Supporting Information for

N-Doped-Graphene Decorated NiCo Alloy Couple with Mesoporous

NiCoMoO Nano-sheets Heterojunction for Enhanced Water

Electrolysis Activity at High Current Density

Guangfu Qian¹, Jinli Chen¹, Tianqi Yu¹, Lin Luo¹, Shibin Yin^{1,*}

¹College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China

*Corresponding author. E-mail: yinshibin@gxu.edu.cn (S. Yin)

Supplementary Tables and Figures

Fig. S1 SEM images of (a, b) precursors annealed at 450 °C and (c, d) precursors

Fig. S2 XRD spectra of precursors annealed at different temperatures

Fig. S3 Raman spectra of precursors annealed at different temperatures

Fig. S4 (**a-c**) TEM and HRTEM and (d, e) HAADF-STEM images of NiCo@C-NiCoMoO/NF

Fig. S5 (a, c, e) N_2 adsorption/desorption isotherms and (b, d, f) the corresponding pore size distributions of precursors annealed at different temperatures

Fig. S6 SEM images of precursors annealed at (a, b) 350 °C and (c, d) 550 °C

Fig. S7 XPS summary spectra of NiCo@C-NiCoMoO/NF

Fig. S8 LSV curves of HER for investigated samples

Fig. S9 LSV curves of NiCo@C-NiCoMoO/NF with/without iR correction

Fig. S10 Nyquist plots tested at -0.2 V for HER with a frequency from 100,000 to 0.1 Hz in 1.0 M KOH; inset is the equivalent circuit model

Fig. S11 (a-d) LSV curves of HER for precursors annealed at different temperatures

Fig. S12 (**a**, **b**) Typical CVs of the samples with scan rates ranging from 10 to 100 mV s⁻¹, the scanning potential range is from 0.15 V to 0.25 V; (**c**) Estimation of C_{dl} by plotting the capacitive current density against the scan rate to fit a linear regression

Fig. S13 LSV curves of HER for NiCo@C-NiCoMoO/NF and NiCo-NiCoMoO/NF normalized by EASAs

Fig. S14. (a) LSV curves and (b) R_{ct} of NiCo@C-NiCoMoO/NF before and after HER stability test

Fig. S15 (a, b) SEM images of NiCo@C-NiCoMoO/NF after HER stability test

Fig. S16 (a-e) TEM, HRTEM, and HAADF-STEM images of NiCo@C-NiCoMoO/NF after HER stability test

Fig. S17 (a-c) XPS spectra of NiCo@C-NiCoMoO/NF after HER stability test

Fig. S18 LSV curves of OER for the investigated samples

Fig. S19 LSV of NiCo@C-NiCoMoO/NF with/without iR correction

Fig. S20 LSV curves of OER for NiCo@C-NiCoMoO/NF and NiCo-NiCoMoO/NF normalized by EASAs

Fig. S21 Nyquist plots tested at 1.5 V for OER with a frequency from 100,000 to 0.1 Hz in 1.0 M KOH; inset is the equivalent circuit model

Fig. S22 (a-d) LSV curves, Tafel, and EIS of OER for precursors annealed at different temperatures

Fig. S23 (a) LSV curves and (b) R_{ct} of NiCo@C-NiCoMoO/NF before and after OER stability test

Fig. S24 SEM images of NiCo@C-NiCoMoO/NF after OER stability test

Fig. S25 (a-d) TEM, HRTEM, and HAADF-STEM images of NiCo@C-NiCoMoO/NF after OER stability test

Fig. S26 (a-c) XPS spectra of NiCo@C-NiCoMoO/NF after OER stability test

Fig. S27 (**a**, **b**) Volume of H_2 and O_2 theoretically calculated and actually measured at ± 10.0 mA versus time for NiCo@C-NiCoMoO/NF in 1.0 M KOH solution; (**c**) volume of H_2 and O_2 at 0, 25, 50, 75, 100, and 125 min

Catalysts	BET surface areas (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Pore size (nm)
350 °C	58.69	0.23	15.36
450 °C	102.96	0.18	6.83
550 °C	37.36	0.25	27.05

Table S1 BET results of precursors annealed at different temperatures

Table S2 Elemental composition of NiCo@C-NiCoMoO/NF obtained from ICP-MS

Element wt%	Ni	Со	Мо
NiCo@C-NiCoMoO/NF	31	15	22

Table S3 TOF and MA of NiCo@C-NiCoMoO/NF obtained at differentoverpotentials for HER

Overpotentials (mV)	TOF (s ⁻¹)	MA (mA g ⁻¹)
50	1.0×10^{-3}	2.6×10 ³
100	4.0×10^{-3}	1.2×10^{4}
150	9.0×10 ⁻³	2.7×10^{4}
200	2.0×10 ⁻²	5.6×10 ⁴

Table S4 Comparison TOF and MA of NiCo@C-NiCoMoO/NF for HER with other

 reported non-noble-metal catalysts

Catalysts	TOF (s ⁻¹ @ mV)	MA (mA g ⁻¹ @ mV)	References
NiCo@C-NiCoMoO/NF	$4.0 \times 10^{-3} @100$	$1.2 \times 10^4 @100$	This work
NiSe ₂ -CoSe ₂ /NCF	$2.13 \times 10^{-3}@100$	$1.92 \times 10^3 @100$	[S1]
Ni ₁₂ P ₅ -Ni ₄ Nb ₅ P ₄ /PCC	5.32×10 ⁻² @100	3.05×10 ³ @100	[S2]
NiSe	$7.5 \times 10^{-1}@250$	N/A	[S 3]
Ni ₃ S ₂ -FeS-CoS/PNFCF	$1.4 \times 10^{-1}@100$	N/A	[S4]
Cr-doped FeNi-P/NCN	$2.14 \times 10^{-1}@190$	N/A	[S5]
Holey NCP	7.32×10 ⁻¹ @200	N/A	[S6]
Ni _{1.8} Cu _{0.2} -P/NF	$1.2 \times 10^{-3} @100$	N/A	[S7]
N-NiCoP/NCF	4.958×10 ⁻² @200	N/A	[S 8]
NiSe ₂ -FeSe ₂	1.6×10 ⁻³ @300	5.53×10 ² @100	[S 9]
Mo-W-P/CC	$1.9 \times 10^{-2} @ 100$	N/A	[S10]
N-NiVFeP/NFF	3.867×10 ⁻² @180	N/A	[S11]
N-NiCoP _x /NCF	$8.7 \times 10^{-4}@40$	3.14×10 ³ @100	[S12]
MoSe ₂ -NiSe ₂ -CoSe ₂ /PNCF	$1.5 \times 10^{-4}@80$	$1.38 \times 10^2 @100$	[S13]
CoP UPNSs	N/A	$1.51 \times 10^5 @100$	[S14]
$2H-MoS_2$	N/A	~1.6×10 ⁴ @100	[S15]
2 H-NbS $_2$	N/A	4.315×10 ⁴ @250	[S16]
NiS/Ni ₂ P/CC	$9.01 \times 10^{-1}@200$	~5.8×10 ¹ @200	[S17]
NiCo ₂ P _x	2.6×10 ⁻² @100	N/A	[S18]

Overpotentials (mV)	TOF (s ⁻¹)	MA (mA g ⁻¹)
250	4.0×10^{-4}	3.0×10 ³
300	2.7×10^{-3}	9.5×10 ³
350	1.5×10^{-2}	4.5×10^{4}

Table S5 TOF and MA of NiCo@C-NiCoMoO/NF obtained at differentoverpotentials for OER

 Table S6 Comparison TOF and MA of NiCo@C-NiCoMoO/NF for OER with other

 reported non-noble-metal catalysts

Catalysts	TOF (s ⁻¹ @ mV)	MA (mA g ⁻¹ @ mV)	References
NiCo@C-NiCoMoO/NF	2.7×10 ⁻³ @350	9.5×10 ³ @300	This work
NiSe ₂ -CoSe ₂ /NCF	4.55×10 ⁻¹ @300	$5.28 \times 10^2 @ 300$	[S1]
NiSe	~3×10 ⁻¹ @320	N/A	[S 3]
Amorphous NiFe-OH/NiFeP	$3.6 \times 10^{-2}@250$	~5.0×10 ³ @250	[S19]
Ni ₃ S ₂ -FeS-CoS/PNFCF	$1.2 \times 10^{-3}@180$	N/A	[S4]
Cr-doped FeNi-P/NCN	$1.06 \times 10^{-1}@140$	N/A	[S5]
N-NiCoP/NCF	$1.47 \times 10^{-3}@200$	N/A	[S8]
NiSe ₂ -FeSe ₂	$1.09 \times 10^{-4}@300$	1.338×10 ² @100	[S 9]
N-NiCoP _x /NCF	$1.2 \times 10^{-4}@300$	$1.014 \times 10^3@400$	[S12]
NiS/Ni ₂ P/CC	3.31×10 ⁻¹ @300	~6.0×10 ¹ @320	[S17]

Supplementary References

- [S1] D.L. Chen, Z.M. Xu, W. Chen, G.L. Chen, J. Huang et al., Just add water to split water: Ultrahigh-performance bifunctional electrocatalysts fabricated using eco-friendly heterointerfacing of NiCo diselenides. J. Mater. Chem. A 8, 12035-12044 (2020). https://doi.org/10.1039/D0TA02121K
- [S2] D.L. Chen, Z.M. Xu, W. Chen, G.L. Chen, J. Huang et al., Mulberry-inspired nickel-niobium phosphide on plasma-defect-engineered carbon support for high-performance hydrogen evolution. Small 16, 2004843 (2020). https://doi.org/10.1002/smll.202004843
- [S3] H. Wu, X. Lu, G.F. Zheng, G.W. Ho, Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv. Energy Mater. 8, 1702704 (2018). https://doi.org/10.1002/aenm.201702704
- [S4] Q. Zhang, W. Chen, G.L. Chen, J. Huang, C.S. Song, et al., Bi-metallic nitroxide nanodot-decorated tri-metallic sulphide nanosheets by on-electrode plasma-hydrothermal sprouting for overall water splitting. Appl. Catal. B 261, 118254 (2020). https://doi.org/10.1016/j.apcatb.2019.118254
- [S5] Y.Q. Wu, X. Tao, Y. Qing, H. Xu, F. Yang et al., Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. **31**, 1900178 (2019).

https://doi.org/10.1002/adma.201900178

- [S6] Z.W. Fang, L.L. Peng, Y.M. Qian, X. Zhang, Y.J. Xie et al., Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 140, 5241-5247 (2018). https://doi.org/10.1021/jacs.8b01548
- [S7] S.J. Chu, W. Chen, G.L. Chen, J. Huang, R. Zhang et al., Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Appl. Catal. B 243, 537-545 (2019). https://doi.org/10.1016/j.apcatb.2018.10.063
- [S8] R. Zhang, J. Huang, G.L. Chen, W. Chen, C.S. Song et al., In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting. Appl. Catal. B 254, 414-423 (2019). https://doi.org/10.1016/j.apcatb.2019.04.089
- [S9] J. Huang, S.T. Wen, G.L. Chen, W. Chen, G.X. Wang et al., Multiphase Ni-Fe-selenide nanosheets for highly-efficient and ultra-stable water electrolysis. Appl. Catal. B 277, 119220 (2020). https://doi.org/10.1016/j.apcatb.2020.119220
- [S10] X.D. Wang, Y.F. Xu, H.S. Rao, W.J. Xu, H.Y. Chen et al., Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 9, 1468-1475 (2016). https://doi.org/10.1039/C5EE03801D
- [S11] H.F. Fan, W. Chen, G.L. Chen, J. Huang, C.S. Song et al., Plasma-heteroatom-doped Ni-V-Fe trimetallic phospho-nitride as high-performance bifunctional electrocatalyst. Appl. Catal. B 268, 118440 (2020). https://doi.org/10.1016/j.apcatb.2019.118440
- [S12] R.X. Jin, J. Huang, G.L. Chen, W. Chen, B. Ouyang et al., Water-sprouted, plasma-enhanced Ni-Co phospho-nitride nanosheets boost electrocatalytic hydrogen and oxygen evolution. Chem. Eng. J. 402, 126257 (2020). https://doi.org/10.1016/j.cej.2020.126257
- [S13] G.X. Wang, W. Chen, G.L. Chen, J. Huang, C.S. Song et al., Trimetallic Mo-Ni-Co selenides nanorod electrocatalysts for highly-efficient and ultra-stable hydrogen evolution. Nano Energy 71, 104637 (2020). https://doi.org/10.1016/j.nanoen.2020.104637
- [S14] C. Zhang, Y. Huang, Y.F. Yu, J.F. Zhang, S.F. Zhuo et al., Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem. Sci. 8, 2769-2775 (2017). https://doi.org/10.1039/C6SC05687C
- [S15] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS₂ to preferentially expose active edge sites for electrocatalysis.

Nat. Mater. 11, 963-969 (2012). https://doi.org/10.1038/nmat3439

- [S16] J.C. Si, Q. Zheng, H.L. Chen, C.J. Lei, Y.G. Suo et al., Scalable production of few-Layer niobium disulfide nanosheets via electrochemical exfoliation for energy-efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 11, 13205-13213 (2019). https://doi.org/10.1021/acsami.8b22052
- [S17] X. Xiao, D.K. Huang, Y.Q. Fu, M. Wen, X. Jiang et al., Engineering NiS/Ni₂P heterostructures for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces 10, 4689-4696 (2018). https://doi.org/10.1021/acsami.7b16430
- [S18] R. Zhang, X.X. Wang, S.J. Yu, T. Wen, X.W. Zhu et al., Ternary NiCo₂P_x nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 29, 1605502 (2017). https://doi.org/10.1002/adma.201605502
- [S19] H.F. Liang, A.N. Gandi, C. Xia, M.N. Hedhili, D.H. Anjum et al., Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2, 1035-1042 (2017). https://doi.org/10.1021/acsenergylett.7b00206