown in Fig. 4a, d, the ΔEa values of  Zn2+ 
and  CF3SO3

− at N-5 are − 4.81 and − 3.75 eV, respectively, 
which are much higher than those on flawless graphene 
surface (− 0.02 eV, − 1.29 eV, Fig. S18c, f). This indicates 
that N-5 is active toward both cation and anion adsorption. 
Similar ion affinity is also observed for N-6 site (Fig. S18a, 
d). It was reported that C–O–C-type groups are active in 
chemically adsorbing various alkali ions in organic sys-
tems [91–93]. Our calculation result indicates that these 
O-II sites are also capable for  Zn2+ cation adsorption in 
aqueous system (ΔEa = − 4.58 eV). Remarkably, the nega-
tive charged  CF3SO3

− ion also exhibits a high ΔEa at O-II 
sites (ΔEa = − 4.59 eV). Certain electron-rich part of the 
 CF3SO3

− molecular may be functional for this interaction. 
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Fig. 3  a, d Schematic diagram of the cation and anion transportation during discharge/charge. b, c The selected voltage points in the discharge/
charge curves of BGC-750 for ex situ characterization. e, f Ex situ XPS spectra at the selected states. g Ex situ C 1s XPS spectra at the selected 
states. h The intensity ratio of C–O–Zn/C–OH and C–O–Zn/C=O peaks according to g 
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Fig. 4  Theoretical simulations of  Zn2+/CF3SO3
−-adsorption on different graphitic structures. The configurations and corresponding adsorption 

energy values of single  Zn2+/CF3SO3
− adsorbed at a/d N-5, b/e O-II sites and c/f divacancy sites. Side and top views (inserts) of electron density 

differences of  Zn2+/CF3SO3
− absorbed in the g/j N-5, h/k O-II sites and i/l divacancy defect sites. Yellow and blue areas represent the increased 

and decreased electron density, respectively. Brown, purple, light yellow, green, gray, pink and blue balls represent C, N, O, S, F, Zn, and H 
atoms, respectively. The iso-surfaces are the 0.002 electron  bohr3
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In addition, the ΔEa remains considerably high as  Zn2+/
CF3SO3

− was placed around C=O-type groups (O-I) (Fig. 
S18b, e). Divacancy is a typical lattice defect in carbon, 
which is resulted from the missing of two neighboring car-
bon atoms [90, 94, 95]. The divacancy defects can signifi-
cantly generate electron redistribution, thus adsorbing the 
charged ions. For instance, the ΔEa of  Zn2+ and  CF3SO3

− at 
the divacancy sites are − 2.45 and − 3.53 eV, respectively, 
higher than the flawless graphene surface baseline (Fig. 4c, 
f). To confirm the formation of bonding between surficial 
sites and ions, we conducted the differential charge density 
analyses for the adsorption configurations. The increase 
of electron density in the intermediate domain between 
graphene sheet and ion is reflective of the charge transfer 
between the surficial sites and ions. As shown in Figs. 4g–l 
and S18g-l, there are net increases in charge density for 
both heteroatom (N-5/-6, O-I/-II) and divacancy sites, 
indicating occurrence of the chemical adsorption pro-
cesses involving in Faradic charge transfer [96–98]. The 
comprehensive calculations reveal the capacitive dual-ion 
adsorption at the heteroatom moieties and lattice defects 
in BGCs, providing insight of the significantly improved 
AZB energy and power by virtue of advanced charge stor-
age mechanism.

3.4  Electrochemical Performance of Flexible Pouch‑/
Cable‑type AZB Devices

One critical target of developing AZBs is to power the flour-
ishing flexible and wearable electronic devices [47]. To 
verify the applicability of the BGC-based zinc ion capaci-
tors as flexible power sources, we go steps further than the 
routine coin cell and fabricate quasi-solid-state pouch and 
cable-type cells. Figure 5a, b demonstrates the procedures 
of the pouch-type and cable-type cells fabrication. We first 
developed a gel polymer electrolyte (GPE) with PVA as the 
gel matrix and  ZnSO4 as a neutral salt. According to our 
previous experience, GPE-based zinc-air batteries could be 
easily deteriorated by the fast water loss due to the open 
cell structure [99–101]. The cells in this work are free of 
this issue, because the PVA/ZnSO4 gel electrolyte performs 
steadily in the closed cells. For the pouch cells (Fig. 5a), 

the BGC-750 anchored carbon cloth, and the freestanding 
GPE film and zinc foil were layer-by-layer assembled into a 
sandwich-type structure followed by the air evacuation and 
firm packaging. The cable-type cell has a coaxial structure 
with BGC-750-loaded carbon fiber as the core and GPE/
spiral zinc foil as the shells (Fig. 5b). Superior to the typi-
cal zinc wire-centered zinc-air cells, the cathode cores in 
our setups are well protected by the GPE/zinc metal shells; 
hence, the typical active material loss is totally eliminated. 
The as-prepared pouch- and cable-type cells exhibit excel-
lent flexibility upon various deformations without apparent 
sacrifice of electrochemical performance. For instance, the 
pouch-type cell can be easily bent 90°, rolled up to hollow 
circular column and folded 180°, at which states the cell 
maintains the pristine flat-shape electrochemistry in terms 
of voltage profiles, capacity and CE (Fig. 5c). Also for the 
cable-type cell (Fig. 5d), the deformation of U-shape curv-
ing, zigzag bending and even tightly knotting barely affect 
the performance of the cable-type cell, as revealed by the 
mostly overlapped GCD profiles. In addition, due to the 
practical mass loading and shape flexibility for fulfilling 
different application conditions, the pouch-type cell is the 
best configuration for evaluating the true practicability of a 
new battery system. Therefore, we also collected the specific 
capacities of the pouch-type cells at rate of 2–60 C. The cor-
responding energy/power densities were calculated and were 
compared with the coin cells side-by-side. The resulted data 
are plotted in Figs. 5e and S19. Remarkably, the two cell 
configurations display comparable performance. The slightly 
higher capacities of the pouch-cell are probably benefited 
from the commercial battery-level carbon cloth as the cur-
rent collector which is better at minimizing the active par-
ticle agglomeration than the flat stainless steel foils in coin 
cell. Figure 5f, g demonstrates two samples of utilizing the 
pouch- and cable-type cells for wearable electronic devices. 
The pouch-type cell can be twisted around human wrists to 
power other wearable electronics (lighting LED bulbs as an 
example). The cable-type cells can be easily connected in 
series or parallel to multiply the voltage or current, which 
can be knitted into clothes for powering smart watches and 
other equipment.
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Fig. 5  a, b Schematic diagrams of pouch-type and cable-type quasi-solid-state zinc ion capacitors. Cycling performance of pouch-type cell c 
and cable-type cell d upon deformation. The inserts exhibit the optical images of the deformed cells and corresponding galvanostatic charge–dis-
charge profiles. e Specific capacities at various current densities for coin cells and pouch-type cells. f Photograph of LED array powered by two 
pouch-type cells in series. g Photograph of a digital watch powered by four cable-type cells in series

4  Conclusion

To summarize, we employed a unique dual-ion adsorption 
mechanism in the carbon cathode for aqueous zinc-based bat-
teries. Experiments and DFT calculations reveal that both the 
cation and anion function as charge carriers and are revers-
ibly adsorbed at the heteroatom moieties and lattice defects 
on the carbon surface. The optimized BGC cathode possesses 

immense surface area, hierarchical porosity and defect-rich 
graphite tissue and hence maximizes the population of the 
electrochemically active sites for the reversible dual-ion 
adsorption. Quantitative analysis indicates that the dual-ion 
adsorption process is primarily contributed by capacitive 
charge storage and thus is kinetically facile. This enables the 
aqueous zinc-based battery to deliver unrivaled combination 
of high energy and power characteristics, reaching 168 Wh 
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 kg−1 and 61,700 W kg−1, respectively. The BGC-based zinc 
ion capacitors are also extended to quasi-solid-state pouch- 
and cable-type configurations. The flexible cells exhibit high 
reliability under various deformation conditions, serving as 
promising power sources for the wearable devices.
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