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Sniffing Bacteria with a Carbon‑Dot Artificial Nose

Nitzan Shauloff1, Ahiud Morag1, Karin Yaniv2, Seema Singh1, Ravit Malishev1, 
Ofra Paz‑Tal3, Lior Rokach4, Raz Jelinek1,5 *

HIGHLIGHTS 

• Novel artificial nose based upon electrode‑deposited carbon dots (C‑dots). Significant selectivity and sensitivity determined by “polar‑
ity matching” between the C‑dots and gas molecules.

• The C‑dot artificial nose facilitates, for the first time, real‑time, continuous monitoring of bacterial proliferation and discrimination 
among bacterial species, both between Gram‑positive and Gram‑negative bacteria and between specific strains.

• Machine learning algorithm furnishes excellent predictability both in the case of individual gases and for complex gas mixtures.

ABSTRACT Continuous, real‑time monitoring and identifica‑
tion of bacteria through detection of microbially emitted volatile 
molecules are highly sought albeit elusive goals. We introduce 
an artificial nose for sensing and distinguishing vapor molecules, 
based upon recording the capacitance of interdigitated elec‑
trodes (IDEs) coated with carbon dots (C‑dots) exhibiting differ‑
ent polarities. Exposure of the C‑dot‑IDEs to volatile molecules 
induced rapid capacitance changes that were intimately depend‑
ent upon the polarities of both gas molecules and the electrode‑
deposited C‑dots. We deciphered the mechanism of capacitance 
transformations, specifically substitution of electrode‑adsorbed 
water by gas molecules, with concomitant changes in capaci‑
tance related to both the polarity and dielectric constants of the vapor molecules tested. The C‑dot‑IDE gas sensor exhibited excellent 
selectivity, aided by application of machine learning algorithms. The capacitive C‑dot‑IDE sensor was employed to continuously monitor 
microbial proliferation, discriminating among bacteria through detection of distinctive “volatile compound fingerprint” for each bacterial 
species. The C‑dot‑IDE platform is robust, reusable, readily assembled from inexpensive building blocks and constitutes a versatile and 
powerful vehicle for gas sensing in general, bacterial monitoring in particular.
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1 Introduction

Bacteria are known to emit varied volatile molecules, which 
types and concentrations are strain‑dependent [1, 2]. Bac‑
terially produced volatile compounds such as alcohols, 
aldehydes, ketones and others have been used as microbial 
biomarkers [3, 4], and bacterially emitted volatile metabo‑
lite mixtures have been employed as distinctive “odor pro‑
file” vehicles for bacterial identification [5–7]. In particu‑
lar, colorimetric arrays for sensing volatile compounds have 
been developed, capable of distinguishing among different 
bacterial strains [8]. Optical and chemo‑resistive gas sens‑
ing methods have been also utilized for bacterial analysis, 
exploiting specific biomarkers [7, 9]. The fundamental limi‑
tation of these vapor‑based bacterial detection schemes is the 
fact that they cannot be employed for continuous monitor‑
ing, since samples need to be collected (usually manually) 
and analyzed ex situ. This facet precludes broad range of 
important bacterial sensing applications in healthcare, envi‑
ronmental monitoring and homeland security [10].

Among the diverse gas sensing technologies developed, 
“artificial noses” have attracted significant interest. Artifi‑
cial noses aim to effectively mimic the functionalities of the 
physiological organ, specifically its extraordinary selectiv‑
ity among different vapor molecules and gas mixtures [11]. 
Reported artificial nose platforms have relied on different 
physical mechanisms, such as changes of electrical resist‑
ance in conductivity sensors [11–15], absorption and des‑
orption of heat in calorimetric sensors [16] and changes of 
electrical conductance in semiconductor field effect transis‑
tors [17, 18]. In this work, we fabricated an artificial nose 
based on carbon dots (C‑dots) as the principle capacitance 
sensing determinant. C‑dots, nanometer‑scale carbonaceous 
nanoparticle, have been demonstrated as a powerful and ver‑
satile vehicle for sensing applications [19, 20]. In almost 
all instances, C‑dot‑based sensors have relied on the unique 
optical (particularly fluorescent) properties of these nanopar‑
ticles [21, 22]. Electrochemical and electronic C‑dot sensors 
have been also reported [23, 24]. Varied C‑dot platforms 
have been developed for sensing volatile compounds [25, 
26], and C‑dot‑mediated electronic noses for vapor detection 
were also reported [27].

The artificial nose presented here comprises of interdigi‑
tated electrodes (IDEs) coated with C‑dots exhibiting dif‑
ferent polarities, providing a distinctive sensing platform 

and specificity mechanism. The C‑dot‑IDEs featured dis‑
tinct capacitance changes that were rapidly induced upon 
exposure to different gas targets. Importantly, application 
of a simple machine learning model utilizing the capacitive 
response of the C‑dot‑IDE artificial nose facilitated excellent 
prediction capabilities for both individual gases as well as 
in gas mixtures. The mechanism accounting for the vapor 
sensing was deciphered through impedance spectroscopy 
analysis, indicating that matching between the polarities of 
the gas molecules and electrode‑deposited C‑dots constitutes 
the primary sensing determinant. The C‑dot‑IDE capacitive 
artificial nose has been successfully applied for continuous 
monitoring and discriminating among bacteria, underscoring 
the sensor availability as a generic platform for non‑invasive 
bacterial growth detection.

2  Experimental Section

2.1  Materials

Urea, p‑phenylenediamine, citric acid, cobalt chloride hexa‑
hydrate  (CoCl2·6H2O), lithium chloride  (LiCl2), magnesium 
chloride  (MgCl2), potassium carbonate  (K2CO3), sodium 
chloride (NaCl), potassium chloride (KCl), potassium sulfate 
 (K2SO4), toluene, n‑hexane, dimethyl formamide, ethyl ace‑
tate, methanol and ammonium were purchased from Sigma‑
Aldrich. Luria–Bertani (LB) agar was purchased from 
Pronadisa (Spain). Interdigitated gold electrodes (Dimen‑
sions: 10 × 6 × 0.75  mm3; glass substrate; Insulating layer: 
EPON SU8 resin; electrode material: Au; electrode thick‑
ness: 150 nm; microelectrode with: 10 μm, microelectrode 
gap: 10 μm; number of fingers: 90 pairs) were purchased 
from MicruX Technologies (Oviedo, Spain). The bacteria 
used in the studies were Escherichia coli DH10B wild type, 
Pseudomonas aeruginosa PAO1 wild type, Bacillus subtilis 
PY79 and Staphylococcus aureus wild type strains (gener‑
ously provided by Prof. Ariel Kushmaro, Ben Gurion Uni‑
versity). Ultrapure distilled water (Millipore) was used in 
all experiments.

2.2  Synthesis of C‑dots

Synthesis of the C‑dots employed a modified reported pro‑
cedure for construction of multiple polarity C‑dots [28]. 
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Briefly, 0.2 g of urea, 0.1 g of citric acid and 0.2 g of p‑ 
phenylenediamine were dissolved in 50 mL of distilled 
water. The solution was subsequently heated at 180 °C for 
10 h in a Teflon autoclave. Following cooling to room tem‑
perature, the suspension was centrifuged twice for 5 min 
at 11,000 rpm for discarding larger aggregates. The result‑
ant solution was purified via silica column chromatography 
using a mixture of toluene and methanol as the eluent. After 
collecting the different fluorescent C‑dots, exhibiting dif‑
ferent colors/polarities, the C‑dots were dispersed in water 
prior to electrode deposition.

2.3  C‑dot‑IDE Sensor Construction

To prepare the C‑dot‑IDE capacitive electrodes, we utilized 
a recently developed protocol [29]. Briefly, C‑dot suspen‑
sions in water (2 mg  mL−1) were sonicated for 5 min, drop‑
casted (15 µL) on the interdigitated electrodes (IDEs) and 
left to dry overnight under room temperature. The resultant 
electrodes were kept at room temperature in  N2 environment 
prior to measurements.

2.4  Characterization

2.4.1  Atomic Force Microscopy

Atomic force microscopy (AFM) images were collected 
in AC‑mode (tapping mode), with a Cypher‑ES, asylum 
research (oxford instrument) model, using an AC 160 TS 
(Olympus) probe, with a tip radius of 9 nm and a force con‑
stant of approximately 26 Nm − 1. The C‑dots‑IDE sample 
and a control IDE sample were measured at the capacitor 
detecting area between the gold IDE electrodes.

2.4.2  Water Contact Angle

Carbon‑dot hydrophobicity was determined using a con‑
tact angle meter (Attension Theta Lite, Biolin Scientific, 
Finland). The contact angles were measured by 5 μL water 
deposition on the surface of deposited C‑dot samples and 
a control sample. The average water contact angle (WCA) 
was calculated.

2.5  Vapor Sensing

The gas apparatus setup for vapor generation and sensing 
(Scheme S1) was based on a recent publication [29]. Briefly, for 
the vapor sensing experiments, we used an inert gas carrier‑dry 
nitrogen, split into two components: one carrier flow bubbling 
through the volatile organic compounds (n‑hexane, toluene, 
dimethylformamide, ethyl acetate, methanol, ammonium) at 
variable rates. The C‑dot‑IDE electrodes were placed in the 
detection chamber, connected to an LCR meter (Keysight Tech‑
nologies, E4980AL Precision LCR Meter), to detect capaci‑
tance changes. Vapor concentrations were determined by gas 
chromatography–mass spectrometry (Agilent 7890B/5977A 
Series Gas Chromatograph/Mass‑Selective Detector); with a 
range of 5 to 95 ppmv. In order to calibrate the vapor concentra‑
tion, we used a mass flow controller (MFC) in order to deter‑
mine the exact concentrations in correlation with the GC–MS 
calibration curves. For producing different relative humidity 
(RH) environments, we bubbled saturated aqueous solutions of 
different salts (potassium carbonate, cobalt chloride and potas‑
sium sulfate, for generating RH = 43%, 64% and 97%, respec‑
tively) in a closed glass vessel, under a constant temperature 
(25 °C). RH values that confirmed using a standard humidity 
sensor (TH 210, KIMO, Instruments, France), connected to the 
C‑dot‑IDE chamber. All gas sensing measurements were con‑
ducted at 64% RH. Prior the examination each of the electrodes 
was saturated at 64% RH.

Capacitive measurements were performed using 35 
ppmv gas concentrations under standard conditions at 
room temperature upon exposure of the C‑dot‑IDE elec‑
trodes to the target vapor. Capacitance values that recorded 
after producing a clear baseline with exposure to 64% RH, 
collecting the data every 1.3 s. The changes in capaci‑
tance were recorded upon addition to different vapor ana‑
lytes through generation at specific flows (calibrated to 
the desired gas concentration). After reaching saturated 
capacitance values gas molecules were removed by flush‑
ing with  N2 gas passing through an aqueous  CoCl2 satu‑
rated solution (producing RH = 64% vapor).

2.6  Bacterial Growth and Vapor Sensing

The four bacterial strains were cultured in Luria–Bertani 
(LB) medium at 37 and 28 °C for gram‑negative and gram‑
positive bacteria, respectively. Single bacterial colonies 
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from LB agar plates were inoculated into 10 mL of LB 
broth and maintained at the proper temperatures (37 or 
28 °C) for 12 h in a shaking incubator (220 rpm). The 
concentration of bacteria in the medium was obtained by 
measuring the optical density at 600 nm (OD 600). When 
the OD 600 reached 0.5, 50 µL from the bacterial cultures 
was grown on solid LB agar in 20 mL vials maintained 
at a constant temperature. Bacterial gas emissions were 
monitored by placing the electrodes 2.5 cm above the sam‑
ples. The initial capacitance was taken, proceeding with 
measuring the capacitance change in different time points.

2.7  Data Analysis

The IDE capacitance value is defined as:

C is capacitance in farads (F), η is the number of fingers, 
ε0 is the permittivity of free space (ε0 = 8.854 ×  10−12 F  m−1), 
εr is the relative permittivity, usually known as the dielectric 
constant, l is the length of interdigital electrodes, t is the thick‑
ness of interdigital electrodes and d is the distance between the 
electrodes. The IDEs capacitive sensing is lean on modulations 
of the dielectric constant of the material placed upon the elec‑
trode. The dielectric constant is modulated with absorption 
of different gas analytes, causing capacitance changes effect.

The capacitance response of the sensors—ΔC—was defined 
as Cgas–C0, where Cgas and C0 are, the saturated capacitance 
value after addition of the gas analyte measured under the 
same humidity (64% RH) in a specific concentration and the 
capacitance baseline value measured at 64% RH, respectively. 
The baseline was adjusted as 0 nF in order to compare between 
the electrodes (as all electrode presented a high initial capaci‑
tance value in nF units).

2.8  Gas Chromatography–Mass Spectrometry

Gas chromatography–mass spectrometry (GC–MS) was 
used to detect the analyte concertation at a specific flow 
rate (controlled with the mass flow controller). The unit’s 
Agilent 7890B GC was connected to an Agilent 5977A 
single‑quadrupole mass‑selective detector. The instru‑
ment is equipped with a 100‑vial autosampler, an NIST02 
MS and an ACD Labs MS Manager (software package for 

(1)C = ��
0
�r

lt

d

mass‑spectra interpretation and structure elucidation). Col‑
umn type ‑ 35% phenyl methyl siloxane for MS; length 30 m; 
0.25 mm, I.D. & 0.25 µm film thickness; temperature was 
programmed at 25 °C for 1 min to 70 °C at 3 °C  min−1 to 
280 °C at 10 °C  min−1. Transfer line temperature 280 °C and 
total run time is 37 min. The carrier (Helium) gas flow rate 
of 2 mL  min−1 was applied. Sample analysis was carried out 
by solution (calibration) and vapor injecting (Splitless) 20 
µL sample size into the GC.

Concentration determination—for each analyte, we cre‑
ated a calibration curve with a known concentration (5 – 95 
ppmv) dissolved in a suitable organic solvent. High purity 
solvents were used in order to prepare the standard solu‑
tions (toluene, n‑hexane, dimethyl formamide, ethyl acetate, 
butanol and ammonium with ≥ 99% purity). All standards 
were prepared in methanol solution, except of the methanol 
standard which was prepared in acetonitrile. To construct 
the calibration curves, the results were quantified based 
on peak area using the extracted ion method performed by 
Masshunter qualitative analysis software. The target peak 
assignments were confirmed with the pure materials [29]. 
Analyte vapors were measured in different flow rates and 
examined using GC–MS in injection mode. The flow rates 
were then adjusted to produce 35 ppmv gas concentrations 
for each examined analyte.

2.9  Impedance Measurements

Complex impedance spectra were conducted between 
1 Hz–100 kHz for C‑dot‑IDEs kept at different humid‑
ity values by using a LCR meter (Keysight Technologies, 
E4980AL Precision LCR Meter) with testing voltage of 1 V 
at room temperature. To set up different RH environments, 
saturated aqueous of  K2CO3,  CoCl2,  K2SO4 was placed 
in airtight glass vessels at a temperature of 25 °C, which 
yielded atmospheres with RHs 43%, 64% and 97%. each 
electrode was placed inside the detection chamber, con‑
nected to an LCR meter measuring Z’ and Z’’, the real and 
imaginary value of the impedance, respectively, using the 
follow impedance equation:

where R is the resistance, f is the frequency and C is the 
capacitance.

(2)Z = Z�
+ Z��

= R +
1

i ⋅ 2�f ⋅ C
= R −

i
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2.10  Machine Learning (ML)

In order to report an unbiased and reliable estimate for the 
machine learning (ML) model accuracy, we used the leave‑
one‑out cross‑validation procedure (Wong 2015), as recom‑
mended by Beleites and Salzer (2008) for evaluating chemo‑
metric models in small sample sizes [30]. The leave‑one‑out 
procedure is performed by training the model N times, where 
N is the number of different sensors’ readings. In each train‑
ing repetition, we trained the model with all readings except 
for one that is used to evaluate its predictive performance. 
Notably, each available reading is used only once for evaluat‑
ing the model. The leave‑one‑out cross‑validation procedure 
allows us to use the largest available training set (N‑1) and 
achieve an unbiased estimate of the accuracy [31].

3  Results and Discussion

3.1  Experimental Strategy

The objective of this study is to design a simple, sensi‑
tive artificial nose for continuous monitoring of vapor 

molecules. Scheme 1 illustrates the design of the C‑dot‑
based capacitive vapor sensor. C‑dots exhibiting differ‑
ent polarities were synthesized from para‑phenyl diamine, 
urea and citric acid as the carbonaceous precursors and 
separated according to polarity by liquid chromatography 
[28]. Specifically, the blue C‑dots displayed lower abun‑
dance of polar units on their surface, while the orange 
C‑dots and more so the red C‑dots contained higher 
concentrations of polar residues such as hydroxyl, car‑
boxyl and amines [32, 33]. (The distinct colors of the 
chromatography‑separated C‑dot solutions are shown 
in Scheme 1.) The isolated C‑dots, exhibiting different 
polarities and colors, were each drop‑casted on commer‑
cially available interdigitated electrodes (IDEs; Scheme 1, 
middle). As outlined in Scheme 1 (right), the capacitance 
measured by the C‑dot‑IDEs was altered upon exposure of 
the C‑dot‑IDEs to gas molecules. Importantly, the extent 
and direction (e.g., increase or decrease) of the capaci‑
tance changes were significantly different for each C‑dot‑
IDE electrode, depending upon the polarities of both the 
C‑dots species deposited as well as the gas molecules 
detected.
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Scheme 1  Fabrication of the carbon‑dot‑interdigitated electrode capacitive vapor sensors. C‑dots are separated according to color/polarity using 
liquid chromatography and deposited on commercially available IDEs. Distinct capacitance changes are recorded upon exposure of the C‑dot‑
IDEs to vapor molecules, depending upon the types of C‑dots deposited and gas molecules
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3.2  Characterization of the Carbon‑Dot‑interdigitated 
Electrodes

Figure 1 depicts characterization of the C‑dot‑IDE sys‑
tem, particularly examining incorporation of the C‑dots 
upon the electrode surface and their effects. (Microscopic, 
spectroscopic and thermodynamic characterization of the 
C‑dots employed in the experiments are presented in Figs. 
S1–S5.) The atomic force microscopy (AFM) images in 
Fig. 1a attest to deposition of ubiquitous C‑dots at the 
space between the gold fingers comprising the interdigi‑
tated “comb”. (A smooth surface between the IDE fingers 
was observed in the AFM analysis of control electrodes 
prior to C‑dot deposition, Fig. S6.) The diameters of the 
C‑dots were on the order of 5 nm, as apparent in the AFM 
height profile in Fig. 1a, right.

Figure 1b presents the water contact angle (WCA) of IDEs 
coated with the different C‑dots, confirming the significant 
effect of C‑dot polarity upon the macroscopic IDE surface 
properties. Indeed, Fig. 2b attests to a direct relationship 
between surface polarity of the C‑dots and the degree of 

hydrophobicity of the electrode. For example, the WCA of 
an electrode coated with red C‑dots, which exhibit the high‑
est polarity among C‑dots employed, decreased from  30° to 
 23° (Fig. 2b), reflecting the abundant polar units upon the 
C‑dots. In comparison, the WCA increased to  58° and  74° in 
the IDEs coated with orange C‑dots and blue C‑dots, respec‑
tively, accounting for the lower polarities of these C‑dots 
which affect more pronounced electrode hydrophobicity.

3.3  Sensing Volatile Organic Compounds 
with the C‑dot‑IDE Capacitive Sensors

Figure 2 depicts the capacitance profiles of the C‑dot‑IDEs 
measured upon exposure to different gases. Figure 2a illus‑
trates the capacitance curves recorded for the three C‑dot‑
IDEs sensors upon exposure to toluene (representing a non‑
polar gas molecule), dimethylformamide (DMF, exhibiting 
medium polarity) and ammonia (high polarity molecule). 
The C‑dot‑IDEs were initially exposed to 64% humidity (at 
room temperature), resulting in adsorption and equilibration 
of water molecules onto the C‑dot‑coated electrode surface; 
the direct relationship between the capacitance values and 
degree of humidity is outlined in Fig. S7. Figure 2a depicts 
the capacitance changes induced by the three gas molecules 
in each electrode. Both toluene and dimethylformamide 
(DMF) induced lowering of the capacitance, albeit by dif‑
ferent degrees depending upon the C‑dots deposited. In con‑
trast, ammonia gave rise to higher capacitance in all three 
electrodes (Fig. 2a). A comprehensive mechanistic analysis 
accounting to the different capacitance response profiles is 
provided below (Fig. 3).

Importantly, the capacitance curves in Fig. 2a under‑
score rapid capacitance response (depending on gas spe‑
cies), revealing fast response times of between 10–100 s 
and recovery times in the range of 50–200 s. (Table S1 
summarizes the C‑dot‑IDE sensors’ response and recov‑
ery time values of the electrodes and analytes presented 
in Fig. 2a.) Such capacitance response is among the fast‑
est recorded for capacitive vapor sensors and accounts for 
rapid adsorption of gas molecules onto the electrode sur‑
face. Furthermore, Fig. 2a also demonstrates that purging 
the C‑dot‑IDE with air (at 64% humidity) resurrected the 
initial capacitance values facilitating reusability of C‑dot‑
IDE sensor for multiple measurements. Reusability of the 
C‑dot‑IDE sensor in a prolonged time scale (up to 30 days) 
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Fig. 1  Characterization of the carbon‑dot‑IDE sensors. a Optical 
image of the IDE (left) and atomic force microscopy (AFM) images 
showing ubiquitous C‑dots deposited upon the IDE surface between 
the gold fingers. b Water contact angles (WCA) recorded for the 
three C‑dot‑IDEs. The control sample corresponds to an IDE without 
deposited C‑dots. (Color figure online)
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is demonstrated in Fig. S10. Further analysis of tempera‑
ture effects (Fig. S10) indicates that the sensor response 
is sensitive to temperature variations only above 45 °C, 
although the excellent sensitivity even in very high tem‑
perature was retained.

Figure 2b presents the capacitive dose–response graphs 
recorded upon exposure of the red C‑dot‑IDE to different 
concentrations of  NH3and DMF vapors [the concentrations 
were determined by gas chromatography–mass spectrom‑
etry (GC–MS)]. The ammonia dose–response analysis in 
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Fig. 2  Capacitive response of the carbon‑dot‑IDE sensors to gas vapors. a Capacitive transformation recorded for the red C‑dot‑IDE, orange 
C‑dot‑IDE and blue C‑dot‑IDE, respectively, upon exposure and subsequent purging of gas molecules. (Concentrations of all vapor molecules 
were 35 ppmv, determined by GC–MS.) The arrows indicate times of gas injection. Purging of the gases was carried out after the capacitance 
reached plateaus. The capacitance of a control IDE electrode without C‑dot deposited was not affected by humidity nor VOC. b Capacitive 
dose–response curves for (i)  NH3, and (ii) DMF recorded for the red C‑dot‑IDE sensor. Linear fittings of the datapoints are presented;  R2 above 
0.98 was obtained in all linear fits. c Bar diagram depicting the capacitance changes at saturation following exposure of the C‑dot‑IDEs to gas 
molecules at a concentration of 35 ppmv. The bars represent an average value of five replicates per each electrode. (Color figure online)
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Fig. 2b‑i reveals two linear regions, one between 0 and 50 
ppmv and another linearity between 50 and 100 ppmv. The 
two linear capacitive response domains likely correspond 
to different mechanisms of ammonia adsorption onto the 
C‑dot‑IDE surface; indeed, distinct  NH3 concentration‑
dependent surface‑adsorption regimes have been reported, 
indicating  NH3 monolayer formation in low concentra‑
tions, multilayer assembly in higher ammonia concentra‑
tions [34–36]. In the case of exposure of the red C‑dot‑IDE 
sensor to DMF, a single linear dependence was apparent 
(Fig. 2b‑ii) likely reflecting a single adsorption process of 
the DMF molecules. Note the negative capacitance change 
recorded, accounting for the lower dielectric constant of the 
DMF gas molecules adsorbed on the electrode surface. Both 
dose–response curves in Fig. 2b demonstrate a detection 
threshold of around 5 ppmv, underlying an excellent sen‑
sitivity of the C‑dot‑IDE platform. Close inspection of the 
dose–response curves in Fig. 2b reveals detection limits of 
around 3 ppm. Notably, the device could detect even lower 
vapor concentrations, essentially determined by the gas flow 
rate apparatus (see Experimental Section).

The bar diagram in Fig. 2c summarizes the capacitance 
response signals induced in all three electrodes by gas target 

molecules spanning a wide polarity range. (Concentrations 
of all gases were 35 ppmv; Table S2 presents the capacitance 
response values of all electrodes.) The diagram in Fig. 2c 
reveals significant variations of capacitance responses for 
each gas target (i.e., capacitive “fingerprints”), dependent 
both upon the polarity of the gas molecules as well as the 
polarity of C‑dots deposited on the electrode surface. For 
example, the sensor comprising blue C‑dots exhibited sig‑
nificant negative capacitance signals upon addition of the 
relatively non‑polar gases ethyl acetate, toluene or hexane, 
while the more polar gas molecules, such as ammonia, meth‑
anol or butanol, affected less capacitance decreases (or a 
capacitance increase in the case of ammonia).

Importantly, the capacitive response data in Fig. 2c indi‑
cate that correlation between the polarities of gas mole‑
cules and the electrode‑deposited C‑dots constitutes a core 
determinant affecting both the magnitude of the sensor 
signals and their direction (negative/positive). For exam‑
ple, while Fig. 2c reveals that the IDE sensor coated with 
the non‑polar blue C‑dots displayed the most pronounced 
(negative) capacitance signals in the case of the non‑polar 
gases toluene and hexane, the highly polar red C‑dot‑IDE 
electrode exhibited the highest (and positive) capacitance 

Fig. 3  Impedance spectroscopy of the carbon‑dot‑IDEs upon exposure to different vapors. a Nyquist plots of the orange C‑dot‑IDE recorded in 
the indicated relative humidity (RH) levels. b Nyquist plots of the orange C‑dot‑IDE recorded following exposure to different gas molecules (RH 
was 64%; concentrations of gas molecules were all 35 ppmv). (Color figure online)
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changes upon exposure to the polar gases ammonia and 
methanol. Interestingly, the orange C‑dot‑IDE sensor 
electrode featured the highest sensitivity (e.g., most pro‑
nounced capacitance decrease) toward ethyl acetate and 
DMF, which exhibit intermediate polarity among the gases 
examined. While recent studies have reported polarity‑
based modulation of C‑dots’ optical properties [37], the 
data in Fig. 2 are the first example of macroscopic, coop‑
erative effect of polarity‑dependent transformations occur‑
ring in C‑dot systems.

3.4  Machine Learning Algorithm Application

The capacitive response profiles of the gas molecules 
using the C‑dot‑IDE electrode systems outlined in Fig. 2 
can be employed for selective detection of gas targets 
through a machine learning (ML)‑based detection model, 
demonstrating applicability of the sensors an effective 
“artificial nose” (Table 1). Specifically, in the ML strat‑
egy employed, the capacitance change values obtained for 
the different electrodes were used as input attributes for 
training a model designed to identify which gas molecule 
induces a given sensors’ reading. Specifically, instead of 
training a dedicated binary model for each gas separately, 
the gas identification scheme we implemented is formu‑
lated as a multi‑label classification task. With this model, 
a single sensors’ reading may be simultaneously assigned 
to many labels (gases). In particular, a multi‑label classi‑
fier can better capture the statistical interactions among 
electrodes’ values in the presence of gas mixtures. Specifi‑
cally, we employed a Rakel ++ algorithm [38] that solves a 
multi‑label classification task by constructing an ensemble 
of models, each of which considers a random subset of 
gases. For training every base model, we used the “random 
forest” algorithm [39] that train many decision trees inde‑
pendently while injecting randomness to ensure diversity 
among the trees. We focused on a random forest because 
this approach fits well to a relatively limited number of 
readings (as is the case here), excluding application of 
other machine learning methods (such as deep learning) 
that require much larger training sets [30].

Table 1 underscores the excellent predictive performance 
of the ML‑based model applied here. (Details of applica‑
tion of the ML model to the capacitive response data are 

provided in the Experimental Section.) Specifically, Table 1 
indicates that the “accuracy” values obtained (correspond‑
ing to the proportion of correct detections, both “true posi‑
tives” and “true negatives”, among all examined cases) 
were almost all above 80%, with an average approaching 
90%, indicating relatively accurate prediction of the gas 
molecule detected. Similarly, the AUCs, areas under the 
receiver operating characteristic (ROC) curves which reflect 
the trade‑off between the true positive rate and false positive 
rate; Fig. S11 presents the ROC curves of all gases) were 
on the order of 0.9 (average of 0.87), indicating satisfactory 
“true positive” predictions even in stringent thresholds.

Table 1 further demonstrates that the ML model utiliz‑
ing the C‑dot‑IDE capacitive signals can also accurately 
predict gas mixture compositions. (Figure S12 presents 
the capacitance data obtained for the gas mixtures.) To 
account for this aspect, we evaluated the “subset accuracy” 
– a very strict evaluation parameter requiring that the pre‑
dicted set of gases in a mixture be an exact match of the 
true set of gases (for example, detecting only some of the 
gases, or detecting extra gases are considered to be a mis‑
detection) [40]. Importantly, as shown in Table 1, the ML 

Table 1  Predictive accuracy of the machine learning (ML) model

Accuracy: percentage of correct predictions (both “true positive” 
and “true negative”) out of the total readings. AUC : area under the 
receiver operating characteristic (ROC) curve, accounting for the 
quality of prediction of “true positive” vs “false positive” readings. 
The upper part of the table presents the predictive performance of 
the ML model for each gas individually, and the lower part shows the 
subset accuracy of correctly detecting different gas mixtures

Gas tested Accuracy (correctly 
classified instances)

AUC (Area under 
the ROC curve)

Ammonia 100% 1.00
BuOH 80.5% 0.92
DMF 87.5% 0.95
EtAc 87.8% 0.73
Hexane 78.05% 0.83
MeOH 97.6% 0.99
Toluene 90.2% 0.92
Average 88.7% 0.87
Gas mixture tested Subset accuracy
Hexane + Toluene 85%
BuOH + DMF 83%
Hexane + Tolu‑

ene + BuOH + DMF
81%

Average 83%
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model reached a relatively high average subset accuracy of 
83%. Such a predictive performance underscores the capa‑
bility of the C‑dot‑IDE platform to detect individual gas 
targets in mixtures. Overall, the ML analysis outlined in 
Table 1 underscores an excellent predictive performance, 
on par or better than reported ML applications in chemo‑
metrics [41–43].

3.5  Mechanistic Analysis

To decipher the mechanistic basis for the remarkable selec‑
tivity and sensitivity of the C‑dot‑IDE capacitive gas sensor, 
we carried out an electrochemical impedance spectroscopy 
analysis [44] (Fig. 3). In general, impedance measured in 
capacitive systems strongly depends upon charge transfer 
processes occurring at the electrode‑vapor interface. As 
such, impedance spectroscopy exhibits pronounced sensi‑
tivity to electrode surface properties and illuminates sur‑
face properties and processes occurring through adsorption 
of gas molecules [45]. Figure 3a depicts the Nyquist plots 
recorded for the orange C‑dot‑IDE in different humidity 
conditions (i.e., different RH values). The semicircle diam‑
eters in the Nyquist plots depicted in Fig. 3a account for 
the charge transfer resistance (Rct) at the electrode surface. 
Importantly, Fig. 3a demonstrates that placing the C‑dot‑
IDE in higher humidity environments gave rise to lower Rct 
(i.e., smaller semicircle diameter; the Rct values calculated 
from the impedance spectra are presented in Table S3).

The close relationship between humidity and charge trans‑
fer resistance reflects affinity of water molecules onto the 
electrode surface, particularly docking of the adsorbed water 
molecules upon the polar residues (primarily OH and COOH 
units) on the C‑dots’ surface [46, 47]. As such, higher con‑
centrations of physically adsorbed water molecules upon the 
C‑dot‑IDE surface would give rise to smaller Rct due to 
the conductive nature of water molecules [48]. Indeed, an 
almost linear relationship between the real and imaginary 
impedance values (i.e., diminished semicircle correspond‑
ing to very small Rct) was apparent in the case of RH = 97%, 
ascribed to the substantial concentration of water molecules 
adsorbed on the C‑dot‑IDE surface.

Figure  3b presents the Nyquist plots recorded at 
RH = 64% for the orange C‑dot‑IDE following exposure to 
different gases. (Gas concentrations were 35 ppmv; imped‑
ance data for other gases tested in this work are presented 

in Fig. S13.) Figure 3b reveals a close relationship between 
the polarities of gas molecules and impedance changes. Spe‑
cifically, exposure to DMF, BuOH and toluene gave rise to 
significantly more pronounced Rct (e.g., wider semicircles; 
the Rct values extracted from the Nyquist plots are outlined 
in Table S1). The mechanistic picture emerging from the 
impedance spectroscopy data in Fig. 3b underscores sub‑
stitution of electrode surface‑adsorbed water by the vapor 
molecules. Specifically, two factors shape the capacitance 
changes and their magnitude. When adsorbed water mol‑
ecules are substituted by gases exhibiting lower polarities 
and lower dielectric constants than water—DMF, BuOH and 
toluene – Rct decreased (ascribed to the presence of less‑
polar adsorbed molecules) and in parallel the capacitance 
became more negative (accounting for the lower dielectric 
constants of the adsorbed molecular layers). Crucially, the 
extent of water substitution in the C‑dot‑IDEs depends upon 
“matching” between the polarity of the electrode‑displayed 
C‑dots and vapor molecules. For example, the Rct (Fig. 3b) 
and capacitance change (Fig. 2c) induced by DMF in the 
case of the orange C‑dot‑IDE sensor were much more pro‑
nounced than toluene although DMF exhibits higher polarity 
and larger dielectric constant then toluene. This result is 
due to better matching between the polarities of DMF and 
orange C‑dots.

In contrast to the relatively low polarity DMF, BuOH 
and toluene, ammonia is highly polar and gave rise to a 
lower Rct (lower‑diameter semicircle, Fig. 3b, black curve). 
The enhanced conductance in this case is ascribed to for‑
mation of an ammonia layer physically adsorbed upon 
the water layer [49, 50]. Such a “double layer” ammonia 
adsorption, previously reported on metal surfaces [34], 
is due to the extensive hydrogen bonding between the 
adsorbed ammonia molecules and deposited water. This 
phenomenon also accounts to the more pronounced dielec‑
tric constant and concomitant higher capacitance recorded 
(i.e., Fig. 2c).

3.6  C‑dot‑IDA Artificial Nose for Bacterial Sensing

Figure 4 demonstrates utilization of the C‑dot‑IDE artificial 
nose for both continuous monitoring of bacterial prolifera‑
tion as well as identification of bacterial species. Figure 4a 
illustrates the experimental setup. A C‑dot‑IDE sensor was 
placed short distance above a surface (solid agar matrix) on 
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which bacteria were allowed to proliferate. Capacitive sig‑
nals induced by volatile compounds released by the growing 
bacteria were continuously monitored, yielding a real‑time 
inline profile of bacterially emitted gas molecules. Impor‑
tantly, while the scheme in Fig. 4a presents a simplified 
scheme of the bacterial sensing experiment through emitted 
bacterial metabolites. In essence, an array comprising dif‑
ferent electrodes (blue C‑dot‑IDE, orange C‑dot‑IDE, red 
C‑dot‑IDE) can be employed simultaneously, serving as an 
artificial nose for bacterial detection with a multichannel 
recording.

Figure 4b presents capacitance response curves induced 
by volatile compounds emitted by different bacterial stains 
through using the C‑dot‑IDE artificial nose. The graphs in 
Fig. 4b show the capacitance increase or decrease induced 
in the three C‑dot‑IDE sensors (comprising blue C‑dots, 
orange C‑dots and red C‑dots, respectively) upon exposure 
to the same quantity of bacterial cells initially placed upon 
an agar surface underneath the sensor electrodes (e.g., 
Fig. 4a). The experimental data in Fig. 4b reveal signifi‑
cant differences in the capacitive signals generated by each 
bacterial species. Specifically, E. coli and P. aeruginosa 
gave rise to an increase in capacitance in the three C‑dot‑
IDE sensing platforms albeit by different degrees, while 
B. subtilis and S. aureus proliferation induced reduction in 
the recorded capacitance. The different capacitance pro‑
files are ascribed to the distinct compositions of volatile 
compounds, including amines, sulfides and hydrocarbons 
emitted by different bacterial species [51–53]. In particu‑
lar, the graphs in Fig. 4b reveal pronounced difference 
between the capacitive response of Gram‑negative bacteria 
(E. coli and P. aeruginosa) and Gram‑positive bacteria 
(B. subtilis and S. aureus), reflecting the high concentra‑
tion of volatile polar molecules emitted by Gram‑negative 
bacteria in comparison with the more abundant non-polar 
gas compounds secreted by Gram‑positive bacterial cells 
[54, 55]. Notably, the time‑dependent capacitance curves 
in Fig. 4b closely trace the bacterial growth curves deter‑
mined through a conventional turbidity assay (Fig. S14).

The bar diagram in Fig. 4c, summarizing the capaci‑
tance transformations recorded after a 20‑h exposure of the 
C‑dot‑IDEs to proliferating bacteria inoculated at the same 
initial concentration, indicates that the C‑dot‑IDE artifi‑
cial nose can distinguish each bacterial species through 
its “capacitive fingerprint” generated by the three C‑dot‑
IDE electrodes (blue, orange, red; Fig. 4c). Specifically, P. 

aeruginosa gave rise to high positive capacitive response 
in the three electrodes, producing a capacitance change 
ratio of 1.00:0.63:0.26 (red C‑dot‑IDE/orange C‑dot‑IDE/
blue C‑dot‑IDE). E. coli, in comparison, affected much 
lower capacitance change and also a different signal ratio 
of 1.00:0.54:0.33. Figure  4c reveals that a significant 
difference in capacitive responses is similarly apparent 
between the more negative capacitive changes induced by 
B. subtilis (capacitance change ratio of 0.55:1.00:0.47; red 
C‑dot‑IDE/orange C‑dot‑IDE/blue C‑dot‑IDE] compared 
to S. aureus [capacitance change ratio of 0.43:1.00:0.77].

The capacitive response data obtained for the bacteria 
using the C‑dot‑IDE artificial nose were classified accord‑
ing to principal component analysis (PCA) (Fig. 4d), high‑
lighting the feasibility for distinguishing among bacterial 
species. Specifically, Fig. 4d depicts the score plot in the 
first two principal component space in which PC1 accounts 
for the greatest total variation (95.10%) and each point 
represents three independent capacitive measurements. 
Importantly, clustering of the experimental datapoints 
in the PCA plot reveals no overlap between the different 
bacterial species tested, demonstrating that the C‑dot‑IDE 
artificial nose readily discriminates among the bacteria. 
Notably, the excellent selectivity was accomplished with‑
out relying upon recognition of specific bacterial metab‑
olites, a difficult task used in most previously reported 
vapor‑based bacterial sensing techniques [9, 56]. The dis‑
tinctive capacitive fingerprints observed for the bacterial 
species tested, obtained with just three electrodes, point to 
the applicability of the C‑dot‑IDE artificial nose for detec‑
tion and growth monitoring of different bacterial strains.

4  Conclusions

We present a new capacitive artificial nose technology 
for real‑time vapor sensing based upon IDEs coated with 
carbon dots exhibiting defined surface polarities and 
optical properties. In particular, the high surface area 
and changes in C‑dot surface polarities furnish excellent 
sensitivity and selectivity. A C‑dot‑IDE array comprising 
three C‑dot species (red C‑dots exhibiting high polarity, 
orange C‑dots of medium polarity and relatively a polar 
blue C‑dots) was employed, yielding distinct capaci‑
tance changes depending upon the C‑dot polarities. Spe‑
cifically, the experimental data demonstrate significant 
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variability in vapor‑induced capacitance changes, 
depending upon matching between the polarities of both 
the electrode‑deposited C‑dots as well as the gas mol‑
ecules. In particular, application of a machine learning 
model which utilized the capacitive response data yielded 
excellent predictability both in case of individual gases 
and for complex gas mixtures. Impedance spectroscopy 
measurements illuminated the likely mechanism under‑
lying the capacitive transformations of the C‑dot‑IDE 
sensor, pointing to substitution of C‑dot‑adsorbed water 
by the gas molecules as the primary factor affecting the 
capacitance changes. The C‑dot‑IDE capacitive artificial 
nose was successfully employed for continuous, real‑time 
monitoring of bacterial proliferation. Importantly, the 
distinctive capacitive signals recorded allowed discrimi‑
nation among different Gram‑positive and Gram‑negative 
bacteria. Overall, the new capacitive C‑dot‑based artifi‑
cial nose can be readily implemented as a portable vapor 
sensor, and for continuous non‑invasive monitoring and 
identification of bacterial growth in different applica‑
tions, including medical diagnosis, food processing, envi‑
ronmental monitoring and others.
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