Supporting Information for

Interior and Exterior Decoration of Transition Metal Oxide through

Cu⁰/Cu⁺ Co-Doping Strategy for High-Performance Supercapacitor

Weifeng Liu¹, Zhi Zhang^{1, *}, Yanan Zhang¹, Yifan Zheng¹, Nishuang Liu¹, Jun Su¹, Yihua Gao^{1, 2, *}

¹Center for Nanoscale Characterization & Devices (CNCD), School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P.R. China

²College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China

*Corresponding author E-mail: <u>zzhang@hust.edu.cn</u> (Z. Zhang); <u>gaoyihua@hust.edu.cn</u> (Y. H. Gao)

Supplementary Tables and Figures

Calculation of specific capacitance, energy density, and power density

The specific capacitance, energy density, and power density are determined by the following calculation formulas:

$$C_s = \frac{I \times \Delta t}{m \times \Delta V} \tag{1}$$

$$E = \frac{1}{2 \times 3.6} C_s \Delta V^2 \tag{2}$$

$$P = \frac{3600 \times E}{\Delta t} \tag{3}$$

Where C_s (*F* g⁻¹) is the specific capacitance, *I* (*A*) is the discharge current, Δt (*s*) is the discharge time, *m* (*g*) is the full mass of the active election, ΔV (*V*) is the operating voltage range during a full discharge, *E* (*Wh* kg⁻¹) and *P* (*W* kg⁻¹) is the energy density and power density, respectively.

Determination of diffusion-controlled and surface capacitance contribution

In theory, diffusion-controlled and surface capacitance contribution can be identified by analyzing the CV curves according to the equation (4) and (5):

$$i = av^b \tag{4}$$

$$\log i = b \log v + \log a \tag{5}$$

where i and v is the current response and scan rate; a and b are the adjustable constants. The b value, estimated from the slope of the linear fit from $\log i$ versus

 $\log v$, is related to different charge storage mechanism. When b approaches 0.5, the

current is controlled by diffusion-controlled behavior; while b is close to 1, the current is dominated by the capacitive-type charge storage behavior.

In addition, the different charge storage contributions can also be quantitatively estimated using the following equation:

$$i(V) = k_1 v + k_2 v^{0.5} \tag{6}$$

$$\frac{i(V)}{v^{0.5}} = k_1 v^{0.5} + k_2 \tag{7}$$

where *i* is the response current at a specific potential, v is the scan rate. k_1v and

 $k_2 v^{0.5}$ are capacitive and diffusion-controlled currents, respectively.

Calculations of formation energy

The formation energies (FEs) were calculated as FEs= Etotal - μ Cu -ECoO+ μ Co , where Etotal is the total energies of Cu doping structure, and μ Cu , μ Co is the Cu, Co chemical potential. ECoO is the energy of CoO structure, respectively. For the heterojunction structure, the formation energies can be obtained by: FEs=EA/B-EA-EB, where EA/B is the energy of heterojunction structure, EA is the energy of Cu doping CoO slab and EB is the energy of Cu metal slab.

Materials	Molecular weight (g mol ⁻¹)	Chemical reaction equation	Potential window (V)	Theoretical capacity (F g ⁻¹)
СоО	74.9	$CoO + 2OH^{-} \leftrightarrow CoO_{2} + H_{2}O + 2e^{-}$	0.6	4292
C03O4	240.8	$Co_3O_4 + 4OH^- \leftrightarrow 3CoO_2 + 2H_2O + 4e^-$	0.45	3561
NiO	74.7	$NiO + 3OH^- \leftrightarrow NiOOH^+ H_2O + e^-$	0.5	2583
MnO ₂	86.9	$MnO_2 + Na^+ + e^- \leftrightarrow NaMnO_2$	0.8	1387
Fe ₂ O ₃	159.7	$Fe_2O_3 + 3H_2O + 6e^- \leftrightarrow 2Fe + 6OH^-$	1.0	3625

Table S1 Comparison the theoretical capacity of typical TMOs

The theoretical capacity calculated based on the following formula:

$$C_s = \frac{n \times F}{m \times v}$$

Where *n* is the electron number, *F* is the Faraday constant (96,485 $C mol^{-1}$), *m* is the molecular weight and *v* is the redox potential window.

Fig. S1 XRD patterns of the CCC-1-350, CCC-1-450 and CCC-1-600

Fig. S2 TG curve of the CCC-0.2-450 under the N_2 atmosphere

Fig. S3 Local magnification on the XRD patterns of the CCC-0-450, CCC-0.2-450 CCC-0.4-450 and CCC-1.0-450

Fig. S4 The wide XPS spectrum of CCC-0.2-450

Fig. S5 SEM images of a CCC-0-450, b CCC-0.2-450, c CCC-0.4-450 and d CCC-1.0-4

Fig. S6 SEM images of a CCC-0.2-350, b CCC-0.2-450 and c CCC-0.2-600

Fig. S7 a The magnified high frequency region of the Nyquist plot, **b** Equivalent circuit for the fitting of CCC-0.2-450 EIS spectra. R_1 represent bulk solution resistance ($R_{s,}$), R_2 represent charge transfer resistance (R_{ct}), CPE₁ and CPE₂ represent pseudocapacitance and constant phase element, respectively

Materials	$R_{s}\left(\Omega ight)$	$R_{ct}(\Omega)$	
CCC-0.2-450	2.534	2.662	
CCC-0.2-350	3.976	3.717	
CCC-0-450	8.176	6.965	

Table S2 Resistance of the samples by the fitting of the EIS spectra

Fig. S8 GCD curves: **a** CCC-0-450 (Pristine CoO), **b** CCC-0.2-350 (Cu⁺ doped CoO), **c** CCC-0.2-450 (Cu⁰/Cu⁺ co-doped CoO), **d** CCC-0.2-600 (Cu⁰/Cu⁺ co-doped CoO)

Fig. S9 a CV curves at 10 mV s⁻¹, **b** GCD curves at 1 A g⁻¹, and **c** the specific capacitance at different Cu doping content of CCC-0.1-450, CCC-0.2-450, CCC-0.4-450 and CCC-1.0-450

Fig. S10 CV curves **a** and GCD curves **b** of CCC-0.1-450; CV curves **c** and GCD curves **d** of CCC-0.4-450; CV curves **e** and GCD curves **f** of CCC-1.0-450

Fig. S11 Cu₂O at the annealing temperature of 350 °C: **a** CV curves, **b** GCD curves and **c** the specific capacitance

Fig. S12 SEM images of CCC-0.2-450 electrode after 10000 cycles

 Table S3 Comparison of electrochemical performance of CCC-0.2-450 electrode with previously reported electrodes

Electrode material	Specific capacity (F g^{-1})	Capacitance maintains	Year	Ref.
Cu ⁰ /Cu ⁺ co-doped CoO (CCC-0.2-450)	$695~(1~{\rm A~g^{-1}})$	93.4% (10000 cycles)		Our work
porous CoO nanowall	$352 (1 \text{ A g}^{-1})$	92.9% (5000 cycles)	2019	[S1]
manganese doped Co ₃ O ₄	668.4 (1 A g ⁻¹)	104% (10000 cycles)	2019	[S2]
CoO nanocones	319.5 (1 mA cm ⁻²)	92.6% (5000 cycles)	2018	[\$3]
Co ₃ O ₄ nanosheets@ nitrogen-doped carbon	581 (1 A g ⁻¹)	95.2% (5000 cycles)	2018	[S4]
CoO/C Composite	$648 (0.5 \text{ A g}^{-1})$	100% (8000 cycles)	2017	[\$5]
nano-Co ₃ O ₄ decorated with gold	$681 (0.5 \text{ A g}^{-1})$	83.1% (13000 cycles)	2017	[S6]
Co ₃ O ₄ /NGF composite	$451 (1 \text{ A g}^{-1})$	95% (1000 cycles)	2015	[S7]
ball milled CoO	$600 (0.5 \text{ A g}^{-1})$	95.3% (2000 cycles)	2014	[S 8]
graphene/Co ₃ O ₄ nanocrystals	$570 (1 \text{ A g}^{-1})$	83.4% (5000 cycles)	2020	[\$9]

Co ₃ O ₄ grow on porous carbons	659.7 (10 mV s ⁻¹)	87.5% (2000 cycles)	2020	[S10]
hydroxyl-rich Co ₃ O ₄	$\sim 502 (1 \text{ A g}^{-1})$	99.7% (5000 cycles)	2020	[S11]
oxygen-vacancy Co ₃ O ₄ /Graphene	978.1 (1 A g^{-1})	99.3% (20000 cycles)	2018	[S12]
Co ₃ O ₄ @biomass-deriv ed carbon fiber@Co ₃ O ₄	892 (1 A g ⁻¹)	88% (6000 cycles)	2018	[S 13]

Fig. S13 Contribution ratio of capacitive and diffusion controlled: **a** 5 mV s⁻¹, **b** 10 mV s⁻¹, **c** 20 mV s⁻¹, **d** 50 mV s⁻¹, **e** 100 mV s⁻¹

Fig. S14 a XRD patterns of the as-prepared CCN-0-450 (pristine NiO), CCN-0.2-400 (Cu⁺ doped NiO), CCN-0.2-450 (Cu⁰/Cu⁺ co-doped NiO) and CCN-0.2-600 (Cu⁰/Cu⁺ co-doped NiO); **b** High-resolution TEM image of CCN-0.2-450

Fig. S15 CV curves **a** and GCD curves **b** of CCN-0-450; CV curves **c** and GCD curves **d** of CCN-0.2-400; CV curves **e** and GCD curves **f** of CCN-0.2-450

Fig. S16 Comparative CV curves of the positive and negative electrode

S11/S13

Fig. S17 Nitrogen adsorption-desorption isotherms: **a** CCC-0.2-450, **c** CCC-0-450 and **d** CCC-1.0-450; **b** pore-size distributions of CCC-0.2-450

References

- [S1] N. Tang, W. Wang, H. You, Z. Zhai, J. Hilario et al., Morphology tuning of porous CoO nanowall towards enhanced electrochemical performance as supercapacitors electrodes. Catal. Today 330, 240-245 (2019). <u>https://doi.org/10.1016/j.cattod.2018.03.024</u>
- [S2] G. Li, M. Chen, Y. Ouyang, D. Yao, L. Lu et al., Manganese doped Co₃O₄ mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 469, 941-950 (2019). <u>https://doi.org/10.1016/j.apsusc.2018.11.099</u>
- [S3] T. Chen, S. Li, J. Wen, P. Gui, Y. Guo et al., Rational construction of hollow core-branch CoSe₂ nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small 14(5), 1700979 (2018). https://doi.org/10.1002/smll.201700979
- [S4] T. Liu, L. Zhang, W. You, J. Yu, Core-shell nitrogen-doped carbon hollow spheres/Co₃O₄ nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12), 1702407 (2018). https://doi.org/10.1002/smll.201702407

- [S5] N. Zhang, X. Yan, J. Li, J. Ma, D. H. L. Ng, Biosorption-directed integration of hierarchical CoO/C composite with nickel foam for high-performance supercapacitor. Electrochim. Acta 226, 132-139 (2017). https://doi.org/10.1016/j.electacta.2016.12.192
- [S6] Y. Tan, Y. Liu, L. Kong, L. Kang, F. Ran, Supercapacitor electrode of nano-Co₃O₄ decorated with gold nanoparticles via in-situ reduction method. J. Power Sources 363, 1-8 (2017). <u>https://doi.org/10.1016/j.jpowsour.2017.07.054</u>
- [S7] Y. Zou, I. A. Kinloch, R. A. W. Dryfe, Mesoporous vertical Co₃O₄ nanosheet arrays on nitrogen-doped graphene foam with enhanced charge-storage performance. ACS Appl. Mater. Inter. 7(41), 22831-22838 (2015). <u>https://doi.org/10.1021/acsami.5b05095</u>
- [S8] C. Zheng, C. Cao, Z. Ali, J. Hou, Enhanced electrochemical performance of ball milled CoO for supercapacitor applications. J. Mater. Chem. A 2(39), 16467-16473 (2014). <u>https://doi.org/10.1039/C4TA02885F</u>
- [S9] Y. Jiang, C. He, S. Qiu, J. Zhang, X. Wang et al., Scalable mechanochemical coupling of homogeneous Co₃O₄ nanocrystals onto in-situ exfoliated graphene sheets for asymmetric supercapacitors. Chem. Eng. J. **397**, 125503 (2020). <u>https://doi.org/10.1016/j.cej.2020.125503</u>
- [S10] Y. Ji, Y. Deng, F. Chen, Z. Wang, Y. Lin et al., Ultrathin Co₃O₄ nanosheets anchored on multi-heteroatom doped porous carbon derived from biowaste for high performance solid-state supercapacitors. Carbon 156, 359-369 (2020). https://doi.org/10.1016/j.carbon.2019.09.064
- [S11] Y. Tao, Y. Wu, H. Chen, W. Chen, J. Wang et al., Synthesis of amorphous hydroxyl-rich Co₃O₄ for flexible high-rate supercapacitor. Chem. Eng. J. **396**, 125364 (2020). <u>https://doi.org/10.1016/j.cej.2020.125364</u>
- [S12] S. Yang, Y. Liu, Y. Hao, X. Yang, W. A. Goddard Iii et al., Oxygen-vacancy abundant ultrafine Co₃O₄/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5(4), 1700659 (2018). https://doi.org/10.1002/advs.201700659
- [S13] Z. Shi, L. Xing, Y. Liu, Y. Gao, J. Liu, A porous biomass-based sandwich-structured Co₃O₄@carbon fiber@Co₃O₄ composite for high-performance supercapacitors. Carbon **129**, 819-825 (2018). <u>https://doi.org/10.1016/j.carbon.2017.12.105</u>