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Bottom‑Up Engineering Strategies 
for High‑Performance Thermoelectric Materials
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HIGHLIGHTS

• Recent advances of various bottom-up approaches for constructing nanostructured semiconductor thermoelectric materials with dif-
ferent dimensions are reviewed.

• The relationships between the nanostructures and the key electronic and thermal transport parameters contributing to ZT are discussed.

• The challenges of the bottom-up strategies and suggestions for future development toward thermoelectric applications are provided.

ABSTRACT The recent advancements in thermoelec-
tric materials are largely credited to two factors, namely 
established physical theories and advanced materials 
engineering methods. The developments in the physi-
cal theories have come a long way from the “phonon 
glass electron crystal” paradigm to the more recent band 
convergence and nanostructuring, which consequently 
results in drastic improvement in the thermoelectric fig-
ure of merit value. On the other hand, the progresses 
in materials fabrication methods and processing tech-
nologies have enabled the discovery of new physical 
mechanisms, hence further facilitating the emergence 
of high-performance thermoelectric materials. In recent 
years, many comprehensive review articles are focused 
on various aspects of thermoelectrics ranging from thermoelectric materials, physical mechanisms and materials process techniques 
in particular with emphasis on solid state reactions. While bottom-up approaches to obtain thermoelectric materials have widely been 
employed in thermoelectrics, comprehensive reviews on summarizing such methods are still rare. In this review, we will outline a variety 
of bottom-up strategies for preparing high-performance thermoelectric materials. In addition, state-of-art, challenges and future opportu-
nities in this domain will be commented.
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1 Introduction

The ever-increasing demand on electricity has driven 
the expansion of electricity supply sources, such as solar 
energy, nuclear power and photovoltaics. All these electric-
ity sources are alternatives to the conventional fossil fuels. 
However, all these power generation approaches cannot 
address more than 60% of energy loss worldwide as waste 
heat. The ubiquity of low-grade waste heat (< 200 °C) in 
modern electronic devices is an opportunity in terms of 
energy recovery. In a bid to utilize the waste heat, thermo-
electrics becomes is a viable option as it converts a thermal 
gradient into electrical energy in the solid state. This type of 
conversion from thermal heat to electricity possesses a lot of 
advantages, such as silent mode, no noise and less pollution, 
which has also triggered the development of various niche 
applications, including radioisotope thermoelectric (TE) 
generators (TEGs) for the space exploration, for example, 
National Aeronautics and Space Administration’s Voyager 
1 and 2. However, all these applications put forward strict 
requirements for energy conversion efficiency, and tradition-
ally, high-performance inorganic semiconducting materials, 
such as bulk  Bi2Te3, SnSe, and PbTe [1–6], have been exten-
sively studied and fabricated into the TEGs.

The efficiency of TE materials can be expressed by 
dimensionless figure of merit (ZT = σS2T/κ), where S, σ, T, 
and κ represent Seebeck coefficient, electrical conductivity, 
absolute temperature, and thermal conductivity, respectively. 
In order to enhance ZT, a large S, a high σ, and a lower κ are 
preferred, but these parameters are inter-dependent on each 
other. For instance, while the S has an inverse dependency 
on the carrier concentration (n), the σ is proportional to the 
n. To optimize the power factor (PF = σS2) and ZT, the n 
needs to be optimized either via doping or defect engineer-
ing to be around  1019  cm−3 level [7, 8]. However, the intro-
duced dopants can deteriorate the charge carrier mobility, 
thus hindering the magnitude of the optimal power factor [9, 
10]. A popular and effective strategy for enhancing the PF 
is via the electronic band-engineering [11–16]. In the elec-
tronic band-engineering, either the band-convergence or the 
effective mass manipulation can be explored to increase the 
S or σ, respectively [13, 17, 18]. In addition to the PF, the κ 
is also an important parameter that affects the ZT value. The 
κ is composed of electrical thermal conductivity (κe) and lat-
tice thermal conductivity (κL). The κe value is predominantly 

affected by the σ through the charge carrier concentration 
and the κL is controlled by the introduced impurities through 
various phonon scattering mechanisms. The close inter-cor-
relation between the S, σ, and κ makes it highly challenging 
to achieve a high ZT value.

Another useful approach to improve ZT is to prepare nano-
structured semiconducting materials. The advantages of 
nanostructuring TE materials offer a pathway to positively 
decouple the correlation between the S, σ, and κ. The quantum 
confinement effects associating with these nanostructures help 
to alter the electronic density-of-states, and therefore improve 
the PF [19]. In addition, another noteworthy feature of nano-
structuring is that it is able to decrease the κL through respec-
tive phonon scattering effects. For instance, one approach 
to reduce the κL is to minimize the phonon relaxation time 
through the introduction of phonon scattering sources such 
as point defects, dislocations and interfaces [20].

Traditionally, a popular method to prepare nanostructured 
TE materials is to make use of a top-down approach, includ-
ing ball milling, exfoliation, annealing, and so on. However, 
most of these processes are energy-consuming. Additionally, 
the precise control of the particle size, size-distribution and 
shape remains challenging. In order to address these issues, 
bottom-up approaches is sought after. The primary advan-
tage of bottom-up approach lies in its versatility in design-
ing nanostructured materials, which is favorable for phonon 
scattering (i.e., lower thermal conductivity). Approaches 
such as liquid-phase synthesis, vapor–liquid–solid (VLS) 
growth, solution–liquid–solid (SLS) growth, chemical vapor 
deposition (CVD), electrochemical deposition, electrospin-
ning, and so on have provided a wide variety of nanoscaled 
architectures, offering many advantages over some traditional 
methods in controlling phase purity, crystallinity, density and 
dimensions of nanostructures. For nanomaterial-based ther-
moelectric devices, the nanoscaled particles can be assem-
bled at a macroscopic scale and homogeneously distributed, 
either in thin film or in bulk materials. The final thermo-
electric properties will very much depend on not only the 
individual nanoparticles, but also the manner they assemble. 
For instance, by controlling annealing temperature and/or 
pressure, various nano-sized defects can be engineered, as 
shown in Fig. 1. Consequently, by engineering multiscale 
defects such as point defect (nanoparticle), nano-precipitates, 
and line dislocations, it is possible to scatter phonons of a 
wide-range of wavelengths, resulting in very low κL. Another 
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advantage of bottom-up approaches is that they generally 
do not require a substrate to support the growth, therefore 
enabling higher throughput than traditional methods such as 
physical vapor deposition. This paper will cover the recent 
studies of using various nanostructures to tune the TE perfor-
mance through bottom-up engineering strategies, which have, 
however, not extensively been attracted attention in existing 
reviews on the nanostructured TE materials [8, 21–26].

2  Benefits of Nanostructuring

Understanding the inter-correlation between different TE 
parameters that make up the ZT can be a useful guide to 
design nanostructured TE materials. Through extensive stud-
ies on the electron and phonon transport and electron–pho-
non couplings, multiple strategies have been investigated 
and applied for the enhancement of the TE performance. 

In this section, these strategies including size effect, mean 
free path and quantum effect, energy filtering effect at grain 
boundary, phonon scattering effect by nanoparticles as 
well as other related effects, will be summarized in details, 
embodying the latest understanding and effective manipula-
tion of the interplay among carrier, phonon, lattice, interface 
and electronic states in TE nanomaterials.

2.1  Nanostructuring Effect in Thermoelectrics

Conceptually, in order to obtain a high ZT value, both the S 
and σ must be large, while the κ must be minimized so as to 
maximize the power output at a high temperature difference. 
Traditionally, there are two main design principles in searching 
for bulk TE materials with high ZT values. The first approach 
is the “phonon glass electron crystal” approach, and the other 
approach is the nanostructuring of TE materials. To achieve 
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Fig. 1  Illustrations showing the bottom-up assembly to synthesize nanoscaled thermoelectric materials and the advantageous effects brought 
about by multi-wavelength phonon scattering due to the various shape, and size defects brought about by these bottom-up approaches. Adapted 
with permission from Ref. [22, 27]
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the phonon glass electron crystal, materials with complex 
structures are in general preferred [11, 28–31]. Recently, TE 
materials with exceptionally high ZT values of above 2 have 
been reported owing to the advance of various materials devel-
opment approaches, including band engineering, defect opti-
mization and nanostructuring. Nanostructuring is a promising 
way to improve the TE performance by means of reduction of 
the characteristic length of the phonons mean-free paths [8, 
32–34]. It is generally accepted that the mean-free paths for 
phonons are much longer than that of electrons, and therefore 
by judiciously tuning the nanostructure size to the same order 
as the phonon mean-free paths, it is possible to selectively 
scatter phonons and not electrons, resulting in a lower κL while 
maintaining a high σ [35, 36].

The classical nanostructuring effects concern the scatter-
ing-limited mean free paths and the confinement-induced 
variation in the electronic dispersion relation, respectively. 
For instance, heat is carried by phonons with a wide, 
momentum and energy temperature-dependent spectrum, 
prohibiting the kL by limiting the phonon mean-free path 
over a broad temperature range therefore requiring all-scale 
hierarchical nanostructuring and microstructuring [37]. 
Under the circumstance of the classical size effect, the low-
est possible kL is defined as the amorphous limit, when the 
phonon mean-free path gets as small as the interatomic 
spacing and heat is carried by the random-walking Einstein 
mode, just like in amorphous materials. The minimum lat-
tice thermal conductivity kmin can be expressed as [38]:
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scattering of over 60% and remarkably reduce the κ [39]. 
In addition, due to the low dimension of nanostructures, 
the phonon confinement effects must be considered. For 
instance, the Umklapp scattering process in superlattice is 
different from those of bulk materials. The so-called mini-
Umklapp arises due to the periodically alternating layers of 
a material that has a large superlattice constant, resulting in 
a mini-Brillouin zone, and hence a lower κ [40].

2.2  Quantum Effect

Low dimensional materials/nanostructures are defined by a 
characteristic dimension in order comparable to the de Bro-
glie wavelength of charge carriers. As a result, the degree of 
freedom of the carrier motion is restricted by the dimension 
of the nanostructures. Consequently, the electronic trans-
port behavior is drastically altered, resulting in the so-called 
quantum size effect [41]. Figure 2 illustrates the electronic 
band structure behavior of various low dimensional materi-
als as compared with traditional three-dimensional (3D) bulk 
materials. Compared with 3D materials, all low dimensional 
materials have a very sharp feature in the density of states, 
especially for one-dimensional (1D) and zero-dimensional 
(0D) materials. These features are very beneficial to enhance 
the S and thus the PF [42, 43]. Therefore, this quantum size 
effect underlies the paradigm of TE nanostructuring [44–46].

To understand the origin of the S enhancement in low 
dimensional materials, it is helpful to look into the Mott 
equation shown below:

The first and second terms inside the square bracket repre-
sent the contribution to the S due to the carrier concentration 
modulation and carrier mobility modulation, respectively. In 
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most TE studies, the second term (carrier mobility modu-
lation) is ignored because of the low energy dependence 
of mobility (i.e., r = − 0.5 for the acoustic phonon scat-
tering). The density of states vs the energy profile shown 
in Fig. 2 is directly proportional to the first term in Eq. 2, 
�n(E)∕�E . Therefore, a higher slope in the density of states 
vs the energy will result in a higher S. Theoretically, the 
enhancement in the S in low dimensional materials has been 
predicted in several literatures for 2D superlattice as well as 
1D NWs [48–52]. More recently, numerous experimental 
enhancements on the S in low dimensional materials have 
been reported, such as  Pb1−xEuxTe/PbTe multiple quantum 
wells and  PbTe1−xSex/PbTe quantum dot superlattice [53, 
54].

In addition to low dimensional materials, the concept of 
enhancing the slope of density of states vs the energy has 
been successfully applied using resonant doping in bulk 3D 
materials. Most notably, elements Tl and In have been shown 
to be a resonant dopant for PbTe and GeTe, respectively [12, 
55, 56]. These observation suggests that physical intuition 
derived from the studies of low dimensional materials can 
also be applied to a bulk materials system.

2.3  Energy Filtering Effect

The first concept of energy filtering was introduced by Ioffe 
in 1959 [57] and further investigated by Rowe and Min in 
1995 [58]. They studied the effect of different barriers on the 
σ and the S by the relaxation-time approximation method, 
indicating that the flow of minority charge carriers should 
become obstructed by the high-energy barriers, thereby 
suppressing the bipolar effects. This presented obvious 
reduction of the σ by promoting transport of the primary 
charge carriers. Nanostructures can also be used to enhance 
the PF via the energy filtering. The presence of nano-sized 
precipitates can act as a filter for carriers with low energy, 
therefore increasing the S and hence the PF. An illustration 
of the energy filtering mechanism is shown in Fig. 3. It is 
noteworthy that the overall benefit of the energy filtering is 
debatable, even to date. On one hand, by filtering out the 
low energy carriers, the S can be improved. On the other 
hand, the fewer number in carriers leads to a decrease in the 
σ. More recently, the manifestation of the energy filtering 
was elucidated in terms of the scattering exponent (r). The 
change in r from − 0.5 for the acoustic phonon scattering 

to near 0 due to the energy filtering has been shown to be 
greatly beneficial for enhancement in TE performance [59].

2.4  Phonon Scattering Effect by Nanoparticles

In low dimensional or nanostructured TE materials, in 
addition to the phonon–phonon scattering as the dominant 
effect, the phonon scattering effect due to nanostructures 
cannot be negligible. Recently, it is generally accepted that 
the nanoparticles or nanocrystals can be easily in-situ in 
bulk materials to obtain the lower κ [8]. Here, the phonon 
relaxation time of nanoparticle scattering ( �

NP
 ) is given by 

the Mathiessen-type interpolation between the short- and 
long-wavelength scattering regimes [61].

The parameter ρ is the density of a nanoparticle/nanocrys-
tal, R is the radius of a nanoparticle/nanocrystal, D is the 
density of the matrix, and ΔD is the difference in densi-
ties between a nanoparticle/nanocrystal and matrix. Kim 
et al. observed an apparent reduction in the κ by almost a 
factor of 2 below the limit of alloy when embedding the 
ErAs nanoparticles into  In0.53Ga0.47As [62]. According to 
the simulation of the κ of Si–Ge nanocomposite [63], SiGe 
nanoparticle-in-alloys [61], an observable decrease in the 
κ was reported. In previous studies, Kundu et al. noted that 
the decrease in the κ of nanoparticles materials of matrix 
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depended on the relative atomic mass difference between 
the nanoparticle and matrix, which is consistent with Eq. (3) 
[64, 65]. Similar reduction of the κ was also observed in 
various TE materials with nanostructuring such as PbTe [66, 
67], PbS [68, 69], and SnTe [70], thus improving the ulti-
mate TE performance.

3  Bottom‑up Nanostructuring 
of Thermoelectrics

To date, the most popular method to prepare thermoelec-
trics is to use conventional solid-state sintering that involves 
ball milling and/or spark plasma sintering (SPS), which is 
energy-consuming and lack of mechanisms to precisely con-
trol the size, shape and surface chemistry. In comparison 
with the top-down nanostructuring or nanopatterning such 
as electron beam lithography [71], the bottom-up approaches 
are relatively cost-effective and also offer advantages in con-
trolling phase purity, crystallinity, density and dimensions. 
Nanostructured or nanocomposite thermoelectric materials 
can help enhance ZT via increasing power factor through 
modulation doping, decreasing thermal conductivity via 
phonon scattering [72], increasing S by modulating the den-
sity of states of carriers, and energy filtering which results in 
simultaneous increase in S and σ [73]. In addition, nanoma-
terials may help to enhance mechanical properties via pre-
cipitation hardening which pins dislocations from moving 
[74]. However, the difficulties in designing nanostructured 
thermoelectrics lie in strong inter-correlation between mate-
rials transport properties, which demand careful adjustment 
of carrier densities. Therefore, tuning the size, shape, com-
position and phase is important in addition to distribution 
and orientation of these nanostructures. This is to ensure 
the coherence and band alignment between different phases 
in nanostructured TE materials, and modulate the effect of 
defects (dislocations, point defects, and stacking faults) and 
surface roughness on the thermoelectric properties such as 
thermal conductivity.

In terms of materials processing, vacuum-based thin 
film deposition methods are the only mature technologies 
to date that can reliably produce nanostructured materials 
and accurately control the composition or stoichiometry. In 
thin film thermoelectrics, some of the highest ever reported 
power factor have been reported [75]. Nevertheless, the main 
drawback from such vacuum deposition is its high cost and 

low productivity. In addition, it cannot be so easily scaled 
up to obtain bulk or thick films, and even not to mention the 
various issues in accurately measuring the thermoelectric 
properties, especially S and κ. During these measurements, 
the heat from hot side not only transfers to cold side, but also 
to the substrate underneath the film, which makes data inter-
pretation extremely challenging. In comparison, nanostruc-
turing via solution-based processes is very attractive because 
it does not require substrate (often made of expensive single 
crystal) to support the growth and can be readily scaled up. 
The solution-based bottom-up processes also provide con-
venience for the device fabrication in terms of size, shape, 
flexibility and conformability, which is promising for appli-
cation in wearable thermoelectric energy harvest systems.

In this section, the recent progress on various bottom-
up approaches towards the preparation of nanostructured 
thermoelectric materials with different dimensions will be 
summarized, their structure–property relationships as well 
as mechanisms for performance enhancement will also be 
discussed.

3.1  0D Nanoparticles and Nanoinclusion

3.1.1  Colloidal Synthesis

At present, vapor-phase approaches are generally found not 
suitable for the synthesis of high-quality nanocrystals due 
to existing limitations found in instruments and precursors 
[76–78]. In contrast, the liquid-phase colloidal synthesis of 
monodisperse semiconductor nanocrystals can offer a con-
venient route towards low-cost and scalable low-dimensional 
TE materials. In addition, the optoelectronic properties of 
nanocrystals can be tuned via synthesis, engineering surface 
of nanocrystals and control of the size down to sub-10 nm 
range. This opens up the possibility to explore properties of 
TE materials with strong quantum-confine effect [79]. The 
use of capping ligands and surfactants facilitates the disper-
sion of colloidal semiconductor nanocrystals in solvents. 
The shapes and sizes of nanocrystals can be easily tailored 
by making use of the kinetic control over the nucleation and 
growth processes with the assistance of organic ligands. The 
colloidal semiconductor nanocrystals exhibit attractive TE 
features owing to the low dimensionality of the materials. 
On one hand, abundant grain boundaries are able to scatter 
the phonons to reduce the κ. On the other hand, the quantum 
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confinement effect brings about increased density of states 
near the Fermi level, giving rise to an enhanced S. Moreo-
ver, the stable colloidal suspensions are highly solution-
processable, making them particularly attractive for ultra-
high throughput device manufacturing such as spin-coating, 
inkjet printing and roll-to-roll casting [80, 81].

Despite the above advantages, the major obstacle of 
exploiting solution-processed nanocrystals for high-per-
formance TE devices is that organic ligands are insulating 
in nature, hindering charge transfer between nanocrystals. 
Furthermore, the large interface of nanocrystals adversely 
affects the charge transfer processes, and thus leads the σ 
of nanocrystal films to inevitably low. Therefore, the key to 
improve the TE performance of nanocrystals is to find an 
effective way to remove the organic ligands on the surface 
of the nanocrystals after synthesis, and properly engineer 
electronic coupling at the interface of nanocrystals, while 
maintaining the nanocrystal features such as the quantum 
confinement effect and interfaces.

In 2008, Wang et al. prepared colloidal PbSe nanocrystals 
with sizes from ∼4.3 to ∼8.6 nm by reacting lead oleate with 
tri-n-octylphosphine selenide in squalane in the presence of 

oleic acid capping ligands [82]. Oleic acid at the nanocrys-
tal surface was then stripped by hydrazine, which reduced 
the interparticle spacing from ∼1.1 down to 0.4 nm and 
resulted in a greatly improved σ. In 2013, Yang et al. syn-
thesized PbSe colloidal quantum dots (CQD) with differ-
ent sizes using conductive metal chalcogenide complexes 
 SnS2–N2H4 to replace the organic ligands (Fig. 4a) [83]. 
It was found that the films of smaller QDs have a larger S, 
indicating the presence of stronger quantum confinement, 
and lower σ and κ values. The prepared PbSe(SnS2) QD 
films displayed enhanced ZT from 0.5 at room temperature 
to 1.0–1.37 at 400 K (Fig. 4b). In 2016, Ding et al. reported 
a convenient approach to fabricate spin-coated thin films 
with colloidal lead chalcogenide nanocrystals using a two-
step interface engineering treatment (Fig. 4e): (1) the ligand 
exchange process was performed on the PbTe or PbTe/PbS 
layer by treatment with ethylenediamine, and (2) the post-
treated layer was then annealed at different temperatures 
for proper coupling of the nanocrystals [84]. Notably, the 
nanocrystal thin films were found to exhibit have a higher S 
(400–460 μV  K−1) than that of bulk PbTe, which is believed 
to be ascribed to the effect of the quantum confinement of 
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the nanocrystals. The S of all the PbTe nanocrystal thin films 
was observed to decrease with increasing annealing tem-
perature, likely due to the weakened quantum confinement 
effect of the fused nanocrystals. It was also found that ligand 
replacement with ethylenediamine could assist in necking 
between nanocrystals, resulting in an increased σ. The fab-
ricated PbTe/PbS nanocrystal thin films exhibited a high ZT 
value of ≈ 0.30 at 405 K after thermal annealing at 400 °C.

The replacement of short-chain organic ligands to modify 
colloidal nanocrystals leads to strong inter-particle elec-
tronic coupling and thus promotes efficient charge transport 
in colloidal nanocrystals films. In addition to offering excel-
lent surface defect passivation, the use of appropriate halides 
in engineering the electronic coupling in nanocrystal films 
would be also crucial for efficient charge transport. In 2019, 
Nugraha et al. reported n-type TE iodide-capped PbS CQD 
film which allows for the fabrication of highly efficient TEG 
devices [85]. The counter-ions in iodide salts were found to 
play a critical role in facilitating ligand removal and charge 
transport in CQD films (Fig. 4f). Methylammonium iodide 
(MAI) could bring about efficient charge transport in the QD 
films which was resulted from the complete removal of oleic 
acid ligands and excellent passivation of surface defects. 
An impressive improvement in the σ of 100%, exceeding 
12 S  cm−1, was obtained for the MAI-treated CQD films, 
leading to a promising n-type PF of up to 24 Μw  m−1  K−2 
at relatively low temperatures (< 360 K), which was signifi-
cantly improved compared to previously reported n-type lead 
chalcogenide CQD films (< 1 μW  m−1  K−2).

In 2013, Ibanez et al.reported a one-pot two-step colloidal 
synthetic route to prepare PbTe@PbS core–shell structured 
nanoparticles with narrow size distributions and exceptional 
composition control (Fig. 4c, d) [86]. As-synthesized PbTe@
PbS nanoparticles served as the building blocks for bottom-
up production of PbTe–PbS nanocomposites. Interestingly, 
a doping-like effect was observed when PbTe and PbS were 
mixed at the nanometer scale. In such PbTe–PbS nanocom-
posites, synergistic nanocrystal doping effects resulted in up 
to tenfold increase in the σ compared to pure PbTe and PbS 
nanomaterials alone. Without intentionally doping of any of 
the two phases, (PbTe)0.28(PbS)0.72 reached σ up to 1.2 ×  104 
S  m−1. At the same time, the acoustic impedance mismatch 
between PbTe and PbS phases and a partial phase alloying 
collectively provided PbTe–PbS nanocomposites with a sig-
nificantly reduced κ (down to 0.53 W  m−1  k−1). As a result, 
a high TE ZT of ∼1.1 was obtained at 710 K.

3.1.2  Hydrothermal/Solvothermal Synthesis

Hydrothermal synthesis involves the growth of crystals with 
different sizes at the submicron to nanometer scale. This 
is usually achieved via chemical reactions in an aqueous 
medium, at elevated temperature and high pressure. The suc-
cessful synthesis of the nanostructures is highly dependent 
on the precise control over the internal reaction conditions, 
such as reaction time, pressure, pH value, reagent concen-
tration, and presence of organic additives or templates, as 
well as external reaction environment including microwave 
or conventional heating. The solvothermal method can be 
employed to have more control over the size, shape, reactiv-
ity, and phase of the nanostructures in organic solvents than 
in water. The viscosity and polarity of solvent can influence 
the transport behavior and solubility of the reagents in the 
liquid medium, and hence the properties of nanostructured 
product. Although there are many reports on the prepara-
tion of semiconductor nanocrystals using hydrothermal/
solvothermal methods [87–90], these approaches generally 
require high temperature and pressure as well as prolonged 
reaction periods, which significantly hinder applications for 
large-scale synthesis.

In 2016, Li et al. reported a facile, rapid, environmentally-
green and high-yield microwave hydrothermal method for 
preparing SnTe nanoparticles with controlled sizes from 
micro-scale to nano-scale [91]. The reaction rates can be 
controlled by adjusting the concentration of reagents, 
resulting in SnTe nanoparticles with sizes ranging from 
165 to 8.2 nm. After the SPS treatment, an ultra-low κ of 
0.60 W  m−1  K−1 at 800 K, being only 11.8% of the refer-
ence sample, was obtained using the 165 nm nanoparticles 
(Fig. 5a) owing to the enhanced phonon scattering effect 
introduced by refined grains, grain boundaries and point 
defects in the sintered dense materials. This sintered mate-
rials (Fig. 5b) exhibited a relatively higher S (58–90 μV  K−1, 
323–800 K) and much a higher ZT value (about 0.49 at 
803 K) compared to pure SnTe bulk material, which can be 
ascribed to the enhanced phonon scattering and the intensi-
fied energy filtering effect. The size effect was also found 
to have some influences on the σ. The electronic transport 
mechanism (Fig. 5c) was proposed and the hole mobility, 
carrier concentration and the effective mass (mx*/m0*) as 
function of the decreased grain sizes were measured by the 
corresponding carrier mobility test as shown in Fig. 5d. Evi-
dently, the hole mobility reduced from 125 to 31  cm2  V−1  s−1 
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while the carrier concentration increased when the grain 
sizes gradually decreased to 165 nm with the increasing 
crystal defects. It is noteworthy that the decrease in mobil-
ity is higher than the increase in carrier concentration, which 
results in a lower σ. In 2017, Tang et al. reported the synthe-
sis of tetradecahedron  Cu2S microcrystals with the size of 
1–7 μm via the hydrothermal method, which could achieve 
a ZT value of 0.38 at 573 K after the SPS process [92]. Datta 
et al. also developed phase-pure  FeSb2 nanocrystals with an 
average size of 40 nm (Fig. 5e) through an ethanol-medi-
ated, low-temperature solvothermal process [93]. Without 
a template or capping chemical used in the process, these 
nanocrystals grew in their inherent orthorhombic symmetry. 
Due to significant grain boundary phonon scattering, the 
densified  FeSb2 nanocomposite showed a drastic reduction 
in κL compared to the bulk material prepared by a solid-state 
synthesis process (Fig. 5f).

3.1.3  Electrodeposition

In addition to the above described methods, electrodeposi-
tion is another unique process known to make nanoparticles 

with a controlled size and morphology [94, 95], offering the 
benefits of fast speed, simplicity, low-cost and avoidance of 
use of binders. Moreover, the electrochemical deposition of 
TE materials enables the easy fabrication of thin TE film 
although this method still suffers from drawbacks, such as 
the existence of impurity in as-deposited thin films and poor 
crystallization. Therefore, it is imperative to precisely con-
trol the composition and crystallographic structure of nano-
particles to achieve an effective electrodeposition process.

In 2016, Na et al. reported a method for preparing highly 
conductive n-type  Bi2Te3 nanocrystal films on a flexible 
substrate using electrodeposition [96]. The growth of the 
 Bi2Te3 crystals was precisely controlled by adjusting the 
electrochemical deposition potential, which was critical to 
modulate the size and preferential orientation of the crystal 
growth along the (110) direction, and thus to improve the 
TE properties of the fabricated flexible TE generator (FTEG) 
(Fig. 6b). A  Bi2Te3 nanocrystal film prepared under a poten-
tial of 0.02 V (Fig. 6a) showed a high σ (691 S  cm−1) with 
a maximum PF of 1473 μW  m−1  K−2, which is the high-
est among the  Bi2Te3 films prepared by the electrodeposi-
tion methods. Integrating it with an n-type  Bi2Te3 FTEG, 
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a prototype of a p-n-type flexible TEG (pn-FTEG) was 
prepared using a p-type polymer, poly(3,4-ethylenedioxy-
thiophene)s. The pn-FTEG (5-couples) generated an output 
voltage of 5 mV at ΔT = 12 K with a high output power of 
105 nW  g−1 (Fig. 6c). Very recently, Zhao et al. also pre-
pared micrometer-thick  Bi2Te3 nanocrystal films using the 
electrochemical deposition process [97]. The optimum PF 
of as-grown  Bi2Te3 films was achieved by shortening the 
period of the electrochemical deposition and introducing a 
photon-based rapid annealing process for the material post-
crystallization. Compared with single crystalline or vacuum 
deposited  Bi2Te3 films, the electronic transportations of the 
electrochemically deposited  Bi2Te3 are more influenced by 
the carrier scatterings by the grain boundaries and lattice 
defect. In 2019, Nguyen et al. reported the synthesis of the 
gold nano-particles-bismuth telluride composites using the 
electrochemical co-deposition, and significant improvement 
in TE properties was achieved [98]. The composite with 5 
wt% of 5 nm-diameter gold nanoparticles showed a highest 
absolute S of ∼380 μV  K−1, a low κ of ∼0.5 W  m−1  K−1 and 
a high ZT of ∼0.62 at room temperature.

3.1.4  0D‑Nanoinclusion

The enhancement in TE properties of nanostructures by 
lowering the κ is often off-set by the concurrent deteriora-
tion of the σ. As such, selectively lowering the κ without 
compromising with the σ remains a challenge. One possible 
way is to embed nanoparticles (particularly metal nanoparti-
cles) with controlled sizes into a bulk matrix to increase ZT 
values. The advantage of incorporating nanoparticles into 

TE materials is able to reduce the κL due to the interfaces 
scattering of heat-carrying phonons, and it simultaneously 
enhances the S via the electron energy filtering effect caused 
by the scattering of electrons on the band bending at the 
interfaces between nanoinclusions and the semiconductor 
host. The enhanced S could compensate for the reduction in 
the σ to some extent, thus maintaining the PF at the similar 
level. The nanoinclusion composite structures have been 
generally prepared by the ball milling of metal (Ag, Au, Cu, 
Zn) or ceramic  (ZrO2, SiC) nanoparticles with TE raw mate-
rials as the matrix phase [99–106]. However, such top-down 
processes for fabricating the low-dimensional structures are 
relatively expensive and time-consuming, probably not fea-
sible for large-scale synthesis. Furthermore, enhancement in 
TE performance may be limited by the inhomogeneous dis-
tribution and aggregation of nanoparticles within the matrix.

In 2014, Sun and co-workers demonstrated the first bot-
tom-up preparation of textured n-type  Bi2Te2.7Se0.3 thin films 
with content-adjustable Pt nanoinclusions by the pulsed laser 
deposition [107]. Addition of Pt nanoinclusions resulted in 
a higher in-plane PF based on the simultaneous increase in 
both the σ and absolute S. The PF of the optimized nano-
composite thin film reached 3.51 ×  10–3 W  m−1  K−2 at room 
temperature, which is a more than 20% enhancement as 
compared to the single phase  Bi2Te2.7  Se0.3 thin film.

In 2015, Zhang et al. developed a facile and robust bot-
tom-up chemical route to synthesize silver nanoparticles 
(AgNPs)-dispersed  Bi2Te3 composites with a hierarchical 
two-phased heterostructure, in which the  Bi2Te3 nanopow-
der was prepared by the surfactant-mediated hydrothermal 
method and AgNPs (60 nm) were obtained by using polyol 
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reduction of silver nitrate, respectively, followed by the 
ultrasonic dispersion treatment and the SPS process [108]. 
The results clearly demonstrated that uniformly-dispersed 
AgNPs could lead to (1) growth-suppression of  Bi2Te3 
grains, (2) the introduction of nanoscale precipitates, and 
(3) the formation of new interfaces with  Bi2Te3 matrix, lead-
ing to a hierarchical two-phased hetero-structure (Fig. 7a, b), 
which caused the intense scattering of phonons with mul-
tiscale mean free paths (Fig. 7c) and therefore significantly 
reduced the κL. Meanwhile the improved PF is maintained 
because of the Ag’s low-energy electron filtering and supe-
rior electrical transport. A maximum ZT value of 0.77 was 
obtained at 475 K from the bulk  Bi2Te3 dispersed with 2.0 
vol% AgNPs, which was significantly enhanced by 304% 
compared with that of the pristine bulk  Bi2Te3.

In 2016, Ibanez reported the preparation of consolidated 
yet nanostructured TE materials based on a straightforward 
and versatile strategy involving bottom-up assembly of col-
loidal nanocrystals (Fig. 7d) [109]. PbS–Ag nanocompos-
ites were prepared by mixing cubic PbS nanocrystals (ca. 
11 nm) with spherical Ag nanocrystals (ca. 3 nm), followed 

by the removal of solvent through evaporation. Annealing 
was then performed to remove residual organic compounds, 
after which the resultant powdered nanocrystal blend was 
hot-pressed into pellets. PbS-Ag nanocomposites showed a 
highly homogeneous distribution of Ag nanodomains at the 
interfaces of PbS grains, as evidenced by high-resolution 
transmission electron microscope (HRTEM) (Fig. 7e). Ag 
nanodomains in the nanocomposites not only blocked pho-
non propagation, but also supplied electrons to the PbS host 
semiconductor and reduced the energy barriers between PbS 
crystal domains (Fig. 7f). The resultant nanocomposites 
therefore exhibited a reduced κ and a higher charge carrier 
concentration and mobility compared to pure PbS nanoma-
terial. The σ of the composites can reach up to 660 S  cm−1 
with a Ag concentration of above 4 mol%. The simultaneous 
combination of an outstanding σ, a relatively large S, and a 
reduced κ contributed to a ZT up to 1.7 at 850 K.

Apart from the highly conductive metal nanoinclu-
sions [110, 111], Lim et.al. has recently introduced non-
metal (Te or Se) nanodomains into a silver selenide matrix 
through solution blending of  Ag2Se nanoparticles with Te 
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or Se nanorods before powder consolidation [112]. Differ-
ent from the injection of conductive metal nanoinclusions 
that can lead to both an enhanced σ and a lower S, the injec-
tion of a reduced concentration of charge carriers into a 
doped semiconductor could cause a band bending that pro-
motes electron filtering. Interfacial energy filtering effects 
resulted in remarkable improvement in the S being recorded 
for nanocomposite with 5 wt% Te nanoinclusion without 
significantly compromising with the σ. This nanocomposite 
displayed an improved average ZT value of 0.84 in the tem-
perature range of 300–400 K, higher than most of previously 
reported bulk  Ag2Se.

3.2  1D Nanowires/Nanofibers/Nanotubes

The ZT values of TE materials can be improved by intro-
ducing 1D nanostructures by (1) increasing PF through the 
quantum confinement and/or energy filtering effect, or (2) 
reducing the κL via the enhanced phonon scattering [80, 
113, 114]. The reduction in dimensionality from 3D bulks 
to 1D results in an enhancement in the electronic density of 
states at the energy band edges and thus causes an increase 
in the PF. In this section, we will introduce the bottom-up 
methods for preparation of semiconductor NWs and their 
structure–property relationships will be summarized.

3.2.1  Solution‑phase Synthesis

Over the past decade, solution phase template-directed syn-
thesis has been widely employed for the preparation of 1D 
metal chalcogenide NWs. In 2011 Wang et al. first reported 
a synthetic method for the controlled formation of ultrathin 
Te NWs using polyvinylpyrrolidone (PVP) surfactant. The 
as-prepared Te NWs served as sacrificial templates to facil-
itate the synthesis of highly uniform  Bi2Te3 NWs with a 
diameter of 15–17 nm and a length of tens of micrometers. 
The reaction was performed in triethylene glycol solution by 
adding Bi precursor and hydrazine to Te NWs at 200 °C and 
atmospheric pressure [115]. The formation of  Bi2Te3 NWs 
was demonstrated to be a result of the Kirkendall effect and 
Ostwald ripening (Fig. 8a). Using a similar method, Zhang 
et al. also prepared n-type ultrathin  Bi2Te3 NWs with an 
average diameter of 8 nm in ethylene glycol solution with 
a high yield up to 93% [116]. The as-prepared  Bi2Te3 NWs 
were then compressed to bulk pellets via the SPS process 
and was found to exhibit a high ZT value of 0.96 at 380 K, 
attributing to the increased phonon scattering taking place 
at NW boundaries and hence resulting in a notable decrease 
in the κ. Following this method, different kinds of binary 
telluride NWs with small diameters, including PbTe [117], 
CdTe [118],  Cu2Te [119], and  Ag2Te NWs [117], have been 
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prepared via a solution phase synthesis. Solution phase syn-
thesis can therefore be potentially translatable for low-cost, 
large-scale synthesis of materials for TE applications.

Compared with binary alloys, ternary alloys exhibit 
greater potential in tuning the band gap, elemental com-
position, charge-carrier density and conductivity, making 
them more promising for TE materials. In 2016, Zhou et al. 
reported a general synthesis approach to prepare ultrathin 
ternary metal chalcogenide NWs [122] involving the syn-
thesis of ultrathin 6 nm diameter Te NWs, which served as 
precursors to fabricate  TexSe1−x NWs with tunable aspect 
ratios. The as-prepared  TexSe1−x NWs could then be con-
verted into a series of ternary alloyed metal-TexSe1−x NWs 
by injecting appropriate metal precursors under specific con-
ditions. A series of ultrathin ternary alloyed NWs, includ-
ing  Bi2TexSe3−x,  Ag2TexSe1−x,  Cu1.75TexSe1−x,  CdTexSe1−x, 
and  PbTexSe1−x were synthesized and characterized for the 
first time, with controllable Te/Se ratios. Among these, 
 Bi2Te2.7Se0.3 NW-based bulk material exhibited outstand-
ing TE performance with a high PF of 1023 μW  m−1  K−2 
and a ZT of 0.75 at 320 K.

In 2012, Wu’s group demonstrated a design principle 
to prepare new categories of telluride-based TE NW het-
erostructures through solution-phase reactions [120]. The 
catalyst-free synthesis started with the preparation of Te 
NWs, followed by the growth of  Bi2Te3 nanoplates on 
the Te NW tips and bodies, yielding Te–Bi2Te3 “barbell” 
NW heterostructures with a narrow diameter (~ 36 nm) 
and length distribution as well as a rough control over the 
density of the hexagonal  Bi2Te3 nanoplates by varying the 
reaction conditions (Fig. 8b, c). The hot-pressed nanostruc-
tured bulk pellets of the Te–Bi2Te3 heterostructure showed 
a largely enhanced S (up to 608 μV  K−1 at 300 K) and a 
greatly reduced κ (0.365 W  m−1  K−1 at 300 K) due to the 
energy filtering effect occurring at the grain–grain inter-
faces and the phonon scattering at the NW–NW, NW–plate, 
and plate–plate interfaces. In the follow-up study, these 
“barbell”-like Te–Bi2Te3 NWs were further converted to 
other telluride-based compositional modulated NW hetero-
structures such as PbTe–Bi2Te3 and  Ag2Te–Bi2Te3, which 
displayed a high ZT of 1.2 (at 620 K) and 0.41 (at 400 K), 
respectively [123, 124].

A low-cost solution process, the strain induced selec-
tive phase segregation technique, to produce superlattice 
nanostructures, was reported by Tang, et al. in a CdS/Cu2S 
system. Due to the energy filtering effect, the superlattice 

NWs exhibited an improved S without sacrificing the σ 
[121]. The distinct interface formation energy at different 
CdS facets and the self-regulated strain energy relaxation 
at the CdS–Cu2S interface facilitated the conversion of 
CdS NW into CdS/Cu2S core–shell structures (Fig. 8d). 
Their S can be significantly enhanced (Fig. 8e) by the 
energy filtering effect which was favored by the junc-
tion formed at the CdS–Cu2S interface, while the σ of the 
superlattice NWs was not greatly compromised, leading 
to greatly enhanced power factor at temperature higher 
than 400 K (Fig. 8f).

3.2.2  Vapor–liquid–solid Growth

The vapor–liquid–solid method (VLS) is widely used to 
grow 1D structures, such as NWs [125, 126]. The synthetic 
procedures typically start with the deposition of metal cata-
lyst on a substrate, which is then converted to liquid alloy 
droplets by adsorbing the precursor vapor component at a 
high temperature (Fig. 9a). Crystal growth through direct gas 
phase adsorption onto a solid surface is typically very slow. 
The VLS method therefore circumvents this by introduc-
ing a catalytic liquid alloy phase which can rapidly adsorb 
a vapor to a supersaturation level, allowing crystal growth 
to occur from nucleated seeds at the liquid–solid interface. 
The bottom-up growth of semiconductor NWs by the VLS 
method is able to precisely control their size, morphology, 
growth density, spatial distribution, composition as well as 
element doping.

In an early work, Li et al. fabricated VLS-grown indi-
vidual single crystalline intrinsic Si NWs with diameters 
of 22, 37, 56, and 115 nm [127]. The size effects on the 
κ of these individual NWs were studied (Fig. 9e). The κ 
observed was lower than the bulk value, and the strong 
diameter dependence of the κ in NWs was ascribed to the 
increased phonon-boundary scattering and possible pho-
non spectrum modification. Using the hybrid pulsed laser 
ablation and the VLS growth process, the same group 
also prepared single crystalline Si/SiGe superlattice NWs 
(Fig. 9d) with diameters of 58 and 83 nm [128]. Com-
pared with the pure Si NWs in which alloy scattering is 
suggested to be the dominant phonon scattering mecha-
nism for the thermal transport, this study demonstrated 
that the NW boundary scattering played a role in reducing 
the κ. In 2011 and 2012, Kim and Park et al. synthesized 
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VLS-grown rough Si and  Si0.96Ge0.04 NWs with various 
surface roughness and diameters with the assistance of 
different catalysts [130, 131]. It was found that the sur-
face roughness affected the κ more significantly than the 
diameter of the NWs. Theoretical analysis reveals that 
the surface roughness scattering affects mid-wavelength 
phonons, whereas the phonon boundary scattering affects 
long-wavelength phonons and the alloy scattering affects 
short-wavelength phonons.

The characteristics of CVD-VLS process enables the 
convenient creation of microscale TE devices with control 
over photonic, electronic, and thermal properties. In 2013, 
Davila et al. first fabricated dense arrays of well-oriented 
and size-controlled Si NWs (Fig. 9b, c) obtained from the 
CVD-VLS process and implemented them into microfabri-
cated structures to make a planar unileg TE microgenerator 
(uTEGs) [132, 133]. The average diameter and the length 
of the Si NWs are 100 nm and 10 μm, respectively. The 
resulting TEG can generate power densities of 1.44 mW 
 cm−2 and 9 μW   cm−2 under temperature differences of 
300 and 27 K, respectively. In 2017, Hill et al. synthesized 
VLS-grown uniform, linear, and degenerately boron- and 

phosphorous-doped Si NW superlattices with abrupt transi-
tions between p-type, intrinsic, and n-type segments [134]. 
Recently, Noyan et al. reported the bottom–up growth of 
SiGe NW arrays by means of CVD-VLS and their mono-
lithic integration into TE microgenerators (Fig. 9f–h) [129]. 
Densely aligned boron-doped SiGe NWs with a diameter of 
64 ± 11 nm, a length of 10 μm, 30% Ge content, and doping 
of ~  1020  cm−3 were grown simultaneously and integrated 
via the gold-catalyzed CVD-VLS approach in devices with 
different numbers of micro-trenches. A three-trench single 
thermocouple placed on a 200 °C heat source could achieve 
a maximum power of 142 nW which is equivalent to a power 
density of 7.1 μW  cm−2, demonstrating the great potential of 
the as-prepared material for energy harvesting from waste 
heat.

3.2.3  Template‑Assisted Electrodeposition Method

Template-assisted electrodeposition is the most convenient 
method for synthesizing NWs with controlled stoichiom-
etry, size, morphology and crystallinity [135]. Moreover, 
it is also cost-effective and scalable for applications. For 
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conventional TE materials based on chalcogenide semicon-
ductors, electrodeposition methods are widely employed 
for creating high-aspect-ratio NWs using hard templates 
with enormous 1D nanochannels. The two most common 
templates to obtain NWs by electrodeposition are anodic 
aluminum oxide (AAO) and polycarbonate (PC) membranes 
with different pore sizes (ranging from tens of nanometers to 
hundreds of nanometers) and template thickness. The AAO 
membranes are typically removed by chemical dissolution, 
while the PC membranes can be removed by either chemical 
dissolution or heat treatment in the air. The electrodeposi-
tion process can be conducted at three different modes: con-
stant potential, current density and pulsed electrodeposition, 
among which the pulsed electrodeposition can provide more 
uniform growth and higher crystallinity of NWs [136].

It is well known that  Bi2Te3 can behave as an n-type or 
p-type semiconductor depending on its stoichiometry. The 
Bi-rich composition shows a p-type semiconductor with a 
positive S, while the Te-rich stoichiometric ratio is an n-type 
semiconductor with a negative S. During the past decade, tre-
mendous efforts have been made to prepare Bi-Te NWs with 
tunable compositions, morphologies and crystallographic 
structures using the template-assisted electrodeposition 
method [137–144]. In 2017, Proenca and co-workers studied 

the effect of deposition applied potential on the morphol-
ogy, stoichiometry and crystallinity of Bi-Te NWs using the 
AAO template [138]. The morphology and the Te% content 
was found to be highly dependent on the deposition poten-
tial. X-ray diffraction measurements revealed that there was 
strong relationship between the material’s crystallinity and 
the deposition potential, being monocrystalline at very low 
potentials, but almost completely amorphous at high poten-
tials due to high growth rates. In the same year, Rojo et al. 
reported electrodeposited  Bi2Te3 NWs with 300, 52, 45, and 
25 nm diameters using the AAO template (Fig. 10a–d), and 
in-depth study of how the κ of  Bi2Te3 NWs was affected 
when reducing its diameter from an experimental and theo-
retical point of view [145]. The κ was observed to decrease 
more than 70% (from 1.78 ± 0.46 to 0.52 ± 0.35 W  K−1  m−1) 
when the diameter of the NW was reduced one order of 
magnitude (from 300 to 25 nm) (Fig. 10e). An increment of 
the phonon scattering is believed to be responsible for the 
reduction in the NWs’ κ. As mentioned by the Kinetic–Col-
lective model (KCM) [146], the reduction in the κ is mainly 
caused by the alteration of the mean free path of the acoustic 
phonons due to the size confinement. Reeves et al. fabricated 
electrodeposited sub-10 nm  Bi2Te3 NW arrays using novel 
silica-coated AAO templates for the pore confinement [137]. 
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The obtained sub-10 nm NWs displayed a greatly increased 
electrical-to-thermal conductivity ratio as the pore diameter 
decreased.

Furthermore, it is well-known that  Bi2Te3 can switch 
its n-type or p-type semiconductor response if it is doped 
with Se and Sb, respectively. Various ternary NWs based 
on Sb-doped Bi-Te [136, 148–155] and Se-doped Bi-Te 
NWs [147, 149, 156, 157] have also been developed using 
the electrodeposition method. In 2013, Baßler et al. pub-
lished p- and n-type single-crystalline NWs of bismuth 
antimony telluride and bismuth telluride selenide grown 
by the template-based millisecond pulsed electrochemical 
deposition in self-ordered  Al2O3 membrane templates [149]. 
The as-grown NWs with a diameter of 80 and 200 nm were 
annealed in helium and tellurium atmosphere to reduce the 
crystal defects which led to higher TE performance. The 
PFs of the obtained  Bi38Te55Se7 and  Bi15Sb29Te56 NWs 
reached 2820 and 1750 μW  K−2  m−1, respectively, at room 
temperature, which are significantly higher compared to thin 
films as a result of the higher σ of the 1D structure. In 2015, 
Li et al. reported the pulse-deposited of Bi-Sb–Te NWs 
which displayed more homogeneous element distribution 
and higher crystallinity compared to direct current (DC)-
deposited NWs [136]. The ZT of the pulse-deposited single 
 Bi0.5Sb1.5Te3 NWs reached as high as 1.14 at 330 K, which 
is approximately 54% higher than that of the DC-deposited 
ones. Kumar et al.also prepared single-crystalline, ternary 
n-type Bi-Te-Se NWs (Fig. 10f) with different nominal 
diameters of 45, 70, and 195 nm by electrodeposition in a 
nanostructured  Al2O3 matrix [147]. The transport proper-
ties of individual NWs were measured, yielding the largest 
σ (2620 S  cm−1 at room temperature) for the smallest NW 
(Fig. 10h). This behavior of the σ might be attributed to 
the highly conductive surface states (Fig. 10g). Compared 
to bulk materials, relatively lower S (up to -60 μV  K−1 at 
room temperature) was obtained for these NWs due to the 
existence of metallic surface states (Fig. 10h). The highest 
PF (0.8 mW  K−2  m−1) was achieved with the 195 nm NWs 
(Fig. 10i), which is suppressed compared to bulk values but 
higher than those of thin films.

3.2.4  Electrospinning

Electrospinning is a simple and versatile technique for pro-
ducing continuous nanofibers from polymers and ceramics 

under a high electric field with controllable morphology, 
diameter, composition and orientation [158, 159]. In some 
early work, TE properties of oxide materials have been 
significantly improved when their bulk 3D dimensions are 
reduced to 1D nanoscale by the sol–gel based electrospin-
ning. In 2010, Yin et al. fabricated nanocrystalline  Ca3Co4O9 
nanofibers with diameters around 350 nm using the sol–gel 
electrospinning process, which were consolidated into bulk 
ceramics by the SPS process [160]. The nanofiber-sintered 
ceramic with a much smaller grain size exhibited simul-
taneously enhanced S, σ and thermal resistivity, resulting 
in 55% enhancement in ZT (around 0.40 at 975 K). In the 
same year, Ma et al. also reported TE nanocrystalline elec-
trospun  NaCo2O4 nanofibers with a grain size of as small as 
10 nm [161], and Xu et al. produced TE  La0.95Sr0.05CoO3 
nanofibers with a diameter of ∼35 nm by electrospinning 
with a greatly enhanced S of 650 μV  K−1 at room tempera-
ture [162].

Metal chalcongenide semiconductor nanofibers have also 
been synthesized using the electropinning technique com-
bined with electrochemical reactions. In 2018, Park et al. 
first reported the large scale fabrication of a few millimeter-
long lead telluride (PbTe) hollow nanofibers employing a 
three-step sequential process involving electrospinning, 
then electrodeposition and finally, cationic exchange reac-
tion [163]. Electrodeposition of Te onto as-prepared elec-
trospun Ag nanofibers possessing an ultra-long aspect ratio 
of 10,000 afforded silver telluride nanotubes, which then 
underwent a cationic exchange reaction in Pb(NO3)2 solu-
tion to obtain polycrystalline PbTe nanotubes with 100 nm 
average diameter and 20 nm wall thickness (Fig. 11a, b). 
The Ag-to-Pb ratio in the  AgxTey–PbTe nanocomposites 
could be easily tuned during the cationic exchange reac-
tion (Fig. 11c), which rendered good control over the TE 
properties of resulting 1D hollow nanofibers (Fig. 11d–f). 
The content of Ag ion led to the enhancement of TE prop-
erties in the  AgxTey–PbTe 1D nanocomposite mats, which 
showed the highest value of S of 433 μV  K−1 at 300 K when 
the remained Ag content was 30%. Zhang et al. also fab-
ricated PbTe hollow nanofiber mats through combining 
electrospinning, followed by galvanic displacement reac-
tions using electrospun cobalt nanofibers as the sacrificial 
material [164]. Through tuning the diameter of the sacrifi-
cial cobalt nanofibers as well as the electrolyte concentra-
tions in the galvanic displacement reactions, PbTe hollow 
nanofibers with various dimensions, surface morphologies 
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and compositions were synthesized, demonstrating that both 
the quantum confinement and surface scattering effects dis-
played an additional degree of control over the TE properties 
within such polycrystalline tubular nanostructures.

3.3  2D Nanoflake/Nanosheet/Nanoplate

Since the discovery of graphene through the mechanical 
exfoliation by scotch tape in 2004 [165], various struc-
tures of 2D materials have been designed and fabricated to 
facilitate its physical and electronic properties because of 
its unique and advantageous structural features. Unlike bulk 
materials, 2D structure can easily tune its charge concentra-
tion, carrier transition through its network or different layers 
although some parameters, especially the size and shape of 
2D materials, are rather difficult to be controlled [166–168]. 
In order to prepare various 2D structures based on semi-
conducting materials, various top-down methods have been 
designed including exfoliation, ball milling [169, 170]. 
This section will provide an overview of various bottom-up 

approaches developed recently for preparation of semicon-
ducting 2D nanomaterials for TE applications, including 
vacuum-based techniques and wet-chemical synthesis. The 
vacuum-based deposition methods are limited to fabrication 
of thin films with highest-level control of crystal quality and 
composition. Although high power factors can be achieved 
using these approaches, the main drawback lies in its high 
cost and low productivity. In comparison, wet-chemical 
synthesis is more cost-effective for massive production of 
both thin films and bulk materials. More importantly, wet-
chemical synthesis offers easy control over size, shape and 
composition of the 2D materials and it is also convenient to 
introduce dopants in the synthetic process to fine-tune and 
optimize the thermoelectric properties of the prepared 2D 
materials.

3.3.1  Chemical Vapor Deposition

2D layered IV–VI chalcogenides have attracted great atten-
tion for the electronic applications due to their band gaps 
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that can facilitate the carrier movement in the 2D network. 
As a most representative example, SnSe has been widely 
studied for solar cell and optoelectronic devices [171, 
172]. Owing to its layered structure, the κL of SnSe could 
be reduced significantly to as low as 0.2–0.3 W  m1  K−1 at 
800 K [173]. Meantime, SnSe has a semiconducting energy 
gap of ≈ 0.86 eV and in general a very low σ  (10–5 to 0.1 S 
 cm−1). Therefore, CVD has been used to introduce extra ele-
ments to enhance the carrier concentration so as to improve 
its σ [174–176]. However, doping certain elements to SnSe 
via vapor deposition is rarely studied because of its extreme 
growth process conditions.

Recently, Gao et al. reported a facile CVD approach to 
grow and dope SnSe nanoflakes, and fabricate the nanostruc-
tured thin films (Fig. 12) [177]. The nanostructured structure 
belongs to the Pnma space group with a layered structure 
along a-axis, enabling the CVD growth-based nanostructure 
favorable towards one direction. This is of great interest for 
TE performance as it potentially moves the carrier towards 
one particular direction. The CVD growth of SnSe nano-
flakes was conducted using 99.999% SnSe powder on the 
Si wafer with 300 nm thick silicon oxide in the temperature 
range of 750 to 550 K. Figure 12c, d show the SnSe nano-
flakes formed on the surface of the substrate, illustrating that 
the uniform of nanoflakes were generated during the process.

Upon obtaining the nanoflakes, Gao’s group pre-
pared  SnSe1.13 and  SnSe0.75 aiming to study how the ratio 

difference affects the TE performance [177]. Se deficiency 
in  SnSe0.75 contributed to a much higher hole density with a 
lower hole mobility when compared with  SnSe1.13, showing 
poorer TE performance. In the case of  SnSe1.13, the obtained 
highest σ and the S were about 2.5 S  cm−1 and 300 µV  K−1, 
making the PF at the level of 0.16 µW  cm−1  K−2 (Fig. 12b), 
which is about 5% of the PF of SnSe single crystals. The low 
PF value could be due to the low carrier mobility and carrier 
concentration. The same group also doped Ag atoms into 
SnSe at different ratios and observed that a doping level at 
about 1% could significantly improve the σ and S. The high-
est σ and S could be up to 4 S  cm−1 and 370 µV  K−1 respec-
tively, making the PF to be improved to 0.66 µW  cm−1  K−2, 
four times of the value of undoped sample. Besides, the syn-
thesized SnSe samples could possess a low κ, which could 
further improve the ZT value.

3.3.2  Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) is widely used to gener-
ate 2D layer nanostructures [178–180] on the solid layer 
of materials, such as silicon [181, 182]. In this area, the 
preparation of a 2D layer of semiconducting metals or 
alloys becomes very attractive. Mori et al. fabricated  Mg2Sn 
(111) thin film on a sapphire c-plane using pure Mg and 
Sn elements under MBE condition [183]. Below 250 °C, 
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polycrystalline films with an axial preferred orientation were 
obtained. However, with the increase of the temperature, the 
loss of Mg element in the thin film made the film towards 
Sn element rich, which could tune the electronic proper-
ties of the  Mg2Sn thin film. Many other types of semicon-
ducting materials have also been widely studied, including 
PbTe (111) thin films [184],  Bi2Se3/In2Se3 superlattices 
[185–187]. However, the preparation of 2D semiconduct-
ing materials using the MBE approach for TE applications 
is limited. Cecchi et al. obtained epitaxial  Sb2+xTe3 alloys 
using MBE to obtain the highest σ, S, and PF at 1810 S 
 cm−1, 118 µV  K−1 and 2.52 mW  m−1  K−2, respectively. Hu 
et al. reported a nanoporous (00l)-oriented  Bi2Te3 nanoplate 
film made by MBE. In their experiment, pure Bi and Te 
element were placed in  SiO2/Si substrates with an oxidized 
layer of 600 nm. Upon controlling temperature, annealing 
and hydrothermal process, nanoporous  Bi2Te3 nanoplates 
was obtained. HRTEM was used to identify the nanopo-
res in the nanoplates. It was observed that the nanoplates 
film was changed from intersected to tiling, weakening the 
carrier scattering along the plane and the carrier mobility. 
The increased carrier mobility thus could increase the σ. 
The carrier concentration of nanoplate films varied with the 
annealing time also. When the carrier concentration dropped 
to about  1020  cm−3, the S increased to 187.3 mV  K−1. This 
trade-off phenomenon was commonly observed between 
the σ and the S. In addition, ethylene glycol was used to 
treat different  Bi2Te3 nanoplates and it was observed that 
the boundary density of the pores is the dominant factor to 
affect the TE performance rather than the total area of the 
pores because of the boundary density affecting the carrier 
scattering.

3.3.3  Wet Chemistry Method

CVD and MBE could be used to synthesize various semi-
conducting nanostructure, but some limitations still remain, 
such as high energy consumption and difficult to control 
the size of nanostructures. Compared to CVD and MBE, 
the solution-based chemical synthesis possesses great gains, 
such as low cost, low energy consumption and easy scaling-
up. More importantly, chemical synthesis is able to control 
size, morphology, composition of the 2D materials more 
easily by regulating delicate reaction parameters such as 
temperature, concentration catalyst and dispersants. In this 

section, the chemical synthesis including hydrothermal, sol-
vothermal and solution chemical synthesis for the TE mate-
rials will be summarized in details.

3.3.3.1 Hydrothermal Method Aqueous solution-based 
hydrothermal synthesis has been widely used for the synthe-
sis of 2D type transition metal dichalcogenides [188–190]. 
Hydrothermal synthesis of 2D materials can provide differ-
ent structure and morphology, affording a new pathway to 
change the carrier mobility and concentration, making the 
synthesized 2D materials as a good candidate for TE appli-
cations. Recently, Chen et  al. reviewed the hydrothermal 
method for preparation of various SnSe structures with dif-
ferent dopants for TE studies [191]. Biswas et al. reported 
2D nanoplates of Ge-doped SnSe synthesized by the hydro-
thermal approach together with the SPS process [192]. 
 SnCl2·2H2O and  GeI4, NaOH and Se powder were placed in 
a Teflon-lined stainless steel autoclave at 130 °C for 36 h to 
afford the  Sn1−xGexSe (x = 1–3 mol%) nanoplates (Fig. 13a, 
b) with a very high yield. Unlike CVD and MBE, this sim-
ple synthesis method could be potentially scalable. The 
as-prepared sample was then densified by the SPS process 
at 450 °C to afford the sample for TE performance evalua-
tion. The Ge was doped to the SnSe 2D structure to enhance 
the carrier concentration in the crystalline structure. TEM 
revealed that the range of lateral dimension of SnSe nano-
plates was within 0.5 to 1.0 μm. HRTEM also found that 
lattice spacing between two apparent planes was estimated 
to be 3.07 Å, indicating a set of planes (011) favorable in 
the structure. The TE performance of the synthesized 2D 
SnSe nanoplates was evaluated from both directions of || 
(parallel) and ⊥ (perpendicular), and their σ and κL are sum-
marized in Fig. 13c–f. Figure 13c, d show that both parallel 
and perpendicular directions possess the similar σ and the 
trend is also similar starting from semiconducting type to 
metallic type. The introduction of Ge element enhanced the 
carrier concentration which significantly improved the σ. 
The S was also evaluated for both parallel and perpendicu-
lar directions. The S increased in positive correlation with 
temperature, and reached to a maximum value from 550 to 
650 K, consistent with solution-processed SnSe samples. A 
highest PF was obtained at ∼5.10 mW  cm−1  K−2 at 3 mol% 
Ge in SnSe at 873 K. It was observed that synergistic inter-
action of lattice anharmonicity, point defects, nanoscale 
grains, and precipitates reduced the κL (Fig. 13e, f) in both 
parallel and perpendicular directions, which assisted in the 
enhancement of ZT up to ∼2.1 at 873 K.

Zhang et al. reported a facile and rapid synthesis method 
of Sb2Te3 hexagonal nanoplate using hydrothermal treat-
ment in the absence of organic solvent or additive [193]. 
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In the synthesis of this nanoplate, SbCl3 and tartaric acid, 
NH3⋅H2O solution, K2TeO3, and N2H4⋅H2O were placed 
in an autoclave, and the reaction temperature was controlled 
at 180 °C for 5 h, followed by filtration to obtain the Sb2Te3 
nanoplates. Figure 13g shows a HRTEM image of a typi-
cal single  Sb2Te3 hexagonal nanoplate. As seen in Fig. 13h, 
the Sb2Te3 nanoplate is a well-crystallized single crystal. 
Figure 13i displays a well-resolved 2D lattice fringe with 
a plane spacing of 0.22 nm, in accordance with the lattice 
planes of (110) in rhombohedral Sb2Te3 nanoplates. The 
hydrothermal reaction conditions to obtain the  Sb2Te3 hex-
agonal nanoplate are very critical and it requires to be well-
controlled to avoid the formation of nanoparticle or NW. 
Using the home-made setup, the S of  Sb2Te3 nanoplate was 
evaluated to be 125 mV  K−1 as p-type semiconductor using 
a home-made setup, which is higher than these of other type 
nanocrystals, such as  Sb2Te3 nanoparticles and nanorods. 
Due to the anti-site effect derived from Sb atom on the Te 
lattice sites, the S is approximately 1.6 times of that value of 
undoped bulk crystals at 79 mV  K−1, which is attributed to 
the energy filtering due to the nano-boundaries created by 
the extra atom throughout the doping process.

3.3.3.2 Solvothermal Method As one of the best TE mate-
rials, antimony telluride (Sb2Te3) has been well investigated 

as a p-type semiconductor [30, 194]. However, the study of 
how the shape and size changes in 2D type Sb2Te3 nanoma-
terials is limited. Lee et al. reported a solvothermal approach 
to prepare the Sb2Te3 nanoplates. SbCl3, K2TeO3 and PVP 
were dissolved in diethylene glycol, followed by the addition 
NaOH aqueous solution. Upon the solvothermal process in 
a Teflon-lined stainless-steel autoclave at 230 °C for 24 h, 
the corresponding nanoplates were obtained. SEM analy-
sis showed the edge lengths and thicknesses of the nano-
plates are 3–5 μm and ∼100 nm respectively. Sequentially, 
the TE performance was evaluated in comparison with the 
sample prepared by the ball milling. Interestingly, the κ of 
the Sb2Te3 nanoplates is much lower than that of samples 
obtained from the ball milling process. Such a low κ could 
be attributed to the grain boundary generated between nano-
plates. The S is in the range of 300–350 μV  K−1, about two 
times higher than those of Sb2Te3 prepared by the melting 
method (102–144 μV  K−1). The improvement in the S can 
arise from the energy filtering effects caused by the bounda-
ries between Sb2Te3 nanoplates.

As another important class of semiconducting materials, 
2D  Bi2Te3 nanostructures have attracted great attention to 
enhance the TE performance. Takashiri et al. used  Bi2O3 and 
 TeO2 under basic conditions via a solvothermal process to 
obtain the  Bi2Te3 nanoplate, followed by electrical deposi-
tion and annealing to afford the electrodeposited layers [195, 
196]. Annealing at 250 °C helped reduce the boundaries 
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between nanoplates, and further enhanced the σ and S by 
about 200% and 50%, respectively. Thermal annealing 
improved the crystallinity of electrodeposited layers, which 
decreased the number of defects (carrier concentrations) 
and the number of boundaries (increasing mobility). The 
structure variation arising from the post treatment could 
significantly improve the TE performance through tuning 
the carrier concentration and mobility. Chen et al. reported 
a solvothermal method to introduce high porosity in  Bi2Te3 
hexagonal plates and decrease the overall κ as well as the κL 
[197]. Through reduction of the κ, the TE performance could 
be enhanced significantly when the PF remained unchanged. 
In the synthesis of  Bi2Te3 nanoplates (Fig. 14a),  Bi2O3 and 
 TeO2 were placed in an autoclave in the presence of NaOH 
and ethylene glycol at 210 °C for 24 h. The  Bi2Te3 nano-
plates were obtained through filtration. Then the obtained 
 Bi2Te3 nanoplates were subjected to the SPS process and 
sublimation to obtain the sample for the structure charac-
terization. SEM analysis showed the  Bi2Te3 nanoplate has 
the thickness of 20 nm (Fig. 14b, c) and can induce a high 
density of grain boundaries in the pellet after the sintering. 
As shown in Fig. 14d, the sintering process could introduce 
the density of pores in the structure and the pore size is at 
a size of ∼400 nm in the matrix. Sequentially, the σ and 

S were measured in comparison with the dense sample. It 
was found that the similar value was obtained between the 
dense sample in other literature and the as-prepared porous 
structure, leading to a similar magnitude of the PF. The 
porous structure in the matrix could significantly reduce the 
κL to less than 0.1 W  m−1  K−1 (Fig. 14e) due to the pho-
non gas theory. Owing to the overall reduction in the κ, the 
ZT value was improved dramatically up to 0.97 at 420 K 
(Fig. 14f), the highest values reported for pure n-type  Bi2Te3 
semiconductors.

Zou et al. reported a microwave-assisted solvothermal 
synthesis method to obtain  Bi2Te3−xSex nanoplates which 
could enhance the TE performance [198]. In the synthesis 
of  Bi2Te3−xSex nanoplates, Bi(NO3)3·5H2O,  Na2TeO3 and 
 Na2SeO3 were placed in reaction vessel in the presence 
of ethylene glycol and NaOH at 230 °C for 5 min. Dur-
ing the synthesis, various loadings of Se were doped in the 
samples to substitute the Te element to study its impact on 
the TE performance. The obtained  Bi2Te3−xSex nanoplates 
were subjected to the SPS process to make the pellets for 
the TE measurement. It was found that the loading of Se 
element doesn’t seem to have huge impact on the overall 
performance, leading to the PF in the range of 1.5–1.9 mW 
 m−1  K−2. The texture fraction in the nanostructure materials 
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is smaller than that of the bulk polycrystalline counterpart, 
and can help reduce the phonon scattering, leading to the 
reduction in the κ. A lowest κ of 0.69 W  m−1  K−1 value was 
achieved in the  Bi2Te2.7Se0.3 pellet, which is much lower 
than the value between 1.5 and 2 W  m−1  K−1 of their bulk 
counterpart materials. Such reduction is attributed to the 
nanostructure grains and boundaries in the pellet made by 
the  Bi2Te3−xSex nanoplates. There are mainly two factors 
promoting the reduction of the κ namely the Umklapp pho-
non–phonon scattering by the inherently strong anharmonic-
ity and the wide frequency phonon scatterings caused by the 
multi-scattering pathways. The same group also performed 
the theoretical studies on the thermal transport and phonon 
transport to understand the rationale behind the κ reduction, 
revealing that the complex carrier scatterings helped sup-
press the bipolar effect and weakened the dependence of 
transport properties on the carrier movement.

3.3.3.3 Solution‑Phase Synthesis Hydrothermal and sol-
vothermal approaches have been used to grow 2D type inor-
ganic semiconducting materials. These two methods usually 
require the reaction to be performed at high temperature 
(e.g., from 150 to 300 °C) in a sealed stainless vessel. At 
this reaction condition, the inorganic species in general can 
grow in a specific direction to form the 2D type of materi-
als. As another approach, solution chemical synthesis can 
be used to prepare 2D semiconducting materials with a 
lot of benefits, including tunable reaction conditions and 
easy scale-up. Cabot and co-workers reported a chemical 
synthesis method using tin selenide molecular precursor 
under solution process to prepare 2D SnSe nanoplate for 
TE studies [199]. In the synthesis of 2D SnSe nanoplate, 
tin chloride selenium dioxide, tri-n-octylphosphine and 
oleyamine were premixed in a very short of time, followed 
by the addition of oleic acid to produce dentritic SnSe 
nanostructures. Then the SnSe precursor was injected into 
a reaction flask preheated at 420 °C for decomposition to 
prepare the SnSe nanostructures. TEM and SEM charac-
terization of SnSe nanostructure showed that as-prepared 
nanoplates had the size of 4 ± 1  μm and a thickness of 
90 ± 20 nm and the crystal followed the [100] crystal direc-
tion oriented along the pressure axis by XRD analysis. TE 
property study revealed that both cross-plane and in-plane 
afforded very similar σ of 15–30 S  cm−1. A slightly higher 
S of 400 µV  K−1 was obtained in the cross-plane direction, 
which could be attributed to the energy filtering introduced 
by the grain boundaries, specifically the preferential scat-
tering of the low-energy carriers at the plate interfaces. A 
very low κ was obtained in both directions, significantly 

improving the ZT value of the SnSe nanoplates. The low 
κ could be arisen from the low κL because of the phonon 
scattering.

Biswas et  al. reported a chemical synthesis to pre-
pare several n-type ultrathin layers of Bi doped SnSe 
nanosheets [200, 201]. In the synthesis of SnSe nanosheets, 
 SnCl4·5H2O and  SeO2 were taken in a mixture of 
oleylamine and 1,10-phenanthroline. The reaction was 
performed at 200 °C under  N2 followed by filtration to 
afford the nanostructured materials at the gram scale. Bi 
precursor was used in the reaction to dope the nanosheet 
to afford  Sn0.94Bi0.06Se. Powder X-ray diffraction analy-
sis shows the 2D SbSe nanosheet has the lattice param-
eters of a = 11.50 Å, b = 4.15 Å, and c = 4.45 Å and the 
indirect band gap was measured to be ∼0.88 eV. Field 
emission scanning electron microscope (FESEM) showed 
that the Bi doped SnSe nanosheets possessed a thickness 
of 1.2–3 nm. Such a dimension is critical to create the 
nanoscale grain boundaries and point defects across the 
interphase between Se-Se layers. Such boundaries are 
effective for the phonon scattering and improvement of 
TE performance. Based on the Hall Effect measurement, 
the introduction of Bi element in the SnSe could signifi-
cantly enhance the carrier concentration, leading the σ up 
to 12.5 S  cm−1 at 750 °C for the cross-plane direction. 
Negative S was observed for both cross- and in-plane direc-
tions. The highest PF of 100 μW  m−1  K−2 was obtained for 
 Sn0.94Bi0.06Se nanosheets, much greater than that of SnSe. 
More interestingly, the nanoboundaries in the nanosheet 
could facilitate the phonon scattering, leading to a low κL 
of ∼0.3 W  m−1  K−1. This low κ could contribute signifi-
cantly to the ZT enhancement to 0.21 at about 700 °C for 
Bi doped SnSe nanosheets. Similarly, Hu et al. reported a 
chemical synthesis method using  SnCl2⋅2H2O and Se in 
the basic solution to prepare SnSe 2D nanosheets [202]. 
In their work, extremely low κ of 0.09 W  m−1  K−1 was 
obtained, demonstrating the thin film made from 2D 
nanosheet could be used for low-grade waste heat recovery.

Zou et al. reported a chemical method to dope Te ele-
ment into the SnSe nanosheets to enhance the TE per-
formance [203]. In the synthesis of SnSe nanosheets, 
 SnCl2⋅2H2O,  Na2SeO3, and  Na2TeO3 were added into the 
NaOH solution in ethylene glycol. After the stirring, the 
reaction was heated at 230 °C for 10 min to obtain the Te 
doped SeSe nanoplates. SEM and TEM analysis shows the 
nanoplates have the average lateral size and thickness of 
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about 10 µm and 200 nm, respectively. With the increas-
ing Te element in the SnSe nanoplates, the S dropped from 
365 to about 341 µV  K−1. Due to the trade-off relation-
ship between the σ and S. The σ improved doubly from 50 
to about 100 S  cm−1. The Te element in the alloy could 
reduce the band gap and the hole concentration, resulting 
in a stronger bipolar effect, and thus increase in the σ and 
reduction in the S.

Another noteworthy point is that with increasing Te ele-
ment into the alloy, the point defects were introduced, which 
enhanced the phonon scattering and led the κ to be reduced 
by about 30% overall. In this case, the average ZT of 0.58 
was obtained. Gregory et al. reported a similar method to 
synthesize SnSe nanoplates using water as solvent with-
out using any surfactant [204]. The PF is eightfold higher 
than that of material made using citric acid as a structure-
directing agent. As another type of important semiconduct-
ing materials, 2D  Bi2Te3 nanostructure is also well-studied, 
especially in 1D type. Hyeon et al. reported a chemical 
method to prepare n-type of ultrathin  Bi2Te3 nanoplates 
with the improved TE performance [205]. In the synthesis, 
bismuth neodecanoate and tri-n-octylphosphine-tellurium 
were used as Bi and Te sources in polyamine, respectively. 
1-Dodecanethiol was used with the proper concentration to 
form the  Bi2Te3 nanoplates. The thickness of the nanoplates 
was about 1 nm. Sequentially the as-prepared nanoplates 
were sintered into pellets for the TE performance meas-
urement. The S was in the range of − 130 to − 160 μV  K−1. 
It was noteworthy that the electron concentrations and 
mobility varied at different sintering temperatures possi-
bly because of the interphase effect, which facilitated the 
carrier scattering and defects by the organic residue from 
the synthesis. Meantime, the κ was observed to be reduced 
significantly (lowest at about 0.4 W  m−1  K−1). This phe-
nomenon was also observed in other 2D materials and this 
can be attributed to the scattering of carriers and boundaries 
between the 2D materials.

3.4  3D Nanostructure

One simple approach to improve TE property in bulk mate-
rials is to induce the formation of porosity. Although the 
traditional approach to TE materials was to create bulk 
samples with very little remaining porosity (> 99% relative 

density), many recent studies have shown that either ran-
dom or template-assisted uniform porosity can be benefi-
cial for TE performance when properly optimized [21, 206]. 
Reported studies have shown that the sizes of the pores in 
TE materials and their distribution pattern play critical role 
in TE properties. To maintain sufficient σ, these structures 
generally must be sintered to at least 80% theoretical density, 
effectively limiting the porosity.

3.4.1  Random Porous Structure

Randomly porous structures are created by deliberately 
partially densifying a material to generate a distribution of 
pores throughout the structure. Randomly porous structures 
are easily synthesized but the effects of nano-structuring on 
the κ (and in some cases, the S) are much weaker due to the 
lack of morphological control.

In 2018, Xu et al. synthesized PbS nanocrystals with dif-
ferent shapes and consolidated them into highly porous and 
well crystalline monoliths using the SPS process (Fig. 15a) 
[207]. It was found the relative density and TE performance 
of the porous PbS monoliths could be tuned simultaneously 
(Fig. 15b, c). The as-obtained porous monolith with a large 
grain size has low relative mass density (82%) and high 
porosity, and also exhibits a high σ, a low κ, and hence an 
excellent ZT (1.06 at 838 K). The origin of high ZT was 
studied by DFT calculations, indicating that high ZT can be 
attributed to enhanced scattering of phonons caused by the 
porous structures.

In 2019, Shi et al. employed a 3D printing technique 
(Fig. 15d) to fabricate porous bismuth antimony telluride 
 (Bi0.5Sb1.5Te3, BST) and its TE properties were studied 
[208]. The porous TE samples were fabricated with the 
selective laser sintering method using 100 mesh BST pow-
der. Energy density of the laser light that scans across the 
thin layer of TE powder was carefully controlled to ensure 
that TE powder was only partially melted to form the desired 
porous TE material. The laser sintering process of BST par-
ticles led to the formation of many micrometer- and nanome-
ter-sized random pores, accounting for the reduction of the κ. 
The minimum κ of the porous BST samples was measured to 
be 0.27 W  m−1  K−1 at 54 ℃. The reduction in the κ is attrib-
uted to the boundaries and defects formed during the selec-
tive laser sintering process as well as the porous structures 
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of the materials. The ZT of the porous samples was found to 
have a maximum value of about 1.29 at 327 K, higher than 
that of the BST bulk material.

3.4.2  Template‑Assisted Uniform Porous Structure

In 2017, Hong et al. reported the preparation of a periodic 
3D nanostructured TE monolith, with an approximate pore 
size of 140 nm, by electrochemical deposition of a Bi–Sb–Te 
ternary alloy into a highly ordered, interstitial porous net-
work in an epoxy template predefined by advanced lithog-
raphy (Fig. 16a) [209]. The electroplating conditions for the 
3D nanoconfined geometry was optimized to facilitated the 
uniform and dense filling of  Bi1.5Sb0.5Te3 into the template 
over a large area of 625  mm2. Most nanostructured TE mate-
rials suffer from undesirable degradation of the σ. In con-
trast, the 3D nanostructures, however, are able to maintain 
electron transport properties because the sizes of the TE 
struts in a structural unit cell are sufficiently larger (140 nm) 
than the mean free path of electrons (~ 40 to 60 nm). It is 
suggested that the extrinsic phonon scattering at the inter-
faces of the nanostructures without changing electrical 
transport is responsible for the selective reduction of the 
κ while the S and σ are almost intact (Fig. 16b). The 3D 
nanostructure successfully resulted in a decreased κ from 
1.14 to 0.89 W  m−1  K−1, at 350 K while maintaining a σ of 

644.5 S  cm−1 and a κ of 144 mV  K−1 (Fig. 16c, d). The 3D 
nanostructured  Bi1.5Sb0.5Te3 film showed an improved ZT 
value of 0.56 at 400 K, which was approximately 50% higher 
than the value for an ordinary  Bi1.5Sb0.5Te3 film. In 2018, 
the same group also reported the deposition of nanoscaled 
ZnO film on the 3D nanostructured epoxy template via the 
atomic layer deposition [210]. In this work, the suppressed 
κ of the 3D ZnO film is ∼3.6 W  m−1  K−1 at 333 K, which is 
∼38 times lower than that of the blanket ZnO film.

3.5  Nanoscale Doping in Bottom‑up Process

For semiconductor thermoelectric materials, the introduc-
tion of small quantities of impurity (element doping) during 
the bottom-up preparation can not only tailor the carrier con-
centration and/or mobility to optimize the σ, but also induce 
point defects (vacancies or self-interstitials) and adjust 
the microstructures (e.g., phase separation, formation of 
nanoscaled precipitates or ultra-fine grains) to reduce the κL 
[211–220]. Although the carrier concentration in a material 
can be modulated using defect-engineering, or stoichiom-
etry control during synthesis, reaching the optimized carrier 
concentration (typically  1019  cm−3) often require additional 
extrinsic doping. Intuitively, this  1019 carrier concentration 
is equivalent to about 1–30 electronically active sites in a 
10 nm particle. Schematic illustrating doping mechanisms 
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in nanostructures is shown in Fig. 17. The most commonly 
used strategy in modulating the carrier concentration at the 
nanoparticle level is the incorporation of dopants at the ini-
tial reaction solution [221]. In this approach, the dopants 
and host precursors are homogeneously mixed before the 

nucleation, resulting in uniform doping. However, not all 
dopants can be incorporated using this method. The coor-
dinating ligands and proper control of reaction condi-
tions are critical to enable high doping efficiency of these 
extrinsic elements rather than just a secondary phase or 
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nanocomposite. In addition, surfactants, which can be used 
to modulate surface energies, can either inhibit or promote 
the incorporation of external dopant species. Generally, the 
addition of any type of impurities will affect the growth 
kinetics and thermodynamics of these nanostructures. There-
fore, understanding the solubility and kinetics of the dopants 
and the host is very important to control the optimal amount 
of dopant that can be incorporated into these materials.

Alternatively, dopant ions can be introduced within the 
preformed nanoparticles. Ion exchange processes can be 
employed in this case, which is akin to ion-implantation in 
semiconductor processing. Although this is a more expen-
sive strategy, a non-equilibrium thermodynamic doping pro-
cess can be achieved, thus making it possible to introduce a 
large amount of dopant beyond the solubility limit allowed 
by thermodynamics [222]. Besides introducing impurities, a 
common strategy to tune carrier concentration in nanoscale 
level (especially in 2D structures) is by applying gate-volt-
age [223]. In essence, gate voltage not only provides car-
rier concentration modulation, but can also be used to alter 
the carrier scattering mechanism, resulting in multi-fold 
enhancements of thermoelectric properties by enhancing 
electrical conductivity and reducing thermal conductivity.

4  Conclusion and Outlook

In this review paper, we provided a comprehensive review 
on the state-of-the-art strategies and bottom-up approaches 
that had been employed for constructing nanostructured 
semiconductor TE materials with different dimensions, 
focusing on the relationships between the structures and the 
key electronic and thermal transport parameters contribut-
ing to ZT, such as the S enhancement due to the energy fil-
tering or quantum confinement effects, and the κ reduction 
inherently due to the phonon scattering. Table 1 summa-
rizes the TE properties of various nanostructured materials 

prepared via bottom-up approaches. The vapor-based pro-
cesses are expected to play an important role in preparing 
high-precision materials for theoretical mechanism studies 
and/or fabrication of micron-scale TE devices, while the 
solution-based preparation methods with controllable size, 
morphology and surface chemistry offer a convenient route 
towards inexpensive and scalable low-dimensional TE mate-
rials. However, the practical adoption of those liquid-based 
processes towards high quality nanomaterials still remains 
a challenge. Scale-up production of these nanostructured 
materials inevitably requires automated processes with 
nearly 100% yields, high nanoparticle concentrations in 
solution, low cost and environmentally-benign precursors, 
solvents, reductants and surfactants, as well as the recycling 
of solvents and possible side-products. Moreover, the con-
solidated conditions which may cause significant atomic 
and interface redistribution should also be investigated and 
optimized to assemble the nanostructured materials with a 
maximum retention of their electronic and phononic charac-
teristics. Deep fundamental understanding of the electronic 
and thermal transport properties of these nanostructured 
materials will be highly valuable for further development 
of advanced, practical and high-performance TE devices. 
In addition, through developments in low-dimensional 
materials, some promising concepts such as nano-porous 
structures have been applied and have seen some early suc-
cesses in traditional 3D bulk materials. Remarkably, it has 
been shown that it is in fact possible for porous structures 
to be 3D-printed through selective laser sintering, which 
results in an enhanced ZT. Moving forward, to realize wide-
spread commercial interest, several key factors need to be 
taken into account in general: low-cost and scalable pro-
cessing methods, earth-abundant and non-toxic materials 
to ensure sustainability, easy device integration (i.e. ensur-
ing adequate performance on the device level). Therefore, 
any breakthrough in any of the aforementioned aspects will 
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Table 1  Summary of properties of TE materials prepared via various bottom-up methods

Process type TE Materials Mechanism 
on property 
improvement

σ (S  cm−1) S (μV  K−1) κ  (Wm−1  K−1) PF (μW 
 m−1  K−2)

ZTmax Temp. (K) Refs.

0D nanoparticles & nanoinclusion
 Colloidal syn-

thesis
PbSe quantum dot 

films
Quantum 

confinement, 
phonon scat-
tering

 ~ 240  ~ 425  ~ 1.15 – 1.37 400 [83]

PbTe/PbS 
nanocrystal films

Quantum 
confinement, 
phonon scat-
tering

 ~ 21  ~ 490  ~ 0.675  ~ 450 0.3 405 [84]

PbTe@PbS core–
shell nanoparti-
cle pellets

Phonon scat-
tering

125 − 185 0.53 – 1.03 710 [86]

 Hydrothermal 
synthesis

SnTe nanocrystal 
pellets

Phonon scat-
tering energy 
filtering

600 90 0.60 350 0.49 803 [91]

Cu2S microcrystal 
pellets

Phonon scat-
tering

100 120 0.2 – 0.38 573 [92]

 Electrodeposi-
tion process

Bi2Te3 nanocrys-
tals on PEDOT 
films

Phonon scat-
tering

691 − 146 – 1473 – 298 [96]

Gold nano-
particles-BiTe 
composite pellets

Phonon scat-
tering

71 − 380 0.5 – 0.62 298 [98]

 Nanoinclusion Pt nanoparticles in 
 Bi2Te2.7Se0.3thin 
films

Energy filtering, 
phonon scat-
tering

720 220 – 3510 – 298 [107]

Ag nanoparticles 
in  Bi2Te3 nano-
powder pellets

Energy filtering, 
phonon scat-
tering

525 − 140 0.58 – 0.77 475 [108]

Ag nanocrystals in 
PbS nanocrystal 
pellets

Energy filtering, 
phonon scat-
tering

660 − 200 0.8  > 1000 1.7 850 [109]

1D Nanowires/nanofibers/nanotubes
 Solution-phase 

synthesis
Bi2Te3 NW pellets Phonon scat-

tering
430 − 240 1.0 2520 0.96 380 [116]

PbTe NW pellets Phonon scat-
tering

95 295 0.9 850 0.33 350 [117]

Bi2Te2.7Se0.3 NW 
pellets

Phonon scat-
tering

465 − 160 0.46 1023 0.75 320 [122]

Te–Bi2Te3 NW 
pellets

Energy filtering, 
phonon scat-
tering

5.244 588 0.309  ~ 300 0.236 400 [120]

PbTe–Bi2Te3 NW 
pellets

Energy filtering, 
phonon scat-
tering

100 − 310 0.51  ~ 950 1.2 620 [124]

Ag2Te–Bi2Te3 NW 
pellets

Energy filtering, 
phonon scat-
tering

28 275 0.2 210 0.41 400 [123]

 Template-
assisted elec-
trodeposition 
method

Bi0.5Sb1.5Te3 NW 
membranes

Phonon scat-
tering

78 138 – 153 – 298 [143]
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Table 1  (continued)

Process type TE Materials Mechanism 
on property 
improvement

σ (S  cm−1) S (μV  K−1) κ  (Wm−1  K−1) PF (μW 
 m−1  K−2)

ZTmax Temp. (K) Refs.

Bi38Te55Se7 NW 
thin films

Phonon scat-
tering

2200 − 115 – 2820 – 298 [149]

Bi15Sb29Te56 NW 
thin films

Phonon scat-
tering

720 156 – 1750 – 298 [149]

 Electrospinning PbTe nanotube 
mats

Quantum 
confinement, 
phonon scat-
tering

0.148 196 – 0.567 – 298 [163]

2D Nanoflake/nanosheet /nanoplate
 Chemical vapor 

deposition
Ag-doped SnSe 

nanoflake thin 
films

Phonon scat-
tering

5 370 – 66 – 300 [177]

 Molecular beam 
epitaxy

Sb2.31Te3 thin 
films

Phonon scat-
tering

1810 118 – 2520 – 298 [224]

 Hydrothermal 
method

Ge-doped SnSe 
nanoplate pellets

Phonon scat-
tering

70 275 0.18 510 2.1 873 [192]

 Solvothermal 
method

Bi2Te3 nanoplate 
films

Phonon scat-
tering

122 − 103 – 128 – 298 [196]

Bi2Te3 nanoplate 
pellets

Phonon scat-
tering

600 − 137 0.1 1057 0.97 420 [197]

Bi2Te3 nanosheet 
pellets

Phonon scat-
tering

735 − 180 1.2 2400 0.69 333 [225]

Bi2Te2.7Se0.3 nano-
plate pellets

Phonon scat-
tering

480 − 198 0.72 1875 1.23 480 [198]

 Solution-phase 
synthesis

SnSe nanoplate 
pellets

Phonon scat-
tering

31 320 0.55 375 1.05 805 [226]

Sn0.94Bi0.06Se 
nanosheet pellets

Phonon scat-
tering

12.5 − 285 0.3 100 0.21 719 [201]

SnSe nanoplate 
pellet

Phonon scat-
tering

35 340 – 400 – 550 [204]

3D porous nanostructure
 Random porous 

structure
PbS nanocrystal 

monolith
Phonon scat-

tering
 ~ 400  ~ 187 0.56 1375 1.06 838 [207]

Bi0.5Sb1.5Te3 pow-
der monolith

Phonon scat-
tering

403 173 0.27 1100 1.29 327 [208]

Nanoporous SnSe 
pellets

Phonon scat-
tering

 ~ 40  ~ 325 0.24 506 1.7 823 [217]

 Template-
assisted 
uniform porous 
structure

Bi1.5Sb0.5Te3 film Phonon scat-
tering

644.5 144 0.89 1250 0.56 400 [209]

ZnO film Phonon scat-
tering

 ~ 45  ~ 253  ~ 3.6 290 0.072 693 [210]

Nanoscale doping
 Hydrothermal 

method
Pb, Cd-doped 

poly-crystalline 
SnSe

Phonon scat-
tering, carrier 
concentration

 ~ 85  ~ 285 0.23 750 1.9 873 [215]

 Hydrothermal 
method

Pb, S-doped poly-
crystalline SnSe

Phonon scat-
tering, carrier 
concentration

 ~ 38  ~ 325 0.13 418 1.85 873 [218]
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undoubtedly be an important step forward towards making 
TE devices more competitive.
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