Supporting Information for

Simultaneously Regulating Uniform Zn²⁺ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes

Ziqi Wang^{1,#}, Liubing Dong^{1,#} Weiyuan Huang², Hao Jia³, Qinghe Zhao², Yidi Wang³, Bin Fei^{3, *}, Feng Pan^{2, *}

¹Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China

²School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China

³Nano Center, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong 999077, P. R. China

[#]Ziqi Wang and Liubing Dong contributed equally to this work

*Corresponding authors. E-mail: panfeng@pkusz.edu.cn (Feng Pan), bin.fei@polyu.edu.hk (Bin Fei)

Supplementary Figures

Fig. S1 Photograph of the as prepared Janus separators

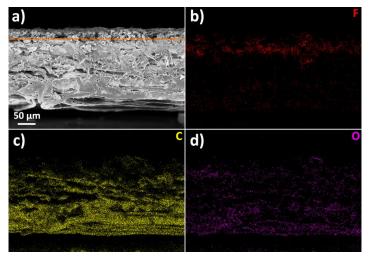
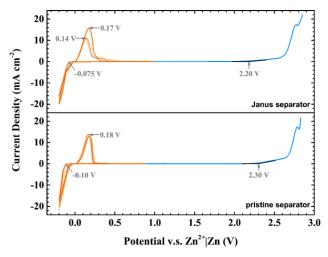
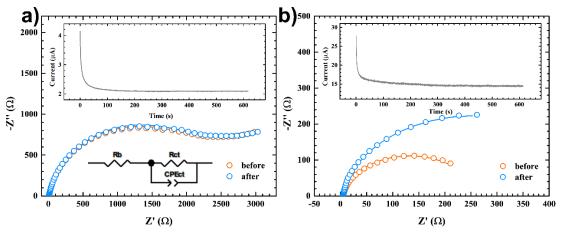




Fig. S2 a SEM image and b-d corresponding EDS elemental mappings for the crosssection view of the Janus separator

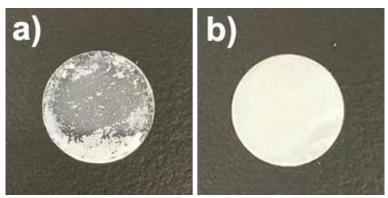


Fig. S3 LSV (blue line) and CV (deep to light orange lines represent the 1^{st} to 3^{rd} cycles) profiles for the electrochemical window test with pristine and Janus separator in 2 M ZnSO₄ aqueous electrolyte. The scan rate is 0.2 mV s⁻¹

Fig. S4 Zn^{2+} transference number tests for **a** pristine and **b** Janus separator in 2 M ZnSO₄ electrolyte

The Zn²⁺ transference number was calculated based on the equation $t_{Zn^{2+}} = \frac{I_s(\Delta V - I_0R_o)}{I_0(\Delta V - I_sR_s)}$, where I_0/I_s and R_0/R_s are the initial/ steady current and interfacial resistance, respectively. ΔV is set as 10 mV. The I_0/I_s , and R_0/R_s for pristine and Janus separator are 4.15/2.09 μ A, 1477/1570 Ω and 27.7/14.4 μ A, 256.2/505 Ω , respectively.

Fig. S5 Photographs of the Zn anode after cycling: **a** upon disassembly and **b** after ultrasonic cleaning

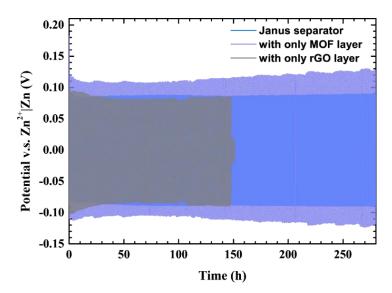


Fig. S6 Cycling performance of the Zn|Zn symmetric cells using the separator with only MOF or rGO layer at 2.0 mA cm⁻², 1 mAh cm⁻²

Fig. S7 Photograph of the pristine separator of Zn|Cu cell after short-circuit

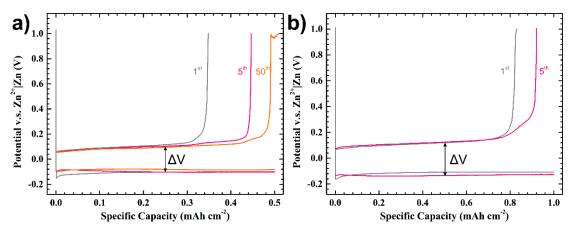
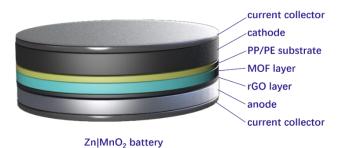



Fig. S8 Voltage profiles of the Zn|Cu cell with pristine separator for the selected cycles at a 0.5 and b 2.0 mA cm⁻²

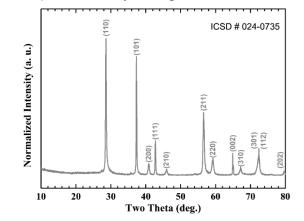


Fig. S10 XRD pattern of the synthesized β -MnO₂@rGO

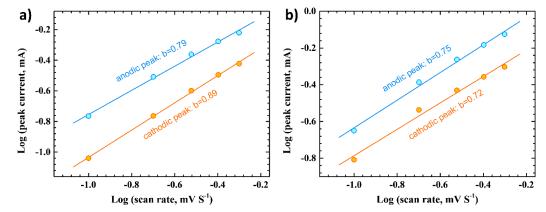


Fig. S11 Calculation of b values for the cells with a Janus and b pristine separators

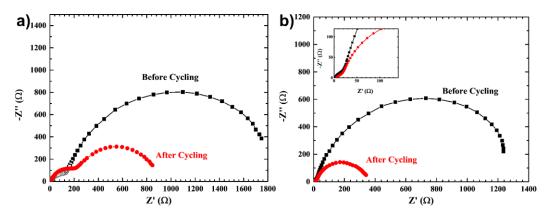


Fig. S12 EIS profiles of the batteries with a pristine and b Janus separators before cycling and after 50 cycles at 4 A g^{-1} charge/discharge rate

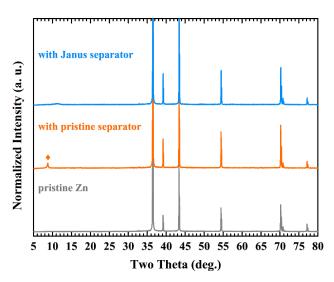


Fig. S13 XRD for the Zn anodes of the disassembled cells. The refection peak of zinc hydroxide sulphate $(Zn_4SO_4(OH)_6 \cdot 4H_2O, PDF No. 44-0673)$ is marked with a diamond

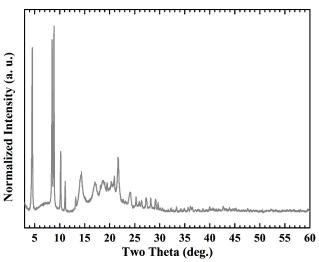


Fig. S14 XRD of the Janus separator after battery cycling