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Three‑Dimensional Ordered Mesoporous Carbon 
Spheres Modified with Ultrafine Zinc Oxide 
Nanoparticles for Enhanced Microwave Absorption 
Properties
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HIGHLIGHTS

• Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles are successfully prepared.

• The microwave absorbing performance of zinc oxide/carbon nanocomposites can be controlled through regulating ratio of zinc oxide 
nanoparticles.

• Electromagnetic simulation of radar cross section on a complicated groove structure demonstrates the microwave absorbing ability 
of the carbon based nanocomposites.

ABSTRACT Currently, electromagnetic radiation and inter-
ference have a significant effect on the operation of electronic 
devices and human health systems. Thus, developing excellent 
microwave absorbers have a huge significance in the material 
research field. Herein, a kind of ultrafine zinc oxide (ZnO) nano-
particles (NPs) supported on three-dimensional (3D) ordered 
mesoporous carbon spheres (ZnO/OMCS) is prepared from 
silica inverse opal by using phenolic resol precursor as carbon 
source. The prepared lightweight ZnO/OMCS nanocomposites 
exhibit 3D ordered carbon sphere array and highly dispersed 
ultrafine ZnO NPs on the mesoporous cell walls of carbon 
spheres. ZnO/OMCS-30 shows microwave absorbing ability 
with a strong absorption (− 39.3 dB at 10.4 GHz with a small 
thickness of 2 mm) and a broad effective absorption bandwidth 
(9.1 GHz). The outstanding microwave absorbing ability benefits 
to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure. This work opened up a unique way for 
developing lightweight and high-efficient carbon-based microwave absorbing materials.
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1 Introduction

Since electromagnetic pollution became serious problem 
with the explosive development of electronics and wireless 
communication, the microwave absorption materials have 
gained great attention because of their ability to absorb and 
shield electromagnetic radiation [1–4]. At present, micro-
wave absorbing materials feathered with strong absorption, 
small thickness, wide efficient absorption bandwidth and 
light weight have been considered as the idea candidate for 
attenuating electromagnetic energies [5–9].

Carbon materials are representative dielectric loss 
medium [10–14]. Nanostructured carbon materials, such 
as carbon black, carbon fibers, carbon nanotubes (CNTs), 
graphene and porous carbon, have attracted great inter-
ests as microwave absorbing materials for their low den-
sity and special physical and chemical properties [15–19]. 
Among them, the porous carbon involved in large pore 
volume, high-specific surface area and light weight gained 
much attention. Recent explorations have demonstrated 
that abundant porous configuration could benefit to the 
microwave absorbing performance [20–23]. The porous 
carbon materials, being a mixture of solid and air, could 
reduce the effective permittivity of carbon, while improve 
the impedance matching of materials, leading more elec-
tromagnetic waves into the structure [24–26]. Meanwhile, 
the pore structure, especially with three-dimensional porous 
structure, could extend the microwave transmission path of 
incident electromagnetic waves, resulting in multi-reflection 
and scattering in the porous materials [27]. The repeatedly 
multi-reflection and scattering offers more chance for the 
media to attenuate electromagnetic energies [28, 29]. Many 
porous carbon coupled with magnetic fillers such as mag-
netic ferrite, magnetic alloy, and metal–organic frameworks 
(MOFs) have been investigated [30–32]. For instance, Liu 
et al. developed a kind of MOF-derived carbon based nano-
composites. The magnetic nanocomposites reveal minimum 
RL  (RLmin) value of − 46.5 dB at 3.5 mm [33]. Yan et al. 
fabricated three-dimensional N-doped porous carbon foams 
embedded with CoNi alloy particles (CoNi@PRM-NC) as 
microwave absorbing materials. The 3D CoNi@PRM-NC 
achieves a  RLmin value of − 56 dB at 17.8 GHz while its 
thickness is only 1.7 mm [34]. Although amazing micro-
wave absorbing performance has been demonstrated, the 

large density of magnetic fillers has severely limited their 
practical applications.

Zinc oxide (ZnO), as a significantly lightweight, favora-
ble dielectric and semi-conductive medium, has been exten-
sively explored as microwave absorbing materials [35–38]. 
Meanwhile, to large-scale synthesize ZnO is easily realized 
and the low cost of preparing process is suitable for commer-
cial application [39–41]. Up to now, some studies focusing 
on the microwave absorbing performance of porous carbon 
modified with ZnO have been reported [42]. For exam-
ple, Wang et al. constructed a kind of hierarchical Ni/ZnO 
array hybrid nanostructures. The nanocomposites obtained a 
 RLmin value of − 27.8 dB at 9.57 GHz with a wide effective 
absorption bandwidth of 4.2 GHz over 8–12 GHz [35]. Song 
et al. prepared three-dimensional reduced graphene oxide 
foams modified with ZnO nanowires. The  RLmin value of the 
hybrids can be − 35.1 dB at 8.3 GHz [43]. These favorable 
microwave absorbing properties of ZnO nanocomposites can 
be mainly attributed to the increase of the effective polari-
zation interfaces [44]. Interfacial polarization is significantly 
important to microwave attenuation. Interfacial polarization 
can be improved by enhancing the interface between differ-
ent dielectric in microwave absorbing materials. The uniform 
distribution of ZnO are good for building up the interface of 
heterostructure. Meanwhile, the microwave impedance match-
ing of porous carbon would be further improved by doping 
ZnO, which could reduce the reflection microwaves. However, 
uneven dispensability of ZnO in porous carbon has been a 
vexed problem, which may hinder the further improvement of 
microwave absorbing ability.

Herein, three-dimensional ordered mesoporous carbon 
spheres modified with ultrafine ZnO NPs (ZnO/OMCS) was 
rationally developed as high-performance microwave absorb-
ing materials. The ultrafine ZnO NPs are uniformly distrib-
uted on the surface of three-dimensional ordered mesoporous 
carbon spheres, which is beneficial to the interfacial polari-
zation and impendence match. Meanwhile, the 3D ordered 
mesoporous carbon spheres could promote the scattering 
and multiple reflection of incident microwaves. Thus, the 
ZnO/OMCS nanocomposites exhibits excellent microwave 
absorption ability and broad effective absorption bandwidth. 
The microwave attenuation mechanism for ZnO/OMCS 
nanocomposites was also investigated based on polarization 
loss, complex permittivity, and conductive loss. Furthermore, 
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simulated radar cross section (RCS) results further demon-
strated the ZnO/OMCS nanocomposites outstanding micro-
wave absorbing ability on complex groove structure. This work 
indicates ZnO/OMCS nanocomposites as a promising micro-
wave absorbing candidate material via low-cost and simple 
industrial processing.

2  Experimental

2.1  Materials

Methyl methacrylate (MMA, > 99.5%) was obtained from 
Aladdin. Tetraethoxysilane (TEOS, > 98%) was purchased 
from Tianjin Kemiou Chemical Reagent Co., Ltd, which 
need to further purify by vacuum distillation method.  CH3OH 
(≥ 99.8%),  CH3CH2OH (≥ 99.8%), Zn(CH3COO)2·2H2O 
(≥ 99%), KOH (≥ 85%), HCl (37%), and HF (≥ 40%) were 
acquired from Tianjin Kemiou Chemical Reagent Co., Ltd 
Triblock copolymer F127  (EO106PO70EO106) was obtained 
from Sigma-Aldrich Chemical Company. Resol (Mw < 500) 
was prepared by published strategy [45].

2.2  Synthesis of ZnO/OMCS

Scheme 1 shows the synthesis process of ZnO/OMCS and 
the details are as follows. The poly (methyl methacrylate) 
(PMMA) colloidal crystal used as hard template to fabri-
cate silica inverse opal is firstly fabricated according to the 
reported method [46]. Silica precursor was prepared by mix-
ing TEOS, 0.1 M HCl and ethanol with a mass ratio of 1: 1: 
1.5 under magnetic stirring for 1 h. A piece of PMMA tem-
plate was soaked in above silica precursor solution and stand 
still for 1 h. The impregnated PMMA template was then 
removed from the solution and dried at room temperature, 
followed by heated at 450 °C in an oven for 5 h to remove 
PMMA template. The obtained silica inverse opal was then 
applied as second step template. A few pieces of silica tem-
plate were impregnated in 20 mL of ethanol solution contain-
ing 1 g of resol and 1 g of F127. After the ethanol solution 
was evaporated completely at room temperature, the precur-
sor/silica composite was heated at 100 °C for 24 h. Under 
nitrogen atmosphere, the composite is heated at 350 °C for 
5 h to remove F127 at a heating rate of 1 °C min−1. Subse-
quently, the temperature was raised to 900 °C at a heating 

rate of 5 °C min−1 and kept for 2 h for carbonization of resol. 
Next, the prepared carbon/silica composite was immersed in 
HF solution (5%) for 3 days to etch the silica template. The 
produced 3D ordered mesoporous carbon spheres (OMCS) 
was then used as support to host ZnO NPs by sol–gel 
method as follows. First, 0.5 g of OMCS was ultrasonically 
dispersed in 25 mL methanol solution containing 0.9 g of 
Zn(CH3COO)2•2H2O for 1 h. Then, 20 mL of 0.45 M KOH 
methanol solution was slowly added in above methanol solu-
tion under magnetic stirring. After 1 h of reaction, the black 
powder (Zn(OH)2/OMCS) was collected by filtration. Finally, 
ZnO/OMCS was produced by heating the black powder at 
70 °C overnight. The theoretical ZnO content in ZnO/OMCS 
composite is ~ 40 wt.%. For comparison, the composites with 
lower ZnO loadings (denoted as ZnO/OMCS-20 and ZnO/
OMCS-30, the theoretical ZnO content is 20 wt.% and 30 
wt.%) were prepared by the same steps but the addition of 
Zn source is 0.34 g and 0.58 g, respectively.

2.3  Material characterization

The morphology and structure of samples were charac-
terized by scanning electron microscopy (SEM, JEOL 
JSM-7100F) and transmission electron microscope (TEM, 
JEOL JEM-2010, 200  kV). Powder X-ray diffraction 
(XRD) data of ZnO/OMCS was obtained from Rigaku D/
MAX 2200 VPC equipment with Cu Kα radiation. The 
Brunauer–Emmett–Teller (BET) data was acquired on 
Micro-meritics ASAP-2020 instrument. The actual content 
of ZnO in composite was obtained by SDT Q-600 equip-
ment. The X-ray photoelectron spectra (XPS) were carried 
out on PHI 5000 Versa Probe system.

2.4  Measurements

The vector network analyzer (Keysight Technologies, 
N5244B) was employed to measure the basic electromag-
netic parameters of all samples. ZnO/OMCS nanocompos-
ites were mixed with pure paraffin at the ratio of 3:7. The 
mixture was pressed into a circular ring shape of out diam-
eter of 7.0 mm, inner diameter and height of 3.0 mm. The 
RL values were carefully calculated according to the meas-
ured electromagnetic parameters. RCS values of the multi 
groove structure were simulated according to the measured 
electromagnetic parameters.
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2.5  Calculation details

The adsorption behavior and electronic structures of graph-
ite/ZnO are performed using software of CASTEP, which is 
constructed based on density functional theory (DFT) [47]. 
In the calculation process, method of ultrasoft pseudopo-
tentials was used. Exchange–correlation functional of gen-
eralized gradient approximation (GGA) in Perdew-Burke-
Ernzerhof (PBE) was employed. The valence configuration 
of the calculated atoms was:  2s22p2 for C,  2s22p4 for O, 
and  3d104s2 for Zn. Cutoff energy for the plane-wave basis 
was 350 eV. The k-point meshing was set to be 6 × 6 × 1 
to sample the Brillouin zone. The valence configuration of 
the calculated atoms were:  2s22p2 for C,  2s22p4 for O, and 
 3d104s2 for Zn. Firstly, graphite (0001) surface slab with 
three atomic layers was built, and a 16 Å-thick vacuum layer 
was added. To avoid the interaction between neighbor ZnO 
molecules, a 2 × 2 × 1 supercell of graphite was constructed. 
Then a molecule of ZnO was placed right above the graphite. 
The model experienced geometry optimization. During the 
relaxation process, the positions of C atoms were fixed and 
molecule of ZnO could relax freely. The convergence toler-
ances of energy, maximum displacement, maximum force, 

and maximum stress are 1.0 × 10–6 eV  atom−1, 1.0 × 10–3 Å, 
0.03 eV Å−1, and 0.05 GPa, respectively.

3  Results and discussion

3.1  Preparation and characterization of ZnO/OMCS 
nanocomposites

Figure 1a depicts the typical SEM image of PMMA col-
loidal crystal composed of 3D ordered PMMA spheres 
(460 nm in diameter). Figure 1b is an SEM image of silica 
inverse opal fabricated from PMMA template, showing 3D 
ordered interconnected macropores with average pore size 
of 410 nm. The silica inverse opal is applied as second tem-
plate to prepare OMCS, which is shown in Fig. 1c. As can be 
observed, OMCS demonstrates 3D ordered spherical array 
structure and the average diameter of the carbon spheres is 
ca. 380 nm. Because of the condensation of silica and carbon 
precursor during heating process, the mean size of carbon 
spheres is smaller than that of the original PMMA spheres 
after two-step reverse replication procedure. Figure 1d–f 
displays the SEM images of ZnO/OMCS-20, ZnO/OMCS-
30, and ZnO/OMCS-40 prepared by loading ZnO NPs on 

PMMA Opal

ZnO/OMCS OMCS SiO2/Carbon Precursor

ZnO

Soaking Heat treatment

450 °C in air

900 °C in N2

So
ak

in
g

Reaction Heat treatment

PMMA/SiO2 Precursor SiO2 inverse Opal

Scheme 1  Schematic illustration on the synthesis of ZnO/OMCS
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OMCS. It can be found that the closed packed structure of 
carbon spheres is well preserved, indicating that the loading 
process of ZnO would not destroy the 3D ordered structure 
of OMCS.

TEM was employed to characterize the porous struc-
ture of the prepared samples. The low magnification 
TEM image of OMCS (Fig. 2a) illustrate that ordered 
mesoporous structure exist in each carbon spheres. The 

average mesopore size is ~ 12 nm calculated from the 
high magnification TEM image (Fig. 2b). These relatively 
large mesopores can facilitate the growth of ZnO NPs on 
mesoporous walls of OMCS. Figure 2c shows the TEM 
image of ZnO/OMCS-40 and there are no bulk ZnO can 
be seen, implying that ZnO NPs are uniformly distributed 
on carbon spheres. The higher-magnification view of ZnO/
OMCS-40 (Fig. 2d) reveals that the mesoporous structure 

Fig. 1  SEM images of a PMMA opal, b silica inverse opal, c OMCS, d ZnO/OMCS-20, e ZnO/OMCS-30 and f ZnO/OMCS-40

Fig. 2  a, b TEM images of OMCS with different magnifications. c, d TEM images of ZnO/OMCS-40 with different magnifications. e HR-TEM 
image of ZnO/OMCS-40. f The corresponding SAED pattern of ZnO/OMCS-40
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still maintained after deposition of ZnO NPs. There pre-
served mesoporous structure is in favor of the microwave 
absorbing ability. As can be seen from HR-TEM image 
of ZnO/OMCS-40 (Fig. 2e), the ZnO NPs are uniform in 
the mean diameter of ~ 5 nm, and exhibit a polycrystal-
line wurtzite structure with lattice fringe of 0.26 nm that 
assigned to ZnO (002) plane [37]. The selected area elec-
tron diffraction (SAED) pattern with bright and continuous 
diffraction rings in Fig. 2f also confirms the polycrystal-
line behavior of ZnO. Figure S1 depicts the TEM images 
of ZnO/OMCS-20 and ZnO/OMCS-30 composites and 
their corresponding SAED patterns. As can be observed 
from Fig. S1a, c, after loading of ZnO, some mesopores 
in carbon spheres are still observed. From SAED patterns 
(Figs. S1b, d and 1f), the diffraction rings composed of 
dots are getting brighter with the increase of ZnO content, 
suggesting more polycrystalline ZnO on carbon spheres.

The porous structure of OMCS can further be estimated 
by nitrogen adsorption–desorption isotherms. As shown 

in Fig. 3a, type-IV isotherm and a hysteresis loop of type 
H1 can be observed, indicating that OMCS possesses 
mesoporous structure [48]. The BET surface area and 
pore volume of OMCS are 537.3  m2 g−1 and 0.72  cm3 g−1. 
According to the pore size distribution (PSD) curve derived 
from nitrogen gas adsorption, the mesopore sizes of OMCS 
are mainly distributed in the diameter range of 8–15 nm, cen-
tered at 12.4 nm. This result is consistent with TEM obser-
vation (Fig. 2b). These mesopores can restrict the growth 
and agglomeration of ZnO NPs. After loading ZnO nano-
particles on OMCS, the mesoporous structure still exists, 
which can be proved by the H1 type hysteresis loops in the 
isotherms of the ZnO/OMCS composites (Fig. S2). ZnO/
OMCS-20 shows a peak located at 5.6 nm in the PSD curve 
(inset of Fig. S2), smaller than that of the OMCS, implying 
that the ZnO NPs are deposited on the mesopore walls of 
the OMCS. These is no peak in the range of 5–15 nm in 
the PSD curves for the ZnO/OMCS-30 and ZnO/OMCS-40 
composites, which is due to the large amount of ZnO NPs 
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that located in the mesopores, destroying the uniformity of 
mesopores. In addition, the specific surface area and pore 
volume of the composite decrease with the increase in ZnO 
content (Table S1), also confirming that more and more ZnO 
NPs are deposited in the mesopores of OMCS.

The actual loading of ZnO on the OMCS can be evaluated 
by TGA method and the TGA curves of nanocomposites 
are shown in Fig. 3b. Each TGA curve shows one weight 
loss appeared between 450 and 600 °C, corresponding to the 
oxidation of carbon. The actual contents of ZnO in the nano-
composites are calculated to be ~ 19%, ~ 28%, and ~ 40% for 
ZnO/OMCS-20, ZnO/OMCS-30, and ZnO/OMCS-40. This 
result agrees with the theoretical value, suggesting that the 
ZnO content in the nanocomposite can be precisely con-
trolled by the adding amount of Zn sources.

XRD is applied to determine the crystal structure of com-
posite, and the XRD patterns for ZnO/OMCS composites 
are shown in Fig. 3c. All XRD patterns show two slight 
bulges at 2θ value of 23° and 43°, assigning to the (002) and 
(100) reflection of graphitic planes [49]. The other diffrac-
tion peaks in the XRD curves correspond to the hexagonal 

wurtzite structure of ZnO (JCPDS No. 36-1451) [50]. XRD 
results also verify that the ZnO nanoparticles are success-
fully deposited on carbon spheres. Additionally, XRD can 
be used to determine the ZnO crystallite size by applying 
Scherrer equation from the full width at half maximum 
(FWHM) of the diffraction peak at 56.5°. After calculat-
ing, the crystallite sizes of ZnO in the composites are 3.6, 
4.7, and 5.5 nm for ZnO/OMCS-20, ZnO/OMCS-30, and 
ZnO/OMCS-40, respectively. These ultrafine ZnO NPs are 
benefit to the multiple reflection and scattering of incident 
microwave.

The presence of C, O, and Zn surface species also can be 
confirmed by the full survey XPS spectra of ZnO/OMCS 
composites, as shown in Fig. 3d. And there are no other spe-
cies can be detected, indicating the purity of the composites. 
In addition, the character peaks of O and Zn species are get-
ting stronger during the ZnO content increasing, verifying 
the ZnO nanoparticles has been successfully deposited on 
the surface of OMCS.

The structure of ZnO/OMCS was studied by first-princi-
ples calculations to further confirm the experimental results. 
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The calculated electron density difference map is shown in 
Fig. 4. Figure 4a shows the top view of graphite/ZnO struc-
ture after relaxation. The binding behavior of ZnO molecule 
on the graphite (0001) surface is studied with adsorption 
energy (Ead). Ead can be obtained by Eq. 1 [51]:

where, Egraphite/ZnO is the energy of graphite/ZnO structure 
after relaxation, the Egraphite and EZnO are the energies of 
bare graphite (0001) slab and ZnO molecule. The adsorp-
tion height (h) was also measured. Value of h can be defined 
as the vertical distance between O and the topmost C layer.

The calculated values of Ead and h are − 3.65 eV and 
2.79  Å. Figure  4b shows the charge density difference 
map with isovalue of 0.1. In the map, the light blue color 
represents charge accumulation area and the yellow color 
represents charge depletion area. Figure 4c shows slice of 
charge density difference along (011) plane. From the results 
of charge density difference, it is found that some valance 
electrons are transferred from Zn atom to the O atom. As a 
result, Zn and O atoms become anions and cations and bonds 
with each other through electrostatic attraction. Therefore, 
Zn–O bond is typical ionic bond. We also found that ZnO 
has influence on the charge distribution on the surface of 
graphite. A small amount of electrons is transferred from 

(1)Ead = Egraphite∕ZnO − Egraphite − EZnO

C atom to the O atom. Figure 4d shows slice of electron 
localization functional (ELF) along (011) plane. The data 
inside the core region are meaningless for the pseudopoten-
tials were used in the calculation process. There are some 
localized electrons between Zn and O atoms, indicating that 
Zn–O bond also has some composition of covalent bond. 
As to C=C bond in the graphite, large amount electrons are 
found between neighbor C atoms, which is typical feature of 
π-π covalent bond in hexagonal (0001) plane.

The result of density of states (DOS) and partial density of 
states (PDOS) can provide more information about the nature 
of interaction between ZnO and graphite. Figure 4e–g shows 
the DOS results of graphite/ZnO hybrids, ZnO hybrids and 
bare ZnO molecule, respectively. Comparing the DOS of bare 
ZnO, positions of some peaks for ZnO in graphite/ZnO hybrids 
are changed. What is more, some new peaks appeared, which 
corresponds to the peaks of graphite. The overlapping confirms 
the hybridization of O 2sp, Zn sd, and C 2sp orbitals.

3.2  Microwave absorption performance of the ZnO/
OMCS nanocomposites

The electromagnetic parameters of ZnO/OMCS nano-
composites are plotted in Fig. 5 to investigate the effect of 
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composition and microstructure on microwave absorbing 
performance. The real part (ε’) and imaginary part (ε″) of 
dielectric constant values of the ZnO/OMCS-20 vary from 
7.9 to 2.1 and 0 to 3.2, respectively. After introducing more 
ultrafine ZnO NPs into OMCS, ε’ and ε″values of ZnO/
OMCS-30 and ZnO/OMCS-40 in most of the frequency 
range reveal a significant increase, indicating the strong 
dielectric loss ability. According to the previous calculation 
results of first-principles, the electron density is different 
between ZnO and carbon base, which could result in inter-
facial polarization. The increase in ZnO NPs distributed on 
the OMCS would not only enhance the associated interfacial 
polarization, but also build up the active interfaces on the 
base of 3D ordered porous structure. It is known that the 
higher tan δε value means more dissipation of electromag-
netic energy. The tan δε values of ZnO/OMCS-30 and ZnO/
OMCS-40 are heavily intertwined, while their tan δε values 
are larger than that of ZnO/OMCS-20 in most of the fre-
quency range. This provides the clear evidence that the uni-
formly distributed ultrafine ZnO NPs are helpful to enhance 
the dielectric loss ability. Meanwhile, resonant peaks were 
observed in the ε″ curves of ZnO/OMCS nanocomposites. 
The resonant peaks can be ascribed to the interfacial polari-
zation and dipole polarization at 2–18 GHz. According to 
Debye relaxation theory, the relation between ε′ and ε′′ fol-
lows Eq. 2 [52].

Generally, a single semicircle derived from the plot of ε′ 
versus ε′′ was regarded as the Cole–Cole semicircle. Every 
semicircle represents one Debye relaxation process. Once a 
polarization relaxation process happens, Eq. 2 can be used 
to describe the relationship between ε′ and ε″.

(2)
(

�
� −

�s + �∞

2

)2

+ (���)2 =
(
�s − �∞

2

)2

The plots of ε′–ε′′ curves of ZnO/OMCS nanocomposites 
were shown in Fig. 6. Obviously, the plots of ZnO/OMCS-20 
in Fig. 6a reveal less distorted Cole–Cole semicircles than 
that of ZnO/OMCS-30 and ZnO/OMCS-40. This indicates 
a stronger polarization relaxation occurs in ZnO/OMCS-
30 and ZnO/OMCS-40, which generated at the interfaces 
between ZnO NPs and 3D porous carbon base. The depend-
ences of μ′ and μ′′ at 2–18 GHz of ZnO/OMCS nanocom-
posites are shown in Fig. 5b. The μ′ values of ZnO/OMCS 
are almost the same in the whole frequency. However, ZnO/
OMCS-30 and ZnO/OMCS-40 possess obviously larger μ′′ 
values than that of ZnO/OMCS-20 since 10.2 GHz. This 
indicates that ZnO/OMCS-30 and ZnO/OMCS-40 exhibit 
the optimized magnetic loss performance. Magnetic loss 
tangent values show the same trend of μ′′ values.

The modulus of the normalized characteristic impedance 
and attenuation constant (α) of ZnO/OMCS nanocompos-
ites are further investigated. The modulus of the normal-
ized characteristic impedance Z =|Zin/Z0| can be calculated 
according to Eq. 3, which represents the ability of the micro-
wave entering into the absorbing materials. If Z is close to 1, 
it indicates the material possess a good impedance match-
ing characteristic. At the thickness of 2 mm, ZnO/OMCS-
20 represents the worst impedance matching characteristic 
while ZnO/OMCS-30 obtains the best impedance matching 
characteristic (Fig. 7a) [53].

Here, Zin represents the normalized input impedance of 
the microwave absorbing materials, Z0 is the impedance 
of free space, εr and μr are the complex permittivity and 
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Fig. 6  Typical Cole–Cole semicircles (ε′ vs. ε′′) for a ZnO/OMCS-20, b ZnO/OMCS-30, c ZnO/OMCS-40
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complex permeability, respectively. Attenuation constant α 
can be expressed as Eq. (5) [54]:

Attenuation constants of ZnO/OMCS nanocomposites 
are shown in Fig. 7b. The order of attenuation constants of 
three samples is ZnO/OMCS-40 > ZnO/OMCS-30 > ZnO/
OMCS-20.

The reflection loss of ZnO/OMCS nanocomposites are 
calculated according to Eq. 4. The corresponding reflection 
loss color maps of ZnO/OMCS-20, ZnO/OMCS-30 and 
ZnO/OMCS-40 as a function of frequency and thicknesses 
are shown in Fig. 8. Obviously, ZnO/OMCS-20 exhibits 
relative poor microwave absorbing performance. Com-
paratively, ZnO/OMCS-30 exhibits an effective absorp-
tion bandwidth of 6.8 GHz (10.4 to 17.2 GHz) at 1.5 mm, 
8.5 GHz (8.3 to 16.8 GHz) at 2.0 mm and 9.3 GHz (7.1 
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to 16.4 GHz) at 2.5 mm (Fig. 8c, d). The ZnO/OMCS-30 
holds an  RLmin of -39.3 dB at the frequency of 10.4 GHz 
with a small thickness of 2.0 mm, indicating the strong 
absorption ability [4]. Meanwhile, ZnO/OMCS-40 also 
shows a wide absorption bandwidth. It reveals an effec-
tive absorption bandwidth of 7.6 GHz (10.1 to 17.7 GHz) 
at 1.5 mm and 9.1 GHz (8.2 to 17.3 GHz) at 2.0 mm. 
The reflection loss values of three samples at 2.0 mm are 
shown in Fig. 9, which means the microwave absorption 
performance of ZnO/OMCS nanocomposites can be tuned 
by changing the ZnO NPs content. The significant feather 
of ZnO/OMCS nanocomposites such as lightweight, strong 
absorption and wide band width shows it great potential as 
excellent microwave absorbing materials [14].

The supposed microwave absorbing mechanism of ZnO/
OMCS nanocomposites is as follows (Fig. 10). Firstly, the 
three-dimensional ordered mesoporous carbon spheres of 
the carbon base provide abundant solid-air interfaces to 
realize the impendence matching condition. Second, con-
duction loss, multiple reflection, and scattering loss of 
microwaves can be promoted by the 3D ordered porous 
structure. Third, the simulation results have demonstrated 
that the uniform distribution of ultrafine ZnO NPs is benefit 
to the polarization interface and the defect-dipoles induced 
by oxygen vacancies in the ZnO crystal promotes polariza-
tion loss. Generally, it is known that nanoparticles are easily 
to be self-assembled due to their high surface energy. This 
aggregation problem can be effectively solved by the three-
dimensional ordered mesoporous carbon spheres structure. 
The mesoporous carbon spheres limited the growth of ZnO 
NPs, which makes them ultrafine size. Therefore, the ZnO 
NPs are effectively separated and distributed in the porous 
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structure rather than compactly aggregated, which benefits 
the formation of denser dielectric coupling network and the 
enhancement of dielectric loss ability. Meanwhile, the three-
dimensional ordered mesoporous carbon spheres structure 

can increase the loading ratio of ZnO NPs. More ZnO NPs 
can increase the number of active sites in the nanocompos-
ites, which is good for scattering loss.
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3.3  Radar cross section

The rough multiple groove structure is commonly used in 
ground armor and is a strong electromagnetic scattering 
source. In order to evaluate the electromagnetic energy dis-
sipation ability of ZnO/OMCS, the simulation of RCS values 
of a metal plate with multiple groove structures was selected 
to demonstrate the microwave absorption performance of 
ZnO/OMCS.

X-band radar is widely used and significantly important 
in national defense [55–57]. Thus, the simulation frequency 
was chosen at 10.4 GHz. The RCS characteristics of the 
metal groove structures (Fig. 11a) and metal groove struc-
tures with ZnO/OMCS-30 coatings (Fig. 11b), thickness 
of coating is 2 mm) from − 90° to + 90° are simulated by 
method of moment. The simulation procedures are shown 
in the Supporting Information. The simulated surface cur-
rent distribution on groove structure are shown in Fig. 11c, 
d. Clearly, the ZnO/OMCS-30 coatings effectively suppress 
the electromagnetic wave scattering on the metal groove 
structure. The corresponding RCS simulation results are 
shown in Fig. 11e. It can be observed that the RCS values 
of metal groove structure with ZnO/OMCS-30 coatings are 
much smaller than that of metal groove structure. Gener-
ally, the strongest electromagnetic scattering appears at zero 
degree for plate structure. However, it can be observed that 
the RCS value at this zero degree was decreased from 1.7 
to − 20.6 dBsm after introducing ZnO/OMCS-30 coatings. 
These results demonstrated the ZnO/OMCS nanocompos-
ites reveal good microwave absorbing ability and could 
effectively suppress the strong electromagnetic scattering 
of metal groove structure.

4  Conclusions

3D ordered ZnO/OMCS nanocomposites were prepared as 
high-performance microwave absorbing materials. ZnO/
OMCS-30 nanocomposites show effective absorption band-
width of 9.1 GHz at 2.0 mm from 8.3 to 16.8 GHz and a 
strong absorption of − 39.3 dB at the frequency of 10.4 GHz 
with a thickness of 2 mm. ZnO/OMCS-40 nanocomposites 
also exhibit favorable microwave absorbing performance in 
the lower frequency. RCS simulation demonstrated the ZnO/
OMCS nanocomposites remarkable properties in suppress-
ing strong electromagnetic wave scattering of metal groove 

structure. The ZnO/OMCS nanocomposites with light 
weight, strong absorption, and wide band width yield vari-
ous insights into the development of stealth technologies.
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