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Natural Cocoons Enabling Flexible and Stable 
Fabric Lithium–Sulfur Full Batteries
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HIGHLIGHTS 

• A creative cooperative strategy involving silk fibroin/sericin is proposed for stabilizing high-performance flexible Li–S full batteries 
with a limited Li excess of 90% by simultaneously inhibiting lithium dendrites, adsorbing liquid polysulfides, and anchoring solid 
lithium sulfides.

• Such fabric Li–S full batteries offer high volumetric energy density (457.2 Wh  L−1), high-capacity retention (99.8% per cycle), and 
remarkable bending capability (6000 flexing cycles at a small radius of 5 mm).

ABSTRACT  Lithium–sulfur batteries are highly appealing as high-
energy power systems and hold great application prospects for flex-
ible and wearable electronics. However, the easy formation of lithium 
dendrites, shuttle effect of dissolved polysulfides, random deposition 
of insulating lithium sulfides, and poor mechanical flexibility of both 
electrodes seriously restrict the utilization of lithium and stabilities 
of lithium and sulfur for practical applications. Herein, we present a 
cooperative strategy employing silk fibroin/sericin to stabilize flexible 
lithium–sulfur full batteries by simultaneously inhibiting lithium den-
drites, adsorbing liquid polysulfides, and anchoring solid lithium sulfides. Benefiting from the abundant nitrogen- and oxygen-containing 
functional groups, the carbonized fibroin fabric serves as a lithiophilic fabric host for stabilizing the lithium anode, while the carbonized 
fibroin fabric and the extracted sericin are used as sulfiphilic hosts and adhesive binders, respectively, for stabilizing the sulfur cathode. 
Consequently, the assembled Li–S full battery provided a high areal capacity (5.6 mAh  cm−2), limited lithium excess (90%), a high volu-
metric energy density (457.2 Wh  L−1), high-capacity retention (99.8% per cycle), and remarkable bending capability (6000 flexing cycles 
at a small radius of 5 mm).
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1 Introduction

Emerging flexible and wearable electronics, such as roll-up 
displays, bendable phones, wearable heaters, smart-watch 
belts, and medical patches, have gradually changed the way 
people live and think in recent years. Further paradigm shifts 
toward flexible and wearable products have imposed unprec-
edented demand for the seamless integration of flexible 
electronic devices with intrinsically flexible batteries [1–6]. 
Lithium-ion batteries based on intercalation chemistries 
dominate the current battery technology for wearable and 
portable electronics, but have reached the limit of their theo-
retical energy density. Lithium–sulfur (Li–S) batteries are 
considered promising alternatives for traditional Li-ion bat-
teries because of the low mass densities (Li: 0.534 g cm−3; 
S: 2.07 g cm−3) and high theoretical capacities (Li: 3,860 
mAh  g−1; S: 1675 mAh  g−1) of their components, and their 
overall high energy density (2,600 Wh  kg−1) [7–12]. Despite 
these remarkable advantages, most of the currently reported 
Li–S batteries still require the use of heavy Li-foil anodes 
(~ 50 mAh  cm−2) and face several hazards as follows: 1) low 
Coulombic efficiency (CE) both in the Li anode and S cath-
ode due to the easy formation of Li dendrites, shuttle effect 
of dissolved lithium polysulfides  (Li2Sx, 3 ≤ x ≤ 8), and ran-
dom deposition of insulating  Li2S; 2) large volume expan-
sion of the Li anode (infinite) and S cathode (~ 80%) during 
the cycling process; and 3) poor mechanical flexibility of the 
electrodes during the flexing process [8, 13]. Therefore, it is 
highly desirable to realize high-energy–density, flexible, and 
stable Li–S full batteries with limited Li excess by rationally 
designing both the Li and S electrodes [1, 14].

To overcome the above-mentioned challenges, many strat-
egies have been proposed for stabilizing the Li anode and 
S cathode with high CEs, including the modification of the 
solid electrolyte interface (SEI) [15–18], the introduction 
of solid-state electrolytes [19, 20], and the development of 
three-dimensional (3D)-structured hosts [1, 21, 22]. In con-
trast, 3D-structured hosts with unique surface chemistry and 
interconnecting structures are more effective for stabilizing 
Li and S electrodes by mitigating their volume expansion 
and regulating the uniform distribution of Li ions. In particu-
lar, 3D carbon hosts (such as carbon fabrics, graphene, and 
CNT-derived papers) have been widely developed for con-
structing Li anodes and S cathodes due to their easy accessi-
bility, superior thermal stability, and excellent flexibility [14, 

23]. However, these non-polar carbon hosts have poor affin-
ity for polar Li metal and dissolved polysulfides [24–27], 
resulting in loss of both electrode materials and rapid capac-
ity fading during cycling processes. To enable the uniform 
deposition of Li metal and strong anchoring of polysulfides 
and  Li2S, heteroatom doping (e.g., N, P, O, S, and B) [24, 28, 
29], introduction of metal compounds (e.g.,  MnO2,  MoS2, 
and VN) [30–33], and metal (e.g., Co, Ni, and Sn) [34–36] 
modifications have been widely applied to 3D carbon hosts 
to regulate their interfacial polarity. The interfacial doping 
of heteroatoms, especially dual-element doping, is simple 
and effective for stabilizing both electrodes during long-term 
cycling because of the strong and reversible interactions of 
the heteroatoms with metallic Li and  Li2Sn. In previous 
simulation studies, N/O dual-doped carbon hosts were pre-
dicted to be the most effective for the uniform deposition of 
Li metal and strong anchoring of polysulfides and  Li2S [37, 
38]. Therefore, rationally designed N/O dual-doped carbon 
hosts are promising candidates for the successful fabrication 
of flexible Li–S full batteries.

Apart from the cycling stabilities of the Li anode and S 
cathode, both electrodes must be able to withstand large 
mechanical strain to realize flexible Li–S batteries. It is rec-
ognized that the strain (ɛ) applied to the cell components of 
a matched flexible battery for industrial flexible electron-
ics devices is typically larger than 5% [20, 39]. Commer-
cial carbon fabric with larger mechanical strain resistance 
(> 10%) and a controllable structure compared to available 
carbon (CNT and graphene) papers has attracted extensive 
research interest for its potential use in flexible Li–S batter-
ies. For example, the first flexible Li–S full battery devices 
with limited Li excess have recently been fabricated by 
using metal-coated carbon fabrics as current collectors [1]. 
Such fabric-type Li–S full batteries exhibit excellent cycling 
and mechanical stabilities, but still suffer from limited cell 
energy density owing to the large areal mass and low sur-
face area of the used carbon fabrics [1, 39]. Since natural 
silk cocoons are composed of fibroin and sericin, carbonized 
fibroin fabric has been widely investigated for its applica-
tion in bendable and stretchable electronic devices due to 
its adjustable areal mass, adequate mechanical strain, and 
high electrical conductivity [40, 41]. However, to the best of 
our knowledge, carbonized fibroin fabric or extracted sericin 
protein (SP) have not been explored for the successful fabri-
cation of flexible Li–S batteries.
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In this paper, a cooperative strategy employing silk 
fibroin/sericin is proposed for stabilizing flexible Li–S 
full batteries with a limited Li excess of 90%, exceptional 
mechanical flexibility, high volumetric energy density, and 
excellent cycling stability. The uniform deposition of Li 
metal and  Li2S by loading Li or S onto ultrathin and soft 
N/O-codoped carbonized fabric (NOCF) was crucial in 
developing these batteries. In particular, silk-fibroin-derived 
NOCF is used as a lithiophilic host for the Li anode, while 
NOCF and SP are used as sulfiphilic hosts and adhesive 
binders, respectively, for the S cathode. The unique fabric 
structure of NOCF simultaneously provides mechanical 
flexibility and reduces the local current density of the elec-
trodes. Importantly, NOCF could also stabilize both elec-
trodes to reach remarkable CEs. On the anode side, NOCF 
could ensure uniform deposition of Li nanoparticles instead 
of dendrites and lead to a high average CE > 99.4% over 
300 charge/discharge cycles. On the cathode side, NOCF 
could strongly adsorb dissolved polysulfides and promote 
the uniform anchoring of solid  Li2S, resulting in an excel-
lent capacity retention of > 99.9% per cycle for 200 cycles. 
Finally, mechanically robust Li–S full cells were success-
fully obtained with a high volumetric energy density (457.2 
Wh  L−1), high areal capacity (5.6 mAh  cm−2), and excel-
lent cycling stability (capacity retention per cycle: > 99.8%). 
The Li–S full batteries could also maintain stable charge/
discharge characteristics over 150 cycles during dynamic 
flexing processes and power the displays of large light-emit-
ting diode (LED) screens for tens of minutes, even when 
repeatedly bent over 6,000 flexing cycles at a small radii of 
curvature (5.0 mm).

2  Experimental Section

2.1  Preparation of Fabric Electrodes

2.1.1  Preparation of N/O‑Codoped Carbonized Silk 
Fabric

The soft NOCF current collectors were prepared by direct 
carbonization of commercial silk fabric in an inert atmos-
phere of Ar gas by a gradient heating method. First, commer-
cial silk fabric was rinsed with deionized water and ethanol 
several times under ultrasonic conditions and dried at 60 °C 
for 5 h. Second, the dried silk fabric was placed in a tube 

furnace and carbonized in a high-purity argon atmosphere 
(purity: 99.999%; gas flow: 120 sccm) with the following 
carbonization procedure: (1) heat from 25 to 150 °C at a rate 
of 5 °C min−1 and maintain the temperature at 150 °C for 
0.5 h; (2) heat to 350 °C at a rate of 3 °C min−1 and maintain 
the temperature at 350 °C for 2 h; (3) heat to 1,000 °C at a 
rate of 2 °C min−1 and maintain the temperature at 1,000 °C 
for 1.5 h; and (4) naturally cool the system to room tempera-
ture. Finally, the achieved carbonized silk fabric was rinsed 
with deionized water and ethanol several times and dried at 
60 °C for 12 h. In addition, heating at various carbonization 
temperatures was also performed to reveal the impact of 
temperature on the electrical conductivity and elastic strain 
of the carbonized silk fabrics.

2.1.2  Preparation of Flexible Fabric Lithium Anode

The NOCF was cut to a certain size and shape and served 
as the working electrode in the sandwiched cell, while poly-
propylene fabric was used as the separator and lithium foil 
served as the counter/reference electrode. The prepared 
electrolyte was 1 M lithium bis(trifluoromethanesulfonyl)
imide (LiTFSI) in a mixture of 1,3-dioxolane (DOL) and 
1,2-dimethoxyethane (DME) (1:1, v/v) with 2 wt% of a 
 LiNO3 additive. The cell of NOCF versus Li foil was first 
cycled at 0–2.0 V at 1.0 mA cm−2 for five cycles and then 
discharged to form the Li/NOCF anode until the required Li 
metal was deposited. The Li/CF and Li/Cu reference anodes 
were prepared using the same procedure.

2.1.3  Preparation of Sericin Protein (SP) Binder

A neutral hydrothermal strategy was adopted for extract-
ing the high-molecular-weight SP from natural cocoons by 
relieving sericin hydrolysis. Natural silkworm cocoons were 
first cut into small pieces, rinsed with deionized water and 
ethanol three times, and then dried at 60 °C. Second, the 
cocoons soaked in deionized water (1:100, w/v) were boiled 
for 2 h under normal pressure. Third, the formed dispersion 
was filtered to obtain the SP solution after the removal of the 
residual silk fibroin. Finally, the SP solution was dialyzed 
with a dialysis bag (molecular weight cut-off = 10,000) and 
freeze-dried for 24 h to obtain the SP powder.
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2.1.4  Preparation of Flexible Fabric Sulfur Cathode

The sulfur/carbon composite was prepared according to the 
traditional melt-diffusion strategy [1]. Commercial sulfur 
powder and Ketjen black (ECP-600JD) nanoparticles were 
ground together in an optimal weight ratio of 3:1. This sulfur 
hybrid was then heated to 155 °C in a 100-mL Teflon-lined 
stainless-steel autoclave and kept for 16 h. Then, the sulfur 
hybrid and SP binder, in a weight ratio of 9:1, were dissolved 
in a certain amount of deionized water and ball-milled for 
30 min to produce a homogeneous sulfur-containing slurry. 
Finally, the sulfur/carbon/SP slurry was uniformly doctor-
bladed onto NOCF and dried at 60 °C in a vacuum oven for 
12 h to obtain the desired fabric sulfur cathode.

2.2  Morphology and Structure Characterization

The surface morphology of the samples was examined by 
field-emission scanning electron microscopy (FESEM, Tes-
can MIRA3, Czech Republic). The microstructures of the 
samples were investigated by high-resolution transmission 
electron microscopy (HRTEM, Oxford INCA 200, Oxford 
Instruments, UK). The carbonized silk fabric sample was 
ball-milled for 30 min, sonicated in ethanol for 5 min, and 
the suspension was then dropped in a 200-mesh Cu grid. 
The carbonization degree of the samples was determined 
using a laser microscopic Raman system (RENISHAW PLC, 
INVIA) with an excitation energy of 2.41 eV (514 nm). 
The crystallographic structure of the sample was analyzed 
using an X-ray diffractometer (XRD, X pert pro M) with 
Cu Kα radiation (λ = 0.15406 nm). The stress–strain curve 
of the samples was obtained using a tensile tester (Instron 
3342). The chemical structure of the samples was analyzed 
by Fourier-transform infrared (FTIR, Vector 33-MIR) spec-
troscopy and X-ray photoelectron spectroscopy (XPS, PHI 
5000 Versaprobe III) with monochromatic Al Kα radiation. 
 N2 adsorption/desorption analyses were conducted using a 
surface area analyzer (BET, TriStar II 3020 Version 3.02). 
The molecular weight of the sample was analyzed by gel 
permeation chromatography (GPC, Cirrus GPC Version 
3.4.1).

2.3  Testing for Polysulfide Adsorption and Lithium–
Sulfide Nucleation

The  Li2S8 catholyte (1 mM) was obtained by placing a 
mixture of sulfur and  Li2S with a molar ratio of 7:1 into a 
DOL/DME solution (1:1, v/v) and violently stirring under 
an argon atmosphere at 60 °C for 24 h. Then, 20 mg of the 
host material of the sulfur cathode was added to the diluted 
 Li2S8 catholyte to test the adsorption of polysulfides. To 
check the kinetics of  Li2S nucleation and deposition, 
the host material of the sulfur cathode was paired with 
Li foil using a  Li2S8/tetraglyme catholyte. Notably, the 
 Li2S8/tetraglyme catholyte consists of 0.3 M  Li2S8 and 
1 M LiTFSI in tetraglyme. As such, the behavior of  Li2S8 
nucleation and deposition onto various host materials 
was monitored by galvanostatic discharge at 2.05 V and 
0.1 mA cm−2 and then potentiostatic discharge at 2.04 V 
until the discharge current was reduced to 0.01 mA cm−2.

2.4  Assembling of Fabric Lithium–Sulfur Full Batteries 
and Electrochemical Measurements

The fabric Li–S full cells encapsulated commercial button 
coin, and soft Al-plastic film was assembled in an argon-
filled glove box, with the SP/S/NOCF composite as the 
cathode, a microporous polypropylene fabric as the separa-
tor, and a Li/NOCF composite as the anode. The electro-
lyte of 1 M LiTFSI in DOL/DME with 2 wt%  LiNO3 was 
appropriately added according to the practical ratio (10 μL 
 mg−1) of electrolyte volume to sulfur weight.

Stainless-steel coin cells and soft-packaged cells were 
assembled in an Ar-filled glovebox with oxygen and mois-
ture contents < 1 ppm. In the cathodic and anodic half-
cells, the electrochemical performances of the SP/S/NOCF 
and Li/NOCF composites were individually evaluated by 
galvanostatic cycling of 2025-type coin cells with the 
same amount of electrolyte. Galvanostatic cycling of the 
electrodes was conducted using a Neware battery testing 
system (CT2001A). Cyclic voltammetry measurements 
were performed on a Solarton analytical electrochemical 
workstation (model 1470E, England) with a voltage test 
range 1.7–2.8 V and a scanning rate of 0.05 mV s−1.
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3  Results and Discussion

3.1  Design and Fabrication of Fabric Lithium–Sulfur 
Full Batteries

Introducing a fabric-based matrix as soft current collectors 
has been demonstrated as an effective strategy for designing 
highly flexible batteries [14, 20]. To construct fabric Li–S 
full batteries, a soft and conductive NOCF current collector 
was first synthesized by the gradient carbonization of natural 
silk fibroin fabric in an inert atmosphere of Ar gas (Fig. 1a) 
[40, 42, 43]. The annealing conditions were also explored to 

reveal the impact of temperature on the electrical conductiv-
ity and mechanical strain of NOCF (Figs. 1b and S1). The 
electrical conductivity of NOCF increased with increasing 
annealing temperature (Table S1) due to the high degree 
of graphitization. Contrastingly, the elastic strain of NOCF 
decreased with increasing annealing temperature, but all of 
them exhibited much larger strain than that (1.5%) of com-
mercial carbon felt (CF). Among the annealing temperatures 
tested, the NOCF exhibited the highest electrical conduc-
tivity and largest elastic strain (7.5%) at 1000 °C, which 
are preferred for fast electron transport and high degrees 
of mechanical bending (inset in Fig. 1b). In addition, the 
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Fig. 1  a Illustration of the manufacturing process and design principle of flexible Li–S full batteries. The N/O-codoped carbonized fabric 
(NOCF) with high flexibility, high conductivity, and abundant N/O-codoped sites is synthesized by the gradient carbonization of natural silk 
fabric under an inert atmosphere. Subsequent to the thermal carbonization of silk fibroin, a certain amount of Li metal was electroplated onto 
NOCF to yield the Li/NOCF anode and a slurry mixture containing sericin protein (SP) binder, Ketjen black, and S was coated onto NOCF to 
yield the SP/S/NOCF cathode. b Tensile stress–strain curves of CF and NOCFs at various annealing temperatures (inset shows the optical image 
of optimal NOCF at 1000 ℃). c Scanning electron microscopy (SEM) image of the optimal NOCF. d High-resolution transmission electron 
microscopy (TEM) image of the optimal NOCF. e–g Low-resolution TEM image (e) and energy-dispersive X-ray spectroscopy (EDS) elemen-
tal mapping (f, g) of the optimal NOCF. h, i High-resolution X-ray photoelectron spectroscopy (XPS) spectra of O 1s and N 1s of the optimal 
NOCF
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achieved NOCF has a smaller areal mass (3.0–6.0 mg cm−2) 
and thickness (100–200 μm) than those of commercial CF 
(13.6 mg cm−2, 300 μm). The obtained nitrogen adsorption 
and desorption isotherms of NOCF indicate that it has a 
specific number of micropores and macropores, along with 
a larger specific surface area (20.8  m2 g−1) than those of 
CF (16.3  m2 g−1) and graphite sheets (GSs, 11.7  m2 g−1) 
(Fig. S2). Due to its large specific surface area and abundant 
nitrogen and oxygen atoms, NOCF exhibited a much higher 
adsorption capability for soluble polysulfides than those pro-
vided by 3D CF and 2D lamellar GS. SEM characterization 
revealed the well-preserved spring structure of the twisted 
fibers, indicating the origin of the excellent bending capabil-
ity of the Li–S fabric full batteries (Fig. 1c).

The chemical structure and composition of the NOCF 
are revealed by HRTEM and XPS. The TEM characteri-
zation confirms a distorted lattice fringe with an interlayer 
spacing of 0.37 nm, which corresponds to the interlayer 
spacing of the (200) plane of hexagonal graphite (Fig. 1d). 
The low-resolution TEM image (Fig. 1e) and correspond-
ing energy-dispersive X-ray spectroscopy (EDS) mapping 
(Fig. 1f, g) demonstrate that N and O are evenly distributed 
at the fiber surface of NOCF. Compared to the interlayer 
spacing (0.33 nm) of graphite, the slightly expanded spac-
ing of NOCF is related to the doping of N and O heter-
oatoms, which has been confirmed by high-resolution XPS, 
as shown in Fig. 1h and i. The XPS survey spectrum of 
NOCF confirms that the atomic contents of C, N, and O are 
88.7 at%, 3.4 at%, and 7.9 at%, respectively (Fig. S3). The 
C 1s and O 1s spectra demonstrate the presence of C–N 
(285.7 eV), C–O (288.0 eV), and C=O (530.7 eV) chemical 
bonds (Figs. 1h and S4). In addition, the fitted N 1s spec-
trum further demonstrates four peaks of N, corresponding 
to pyridinic N (398.4 eV), pyrrolic N (400.3 eV), quaternary 
N (402.1 eV), and the N of pyridine-N-oxide (403.6 eV), 
respectively. As a result, natural silk-derived NOCF, with 
the advantages of high electrical conductivity, large elastic 
strain, and abundant N/O dual-doping sites, is a promising 
material for fabricating flexible Li and S electrodes.

Subsequent to the thermal carbonization of the silk 
fibroin, a certain amount of Li metal was electrochemically 
plated on NOCF to yield the Li/NOCF anode. On the other 
hand, a slurry mixture containing SP binder, Ketjen black, 
and S was coated on NOCF to yield the SP/S/NOCF cath-
ode (Fig. 1a). Finally, the two fabric electrodes, together 
with a membrane separator (Celgard 2500) and ether-based 

electrolyte, were assembled into soft full cells and sealed 
with aluminum plastic film.

3.2  Plating/Stripping Behavior and Coulombic 
Efficiency of the Fabric Lithium Anode

NOCF possesses an excellent capability for stabilizing 
Li metal during the plating/stripping process. As a proof-
of-concept, we first estimated the energy barrier of Li 
nucleation onto NOCF by analyzing the nucleation over-
potential during the first electroplating process, in which 
the Li nucleation overpotential is defined as the difference 
between the sharp tip voltage and the later, stable mass-
transfer overpotential. When Li is plated onto bare Cu foil, 
a large nucleation overpotential of 93.7 mV is observed at 
a practical current density of 1.0 mA cm−2, which indicates 
an unfavorable interaction between the Cu foil and Li metal 
(Fig. 2a). In contrast, a much smaller nucleation overpo-
tential of 23.2 mV is revealed for the 3D structured host of 
CF. Unexpectedly, the nucleation overpotential for NOCF 
was only 13.2 mV, which can be ascribed to two facts: (1) 
the large surface area of the NOCF structure facilitates the 
reduction in local current densities [1, 4] and (2) abundant 
doped sites of N/O at the fiber surface of NOCF benefit the 
lithiophilic nucleation of Li metal [34, 38]. Electroplating 
on NOCF proceeds through a two-step process: initial  Li+ 
intercalation into NOCF at 0.9 V (vs. Li/Li+) and subsequent 
Li-metal deposition at the fiber surface of NOCF at nearly 
0 V. It can be observed that NOCF has a lithium insertion 
capacity of ~ 1.5 mAh  cm−2 at 1.0 mA cm−2. Therefore, in 
the subsequent lithium-metal deposition experiments and 
half-cell Coulombic efficiency tests, an additional 1.5 mAh 
 cm−2 of lithium will be deposited on NOCF to compensate 
for the lithium inserted in NOCF, making the amount of 
lithium deposited on the surface of NOCF consistent with 
that of the control samples (CF and Cu). When the plat-
ing capacity of Li metal reaches 3.0 mAh  cm−2, uniform 
Li-metal nanoparticles are clearly observed at the surface 
of each fiber (Figs. 2b and S5). At a plating capacity of 
6.0 mAh  cm−2, the initial small nanoparticles of Li metal 
became much larger and formed a thick coating layer at the 
fiber surface. After stripping 3.0 mAh  cm−2 of Li metal, 
large particles of Li metal were restored to their original 
state, indicating the high reversibility of Li metal during the 
plating/stripping process.
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Apart from the small nucleation overpotential during the 
first electroplating process, a low mass-transfer overpotential 
of Li metal is required for high CEs and long cycling stabil-
ity. Here, coin cells made of one pair of Li/NOCF anodes 
(electrode capacity: 9.0 mAh  cm−2) were stripped and plated 
in a partial capacity of 1.0 and 2.0 mAh  cm−2 (Figs. 2c, d, 
and S6). At a practical current density of 1.0 mA cm−2, the 
overpotential of the Li/NOCF symmetric cell started at a 
very low value of ~ 20 mV and continued to decrease until 
reaching ~ 15 mV at the  10th cycle and remained constant 
until reaching approximately 600 cycles (Fig. S6). When a 
plating capacity of 2.0 mAh  cm−2 was applied, the Li/NOCF 
symmetrical cell could still maintain stable voltage profiles 
with a small overpotential of 25 mV for > 250 cycles at a 
high current density of 2.0 mA cm−2. It was observed that 
the abundant lithiophilic N/O sites of NOCF can confine 
the deposits of metallic Li at the fiber surface and allow the 
continuous formation of Li nanoparticles instead of den-
drites (Figs. 2e, S7, and S8). In comparison, when one pair 
of anodes comprising Li on Cu foil (Li/Cu) or Li on CF 
(Li/CF) are assembled into symmetric coin cells, obvious 

dendrite formation is observed (Fig. 2f, g). In comparison, 
no deposits of Li metal are observed at the fiber surface 
of CF due to the poor affinity of Li metal to bare CF. The 
random deposits of Li metal observed for Li/CF led to a 
rapid overpotential increase and Li loss [18, 36]. For the Li/
Cu foil, the uncontrolled deposits of Li dendrites induced a 
violent fluctuation of overpotential at the 100th cycle and a 
sudden jump at the 150th cycle.

A high CE can be expected for the Li/NOCF anode due to 
the high stability of Li within the structured host of NOCF 
and the low operation overpotential discussed above. The CE 
of Li-metal anodes mainly depends on the stability of their 
SEI layer and the interfacial side reactions between the Li 
metal and current collectors [1]. As such, we recorded the 
CEs of various Li anodes, including Li/NOCF, Li/CF, and Li/
Cu, against Li foil during the full plating/stripping process. 
Various areal capacities of Li (including 1.0, 2.0, and 6.0 mAh 
 cm−2) were first fully plated and stripped at a current den-
sity of 1.0 mA cm−2 (Fig. 3a). With a cycling capacity of 1.0 
mAh  cm−2, a high initial CE of 95.5% was obtained in the first 
cycle, and an average CE of 99.4% was maintained for nearly 
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300 cycles. For Li/Cu, the CE rapidly dropped after only 70 
cycles, resulting from dendrite formation and SEI damage. Li/
CF exhibited a higher average CE than Li/Cu, indicating that a 
3D fabric structure with a large surface area can significantly 
reduce the local current density and stabilize the SEI layer [4]. 
Unfortunately, Li/CF suffers from a cycling fluctuation after 
the 90th cycle due to the formation of Li dendrites. Impres-
sively, even upon further increasing the cycling capacity to 2.0 
or 6.0 mAh  cm−2, the substrate of NOCF maintained a high 
average CE of 99.1% for 250 cycles or 99.0% for 100 cycles. 
With an increase in the current density to 2.0 mA cm−2, the 
NOCF also exhibits high CEs of 99.0% with a cycling capacity 
of 2 mAh  cm−2 and 98.5% with a cycling capacity of 8.0 mAh 
 cm−2 (Fig. 3b, c). As a result, the NOCF, with the advantages 
of a large-surface-area fabric structure, abundant lithiophilic 
N/O sites, and negligible interfacial side reactions exhibits a 
high cycling capacity of 8.0 mAh  cm−2, a large current density 
of 2.0 mA cm−2, and long-term cycling stability.

3.3  Structural and Cycling Stability of Fabric Sulfur 
Cathode

The excellent cycling stability of sulfur cathodes can be 
improved by the strong adsorption of dissolved polysulfides 
and the uniform anchoring of solid  Li2S [24–26]. To explore 
the adsorption capability of NOCF for liquid polysulfides, 
the same amounts of various substrates (NOCF, CF, and 

GS) were added to the yellow solution of dissolved  Li2S8 
in DOL/DME for checking the chemical adsorption capa-
bility (Fig. 4a). Upon comparing the adsorption rates and 
amounts of  Li2S8 for NOCF, CF, and GS, it was noted that 
NOCF adsorbed the largest amount at the fastest rate, dem-
onstrating its effective sulfiphilic interface. Apart from the 
adsorption of polysulfides, the kinetics of  Li2S nucleation 
and deposition were also investigated by potentiostatically 
discharging the  Li2S8 catholyte on various host materials, 
including NOCF, CF, and GS (Fig. 4b). The testing cell was 
assembled using the host material as the working electrode 
and Li foil as the counter electrode. Then, the testing cell 
was galvanostatically discharged to 2.05 V and then poten-
tiostatically discharged at 2.04 V. As such, NOCF exhib-
ited a much larger peak of discharging current and a much 
higher capacity (150.2 mAh  g−1) of  Li2S deposition than 
those of CF (117.5 mAh  g−1) and GS (34.3 mAh  g−1). In 
addition, the kinetics and morphology of  Li2S deposition 
were examined by monitoring the initial galvanostatic dis-
charge curves (Fig. 4c) of  Li2S8 with a small current density 
of 0.25 mA cm−2 and collecting the corresponding SEM 
images (Fig. 4d). The cell of NOCF versus Li foil exhibited a 
much higher capacity than the CF- and GS-containing cells, 
indicating that abundantly doping the fabric structure with 
N and O atoms offers more nucleation sites and a stronger 
ability for anchoring  Li2S deposits. As shown in Figs. 4d 
and S9, large amounts of uniform  Li2S nanoparticles were 
observed at each fiber surface of NOCF after discharging 
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 Li2S8, confirming the strong affinity of NOCF to  Li2S. In 
contrast, the CF with a large-surface-area fabric structure 
exhibited a non-uniform deposition of  Li2S nanosheets due 
to its low local current density (Figs. 4d and S9). For the 
planar substrate of GS, sparse and discrete deposits of  Li2S 
were obtained due to the poor affinity of GS to  Li2S (Figs. 4d 
and S9). As a result, the 3D fabric structure and abundant 
doping sites of N/O in NOCF promote the rapid kinetics of 
 Li2S nucleation and deposition.

In addition to the adsorption of polysulfides and strong 
anchoring of insulating  Li2S, the structural integrity of the 
sulfur cathode is important for long-term cycling stabil-
ity [37]. Here, a sulfiphilic SP binder with abundant N/O 

functional groups was prepared by boiling natural silk 
cocoons [44, 45] and was used for inserting S and Ketjen 
black into NOCF. As revealed by FTIR, the SP binder with 
a large amount of polar N/O-containing functional groups 
facilitates the adsorption of polysulfides and maintains the 
structural stability of the sulfur cathode via hydrogen-bond-
ing interactions (Figs. S10-S12). In addition, the adhesive 
strength of the sulfur cathode on the carbon-coated Al foil 
was also revealed by detaching the adhesive tape from the 
top surface of the sulfur cathode and subjecting it to nanoin-
dentation characterization. In addition, the SP binder could 
provide the sulfur cathode with a much stronger binding 
capability and a higher Young’s modulus than those of the 
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commonly used PVDF binder (Figs. S13 and S14). Further-
more, compared to those of cathodes with the PVDF binder, 
the sulfur cathode with the SP binder shows much higher 
specific capacities and stability at a high discharging rate 
of 1 C (Fig. S15). As a result, the SP binder with abundant 
sulfiphilic sites and strong binding capability is an ideal 
choice for realizing stable sulfur cathodes.

To enable a flexible sulfur cathode with high capacities, 
a mixture slurry of SP binder, S powder, and Ketjen black 
additive was uniformly inserted into the fabric structure of 
NOCF. With the dual-polarity design of the SP binder and 
NOCF collector, the achieved fabric sulfur cathode, SP/S/
NOCF, exhibited a satisfactory initial CE of > 99.7% after 
the activation process, which is much higher than those of 
SP/S/CF and SP/S/GS cathodes. The SP/S/NOCF cathode 
also shows a large specific capacity and small voltage polari-
zation, indicating strong adsorption of liquid polysulfides 
by SP and NOCF and rapid nucleation kinetics of solid  Li2S 
(Figs. 4e, S16, and S17). As revealed by SEM and S map-
ping (Fig. 4f–h), the active materials of S in the SP/S/NOCF 
cathode are uniformly distributed between the fibers in the 
direction of the thickness at a high S loading of 6.0 mg cm−2. 
The SP/S/NOCF cathode (vs. Li foil) also shows much bet-
ter cycling stability than that of the SP/S/CF and SP/S/GS 
cathodes owing to the dual-polarity design of SP and NOCF 
(Fig. 4i). The cycling stability of the sulfur cathode with 
various loadings from 2.6 to 6.0 mg cm−2 was also examined 
(Fig. 4j). At a high mass loading of 6.0 mg cm−2, the fabric 
SP/S/NOCF cathode exhibited a high areal capacity of 5.4 
mAh  cm−2 and maintained a high capacity retention of over 
85% after 100 cycles. Therefore, a fabric sulfur cathode with 
high areal capacities and stable cycling performance is suit-
able for fabricating flexible Li–S batteries when paired with 
a fabric Li-metal anode.

3.4  Cycling Stability and Flexibility of Lithium–Sulfur 
Full Batteries

To demonstrate the cycling stability and mechanical flex-
ibility of the fabric Li/NOCF anode and fabric SP/S/NOCF 
cathode, we stacked them with a polypropylene fabric to 
fabricate the full Li–S batteries. SP/S/NOCF cathodes with 
different sulfur loadings of 3.1, 4.2, and 5.1 mg cm−2 were 
paired with a limited amount of Li/NOCF anode (Fig. 5a). 
Importantly, both batteries with high and low mass loadings 

showed remarkable cell capacity and cycling stability. For 
example, the assembled fabric Li–S battery with a sulfur 
loading of 5.1 mg cm−2 and a limited Li excess of 90% 
exhibited large areal capacities of 5.6 mAh  cm−2 and a 
high capacity retention rate of > 80% after 100 cycles. The 
excellent cycling stability of the cell is due to the structural 
integrity of both the Li and S electrodes during the charge/
discharge process (Figs. S18-S22). Based on the total weight 
and volume of the entire cell, including the current collec-
tors, electrodes, and separators, the Li–S full battery could 
provide high cell energy densities of 694.1 and 457.2 Wh 
 L−1. Based on the total weight and volume of the pouch-cell 
model, including the current collectors, electrodes, separa-
tors, electrolytes, packaging materials, and metal tabs, the 
gravimetric and volumetric energy densities of Li–S full bat-
teries were theoretically calculated to be 146.1 Wh  kg−1 and 
457.2 Wh  L−1, respectively (Table S2). This result indicates 
that the future development of high-energy–density flexible 
Li–S full batteries requires not only the rational design of 
thin electrode materials, but also the use of limited Li excess 
and a lean electrolyte.

The fabric Li–S full battery is ideal for flexible and wear-
able applications. Here, various bending radii of 5.0, 4.0, 
and even 2.5 mm were applied when bending the fabric Li–S 
full cell (Fig. 5b). At a current density of 0.5 mA cm−2, no 
obvious capacity loss was observed for the fabric Li–S full 
cell (electrode size: 6.0 cm−2) during 3,000 bending cycles. 
At a practical current density of 1.0 mA cm−2, the cell could 
also maintain a high capacity retention of 75% during 6000 
bending cycles (150 charge/discharge cycles) with a bending 
radius of 5.0 mm, indicating the excellent bending capa-
bility and stability of both fabric electrodes (Fig. 5c). In 
contrast, Li foil-based (100 µm) Li–S full batteries showed 
serious capacity fading after 1000 bending cycles at a bend-
ing radius of 5.0 mm owing to the structural damage and 
mechanical fracture of the Li foil anode.

To reach the voltage and stability requirements for indus-
trial applications, two batteries with an electrode size of 
6.0 cm−2 were connected in series to yield an open circuit 
voltage of 4.2 V and a high areal capacity of 4.8 mAh  cm−2. 
The tandem cell was used to power a display screen of hun-
dred LEDs (trigger voltage: 3.7 V; size: 25 × 10  cm2), where 
the logo of “SUSTech” was clearly shown. Moreover, the 
fabric Li–S full cell also showed negligible fluctuations 
of output voltage (less than 50 mV) during 1500 flexing 
cycles (Fig. 5d), which is in accordance with the stability 



Nano-Micro Lett.           (2021) 13:84  Page 11 of 14    84 

1 3

requirements of industrial applications. In contrast, conven-
tional Li foil-based Li–S pouch cells exhibited large voltage 
fluctuations and failed when bent 300 times (r = 5.0 mm), 
which is ascribed to the low fatigue resistance of the Li foil 
anode. To further investigate the mechanical stability of the 
fabric Li–S batteries, an in situ dynamic bending test of 2200 
flexing cycles was carried out during the charge/discharge 
process at a bending rate of 10 mm s−1 (Fig. 5e). Overall, 
there is almost no shift in the charge/discharge curve, further 
indicating the excellent mechanical stability of the fabric 
Li–S full batteries. In earlier studies, most flexible Li–S 
batteries that were bent hundreds of times exhibited seri-
ous electrochemical instability during subsequent charge/
discharge processes. Since the ratio (Ea/r) of the areal energy 
density to the bending radius has been proposed as the fig-
ure of merit (FOM) for evaluating the performance of flex-
ible batteries [39], we plotted an FOM chart comparing our 
fabric Li–S full batteries with previously reported flexible 

lithium batteries (Fig. 5f) [3, 8, 46–52]. As a result, the 
fabric Li–S full battery exhibited a much higher FOM than 
those of reported flexible lithium batteries, demonstrating 
its superior properties. To the best of our knowledge, such 
flexible Li–S batteries, with a unique material design and 
excellent electrochemical and mechanical properties, have 
not yet been reported.

4  Conclusions

A cooperative strategy for stabilizing flexible Li–S full bat-
teries with a limited Li excess of 90% has been proposed 
that employs silk fibroin/sericin to simultaneously inhibit 
lithium dendrites, adsorb dissolved polysulfides, and anchor 
solid lithium sulfides. The fabric Li–S full cell exhibited a 
high volumetric energy density (457.2 Wh  L−1), excellent 
mechanical flexibility (6000 flexing cycles at 5 mm), and 
high capacity retention (99.8% per cycle). The excellent 
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performance of the flexible Li–S full cell can be ascribed 
to the use of a stable Li anode and S cathode. The fabric 
structure of NOCF simultaneously endowed the electrodes 
with mechanical flexibility and reduced their local current 
density. On the anode side, NOCF rendered the uniform 
deposition of Li nanoparticles instead of dendrites and led to 
an average CE of > 99.4% over 300 charge/discharge cycles. 
On the cathode side, dual-polarity designed NOCF and PS 
cooperatively adsorbed dissolved polysulfides and promoted 
the uniform anchoring of solid  Li2S, resulting in an excellent 
capacity retention of > 80% over 200 cycles. As a result, 
the trade-off between the electrochemical performance and 
mechanical flexibility of Li–S batteries was well resolved by 
the employment of rationally designed N/O-codoped fabrics. 
These materials and design principles can be applied to other 
flexible batteries (such as Li-ion batteries and Zn-metal bat-
teries) to provide them with excellent mechanical flexibility, 
high energy density, and long cycling stability.
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