Supporting Information for

Cryogenic Exfoliation of 2D Stanene Nanosheets for Cancer Theranostics

Jiang Ouyang^{1, 2, 3, #}, Ling Zhang^{3, #}, Leijiao Li⁴, Wei Chen¹, Zhongmin Tang¹, Xiaoyuan Ji¹, Chan Feng¹, Na Tao³, Na Kong¹, Tianfeng Chen^{2, *}, You-Nian Liu^{3, *}, Wei Tao^{1, *}

¹Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

²The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China

³College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China

⁴School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin Province, P. R. China

[#]J. Ouyang and L. Zhang contributed equally to this work

*Corresponding authors. E-mail: tchentf@jnu.edu.cn (T. F. Chen); liuyounian@csu.edu.cn (Y.-N. Liu); wtao@bwh.harvard.edu (W. Tao)

Supplementary Figures and Table

Fig. S1 Digital images of obtained SnNSs after exfoliation

Fig. S2 3D AFM image of SnNSs

Fig. S3 Dispersity of SnNSs and SnNSs@PEG in water, PBS, and DMEM medium after 24 h incubation

Fig. S4 Absorbance spectrum of SnNSs@PEG solution with various concentrations

Fig. S5 Temperature increment (Δ T) of SnNSs@PEG solutions with various concentrations after 5 min laser irradiation

Fig. S6 Normalized absorbance intensity of SnNSs@PEG divided by the optical distance (A/L) at various concentrations for λ =808 nm

Fig. S7 Absorbance spectrum of (a) SnNSs@PEG and (b) ICG before and after NIR laser irradiation

Fig. S8 Hemolysis of red blood cells (RBC) at various concentrations of SnNSs@PEG

Fig S9 Cytotoxicity of SnNSs@PEG against various cell lines at different concentrations after 48 h incubation

Fig. S10 Cell uptake of SnNSs@PEG (Scale bar = 40 μ m)

Fig. S11 Blood circulation profile of Cy5.5-SnNSs@PEG determined by absorption spectrum

Fig. S12 H&E staining of main organs after variuos treatments: G1: control, G2: NIR, G3: SnNSs@PEG, G4: SnNSs@PEG + NIR (Scale bar = $50 \ \mu m$)

Fig. S13 Blood biochemistry analysis of the mice after intravenous injection of SnNSs@PEG (20 mg kg⁻¹) at different intervals: (**a**) Red blood cells, (**b**) White blood cells (WBC), (**c**) Neutrophilic granulocyte percentage (NE%) (**d**) Red blood cell distribution width (RDW), (**e**) Lymphocyte Percentage (LY%), (**f**) Mean corpuscular hemoglobin (MCH), (**g**) Mean corpuscular hemoglobin concentration (MCHC), (**e**) Mean platelet volume (MPV)

Fig. S14 H&E staining of main organs from mice at different days post injection with SnNSs@PEG (Scale bar = $50 \ \mu m$)

Table S1 Photothermal conversion	efficacy of several	photothermal age	ents at 808 nm laser
irradiation			

Photothermal agents	Photothermal conversion efficacy (%)	References
Au nanorods	22.1	Angew. Chem. Int. Ed. 2013, 125, 4263-4267
Polypyrrole nanoparticles	45	Chem. Commun., 2012,48, 8934–8936
Dopamine-melanin colloidal nanospheres	40	Adv. Mater. 2013, 25, 1353-1359
WS ₂ nanosheets	32.8	Nanoscale,2014, 6,10394-10403
MoS ₂ nanosheets	24	ACS Nano 2014, 8, 6922-6933
BP quantum dots	28	Angew. Chem. Int. Ed. 2015, 54, 11526-11530
Bi ₂ Se ₃ nanosheets	34.6	Small 2016, 12, 4136–4145
WSe ₂ nanosheets	35.1	J. Mater. Chem. B, 2017, 5, 269278
Antimony quantum dots	45.5	Angew. Chem. Int. Ed. 2017, 56, 11896-11900
Ti ₃ C ₂ nanosheets	30.6	Nano Lett. 2017, 17, 384-391
Boron nanosheet	42.5	Adv. Mater. 2018, 30, 1803031
Germanene quantum dots	45.9	Angew. Chem. Int. Ed. 2019, 138, 13539-13544
Silicon quantum sheets	47.2	Sci. Bull. 2021, 66, 147-157