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In‑Cell Nanoelectronics: Opening the Door 
to Intracellular Electrophysiology
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HIGHLIGHTS 

• The factors affecting in-cell nanoelectronics for electrophysiology recording were discussed from versatile nano-biointerfaces, pen-
etration strategies, active and passive nanodevices.

• The applications of in-cell nanodevices in cardiomyocyte and neuron were further reviewed and evaluated.

• The current challenges of nanodevices for intracellular electrophysiology and their potential applications in biomedical fields were 
discussed.

ABSTRACT Establishing a reliable electrophysiological 
recording platform is crucial for cardiology and neuroscience 
research. Noninvasive and label-free planar multitransistors and 
multielectrode arrays are conducive to perform the large-scale 
cellular electrical activity recordings, but the signal attenua-
tion limits these extracellular devices to record subthreshold 
activities. In recent decade, in-cell nanoelectronics have been 
rapidly developed to open the door to intracellular electrophysi-
ology. With the unique three-dimensional nanotopography and 
advanced penetration strategies, high-throughput and high-
fidelity action potential like signal recordings is expected to be 
realized. This review summarizes in-cell nanoelectronics from 
versatile nano-biointerfaces, penetration strategies, active/pas-
sive nanodevices, systematically analyses the applications in 
electrogenic cells and especially evaluates the influence of nanodevices on the high-quality intracellular electrophysiological signals. 
Further, the opportunities, challenges and broad prospects of in-cell nanoelectronics are prospected, expecting to promote the development 
of in-cell electrophysiological platforms to meet the demand of theoretical investigation and clinical application.
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1 Introduction

Numerous significant physiological activities in the human 
body, e.g. the mechanical contraction of heart and the excita-
tory conduction of brain, are closely related to cellular elec-
trophysiology. Electrophysiological studies involve many 
types of cells [1–10], such as cardiomyocytes, embryonic 
cells, somatic cells, neoplastic cells, neurons and glia cells. 
Cardiomyocyte and neuron, as the typical electrogenic cell 
in electrophysiological studies of heart or brain, respectively, 
have attracted the attention of many researchers. At present, 
cardiocerebrovascular disease is still the leading cause of 
morbidity and mortality worldwide, moreover, heart attack 
and stroke account for 85% of these incidents [11, 12]. To 
explore the pathogenesis of cardiocerebrovascular diseases 
for prevention and treatment, it is highly demanded to estab-
lish a reliable platform to monitor and analyse the electro-
physiology of cardiomyocytes or neurons at single-cell or 
cell network level [13–20]. Neuroscience and cardiology 
aim to understand the functional connections of cell circuits, 
achieve large-scale cell network mapping and explore the 
function of the brain or heart and their correlation to physiol-
ogy and pathology [21]. This benefits the electrophysiologi-
cal recording platform to accommodate thousands of cells 
for large-scale parallel investigation.

Over the past decades, the conventional methodologies 
for electrophysiological recording mainly include living 
animals- or cell-based techniques. Living animals based 
techniques such as electrocardiography (ECG), electroen-
cephalography (EEG) and magnetoencephalography (MEG) 
are noninvasive and suitable for analysing large-scale cell 
aggregate activities, but they offer coarse views with insuf-
ficient resolution to precisely record individual neurons or 
cardiomyocytes [22–28]. To achieve the single-cell record-
ing, a large amount of cell-based techniques and devices 
were developed. Planar devices can manage a noninvasive, 
long-term, label-free, multiplexed extracellular recording 
of cellular electrophysiology. Initially, microelectrode array 
(MEA) was first proposed and widely employed to perform 
the extracellular recording of cardiomyocytes and neurons 
[29–34]. Microelectrodes manufactured on an insulating 
substrate receive electrical signals from cells, which are then 
transmitted to an external amplifier by leads covered with 
passivation layers for signal processing. For sensitive elec-
trophysiological measurements, low electrode impedance 

with high signal-to-noise ratio (SNR) is necessary. Using 
a millimetre-scale MEA is an effective way to reduce the 
impedance and electrochemical noise for detecting tiny 
membrane ion fluxes [35, 36]. However, the extremely 
large electrode areas are limited by the low throughput. 
To enhance the performance of MEAs, many efforts have 
focused on increasing the density and number of electrodes. 
The passive MEA ranging from tens to hundreds of elec-
trodes can successfully achieve the multisite extracellular 
recording in vitro culture [38, 39, 40, 41], while conven-
tional multitransistor array is simultaneously developed 
from planar silicon (Si) FETs [42, 43] to silicon nanowire 
(SiNW) ones [45–46]. However, their spatial resolution is 
both limited due to the necessary layout of electrode leads. 
To perform the high spatial resolution recordings, the com-
plementary metal oxide semiconductor (CMOS) integration 
is introduced to significantly reduce the leads at the electrode 
layer by sharing the leads, which significantly improves the 
number of electrodes to thousands. Based on the addressable 
properties, these active devices achieve both single-cell and 
cell network recording, enabling to regulate cell accurately 
and map the cell electrical activity conduction [48–52].

These extracellular devices are manufactured by a great 
variety of materials and approaches, such as Au, indium tin 
oxide (ITO), titanium nitride (TiN), Si, carbon nanotube, 
graphene by bottom-up or top-down strategies [33, 34, 37, 
45, 46, 51, 54–57], which are conducive to achieving scal-
able dimensions, stable coupling interfaces, multiplexed 
measurements and high-resolution signal recordings. For 
some applications, extracellular recordings are sufficient 
and cost/time efficient, allowing for noninvasive, long-term 
and multiplexed electrophysiological detection. However, 
extracellular recordings have the weak cell–electrode cou-
pling, leading to low signal quality and distorted signal 
profile compared with the native transmembrane potential, 
which are difficult to reveal the key properties and features. 
Intracellular recording can overcome these limitations, 
because it is close to the transmembrane potential and 
exhibits outstanding advantages in exploring the instinct 
mechanisms of signal changes, mapping the connections 
of cell circuits, and studying the potential regulation of 
chemical stimulation. Electrophysiological researches 
based on living animals can only provide the extracellular 
coarse information for electrophysiological signals. Cur-
rently, intracellular recording is the powerful technique to 
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study the transmembrane potential, which will promote 
the further development of cardiology and neuroscience. 
Conventional intracellular sensing and recording methods 
include patch clamps recording, voltage-sensitive dyes 
(VSDs) or voltage-sensitive fluorescent proteins (VSFPs; 
optogenetic reporters). The patch clamp technique is the 
“gold standard” accurate and effective method for intra-
cellular recordings due to its high-fidelity transmembrane 
potential, which contains high-resolution details for explor-
ing ion channel properties [59–65]. It gradually devel-
oped from conventional patch clamp technology [67–70] 
to patch clamp integrated systems [72–75] and has been 
widely used in the biomedical field. However, they cannot 
perform the study on multiple cells in a network in one 
well. In addition, the irreversible damage to cells and the 
complex operation process of patch clamp are not con-
ducive to the long-term and simultaneous recording of 
multiple cells, which has great limitations on the study 
of neural networks. On the other hand, VSDs and VSFPs 
can readily achieve the intracellular recoding with high 
spatial resolution, but these approaches suffer from low 
signal-to-noise ratios, phototoxicity, and pharmacological 
side effects [77–83].

Though intracellular recording techniques possess supe-
riority in many aspects, their development is expected to 
meet the following goals [85–86]: (1) Minimum inva-
siveness: The electrodes are required to be smaller than 
5 μm to penetrate the cellular membrane in a gentle man-
ner [87]. The smaller electrode dimension could reduce 
the invasiveness to cells, allowing for a reversible, long-
term and chronic recording. (2) High sensitivity: The 
electrode should possess a high sensitivity and SNR to 
detect subthreshold potentials with amplitudes in the range 
of ± 0.5–10 mV and sensitively derive the details of weak 
signals [88]. (3) Large-scale recording: Multiple cell–elec-
trode interfaces afford both single-cell recording and net-
work-scale extension, which contributes to precise posi-
tioning and large-scale control. (4) Stable cell–electrode 
interface: This requires the cell–electrode coupling, and 
the properties of the electrode (material, surface, geom-
etry, etc.) remain stable, which not only helps to reduce 
signal loss, but also lays a solid foundation for long-term 
and complex mechanism research. It is worth noting that 
cardiomyocytes and neurons are the general study mod-
els in the intracellular recording, while the intracellular 

recordings of neurons are more difficult due to the sparse 
distribution and specific chemical synapse connections, 
so low probability and subthreshold signals of neuronal 
intracellular recordings are both bigger challenges.

The recent advances of nanodevices have encouraged new 
concepts to satisfy the above requirements. Nanodevices 
have prominent advantages in dimension to minimize inva-
siveness and enhance the throughput, which significantly 
increases the number and density of recording sites [87, 89, 
90, 91]. With the development of micro/nanofabrication 
technologies, the wide selection of materials and the flex-
ible design of structures provide many options to create the 
nanodevices. The continuous promotions of nano-biointer-
faces and penetration strategies also substantially enhance 
the intracellular recording performance of nanodevices. In 
particular, combining intracellular electrodes with extracel-
lular MEA structures and CMOS electronic circuits can not 
only improve the signal quality, but provide feasible strate-
gies for constructing large-scale high parallel platforms as 
well [92–94]. At present, nanodevices have been widely used 
in neuroscience and cardiology for drug screening, disease 
modelling and preclinical diagnosis [9, 95, 96].

In this review, the new concept of “In-cell nano-
electronics” is proposed as nanoelectronics field for the 
intracellular investigation and applications. Compared 
with other bioelectronics, it establishes an intracellular 
pathway and can reflect the electrophysiological state by 
high-quality recordings, which is of great significance to 
study the cellular working mechanism. We describe the 
recent advances in nanodevices for intracellular record-
ings (Fig. 1). First, we conduct an in-depth study exam-
ining three factors affecting electrophysiology recording: 
material and structural processing of nano-biointerfaces 
(Sect.  2), penetration strategies (Sect.  3) and nanode-
vices (Sect. 4). It is worth noting that the nanodevices are 
divided into passive and active types, and their recording 
principle and interface coupling are discussed in detail. 
Next, we explore the application of nanodevices in car-
diomyocytes and neurons by comparing their effects on 
the high-quality intracellular electrophysiological signals 
(Sect. 5), demonstrating the superiority and specificity 
of nanodevices. Finally, we rationally discuss the future 
development trends of nanodevices and their potential 
applications in biomedical fields.
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2  Nanodevice Manufacture

The manufacture of nanodevice involves material selection 
and structural design, which closely affect the impedance 
and coupling of the cell–electrode interface. To achieve 
high-quality signal recordings, numerous attempts have 
been made to fabricate the nanodevices with less influence 
of electrode impedance and higher seal of cell–device cou-
pling. Moreover, with the continuous and rapid development 
of micro/nanofabrication technologies, these nanodevices 
have been further optimized to achieve high-stability and 
large-scale detection in high-standard practical applications 
over the proof of concepts.

2.1  Nanodevice Materials

The choice of device material has an effect on the imped-
ance of a nanoelectrode. At present, nanodevice materials 

are mainly comprised of biocompatible conductive or 
semiconductive materials. Conductive materials (e.g. Au 
and Pt) are commonly used to fabricate the passive metal-
lic electrode, which record the interfacial electric current 
induced by action potential and electrochemical impedance 
[10, 91, 95, 97–101]. Meanwhile, semiconductive materials 
(e.g. Si) are generally applied to fabricate the active transis-
tors, which measured the action potentials on the gate [87, 
102–109]. Furthermore, the combination of conductive and 
semiconductive materials can fabricate nanodevices with sil-
icon cores and metal tips [89], and the functions of nanode-
vices are further enhanced by CMOS integration [92, 94]. 
Smaller nanoelectrode will lead to a worse signal-to-noise 
ratio. However, big electrodes with the diameter of over 10 
microns are difficult to perform the intracellular recording, 
so small electrode with small area is necessary for intracel-
lular recording, which is conducive to perform the intra-
cellular access. Compared to the extracellular signals, the 
intracellular signals have large amplitude, so the SNR is still 
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Fig. 1  In-cell nanoelectronics for opening the door to intracellular electrophysiology. In-cell nanoelectronics are developed based on the interac-
tion of design optimization and practical application: the continuous optimization of nano-biointerfaces, nanodevices and penetration strategies 
promotes intracellular electrophysiological detection; the advantages and shortcomings reflected in the application lead to the further develop-
ment of in-cell nanoelectronics. a–h Schematic illustrations and SEM or optical images of different nanodevices, including branched nanotube 
FET (a), gold-mushroom-shaped electrode (b), nanowire electrode (c), nanopillar electrode (d), nanotube electrode (e), volcano-shaped elec-
trode (f), kinked nanowire FET (g), U-shaped nanowire FET (h). i–k Schematic illustrations of penetration strategies, including chemical modi-
fication (i), electroporation (j), plasmonic optoporation (k)
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increase. To reduce the noise, many strategies are introduced 
to increase the surface area of the electrode. For example, 
nanotube structure was fabricated to replace the nanopil-
lar [101]. In addition, electroplating conductive materials, 
such as Pt-black, carbon nanotubes (CNTs) and conducting 
polymers [6, 57, 88, 94, 110, 111], can increase the surface 
area, reduce the electrode impedance and improve the SNR.

2.2  Nanodevice Geometry and Fabrication

The design of nanoelectrode geometry plays a crucial role in 
cell–device coupling. The cleft and loose coupling between 
the planar nanodevice and cell lower the signal quality. To 
narrow or eliminate the gap, Hai et al. first designed a three-
dimensional (3D) electrode simulating the shape and dimen-
sions of dendritic spines, which were proven to improve 
cell–electrode coupling (Fig. 2a) [97, 98, 112]. However, 
the 3D gold-spine electrode possessed a large and round top 
that was difficult to be engulfed by cells. To enhance the per-
formance of cell penetration, one-dimensional nanomaterials 

or nanostructures (e.g. nanowires and nanopillar) were 
integrated for intracellular recording applications (Fig. 2b, 
c) [9, 90–92, 94, 95, 113]. Compared with the planar or 
large devices, the 3D sharp nanodevices greatly improve 
the cell–electrode coupling and facilitate the intracellular 
access. However, based on passive metallic nanoelectrode 
paradigm, the seal resistance is too low to derive the full 
action potentials due to the current leakage. To obtain sig-
nal amplitudes comparable to those recorded with patch 
clamp, active nanotransistor paradigm for cardiomyocytes 
was introduced to exclude the impact of interfacial imped-
ance (Fig. 2d, e) [87, 102, 103, 107]. Lieber group originally 
designed a series of kinked nanowire and branched nanotube 
bioprobes with source/drain (S/D) and nanoscale FET chan-
nels. Without the limitation of the interfacial impedance, 
the dimension of the nanoelectrode can be minimized to 
achieve a high-density nanoelectrode array. Moreover, nano-
structures can significantly affect cell–electrode coupling 
and intracellular access. Besides, the hollow tubular struc-
ture electrode can functionally delay membrane resealing 

(a) (b) (c) (d)

(e) (f) (g) (h)

1.44 µm

1 µm

Ø2 µm
1 µm200 nm200 nm

5 µm

18 nm

300 nm

Top view

S

D1

100 nm

2 µm

1.42 µm

932 nm

642 nm

Fig. 2  Nanodevices with different materials and geometric shapes. a SEM image of the gold-spine electrode. Reproduced with permission from 
Ref. [98]. Copyright 2010, American Physiological Society. b SEM image of the vertical nanowire electrode array with silicon core and gold 
tip. Reproduced with permission from Ref. [89]. Copyright 2012, Nature. c SEM image of the vertical Pt nanopillar electrode array. Reproduced 
with permission from Ref. [91]. Copyright 2012, Nature. d SEM image of the device based on the kinked silicon nanowire. Reproduced with 
permission from Ref. [87]. Copyright 2010, American Association for the Advancement of Science. e SEM image of branched  SiO2 nanotube 
field-effect transistor. Reproduced with permission from Ref. [102]. Copyright 2011, Nature. f SEM image of the IrOx nanotube electrode. 
Reproduced with permission from Ref. [101]. Copyright 2014, Nature. g SEM image of gold-coated plasmonic 3D nanoelectrodes. Reproduced 
with permission from Ref. [100]. Copyright 2017, American Chemical Society. h SEM image of the nanovolcano electrode with Au nanoring. 
Reproduced with permission from Ref. [10]. Copyright 2019, American Chemical Society
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and even induce the active membrane fusion to enhance 
the seal resistance and prolong the intracellular recordings 
(Fig. 2f–h) [10, 100, 101]. The study of U-shaped nanowire 
probes based on the advanced alignment further demon-
strates that electrodes with smaller curvature radii facilitate 
to penetrate the cellular membrane and record full-amplitude 
intracellular action potentials and subthreshold features in a 
high-throughput manner [109].

There are two main manufacturing approaches for nan-
odevices, namely bottom-up and top-down methods [114, 
115]. The bottom-up manufacturing strategies are based on 
the synthesis/assembly of individual atoms and molecules. 
Among them, the vapour–liquid–solid (VLS) method is 
popular to synthesize semiconductor nanowires [116–120], 
which relies on a metal nanoparticle catalyst and promotes 
the anisotropic growth of semiconductor nanowires in the 
presence of a liquid–solid interface. Heterogeneous struc-
tures can be obtained by adjusting the conditions during 
the growth process. Other bottom-up synthesis approaches 
include chemical vapour deposition (CVD) [121, 122], 
atomic layer deposition (ALD) [123, 124] and metal–organic 
vapour phase epitaxy (MOVPE) [125, 126]. In contrast, 
the top-down manufacturing strategies are based on a bulk 
substrate that is progressively sculpted or etched to obtain 
predetermined nanostructures. The process usually con-
sists of two steps. First, lithography is carried out under 
masking with a target pattern, and lithography technology 
mainly involves photo, colloidal, nanoimprint, electron 
beam (E-beam), focus ion beam (FIB) or X-ray lithography 
[127–131]. Next, the material is selectively removed from 
the substrate, primarily through dry/wet etching, typically 
reactive ion etching (RIE) and metal-assisted chemical etch-
ing (MACE) [132–134]. The top-down manufacturing strate-
gies have outstanding advantages in precisely controlling the 
structures of nanodevices.

At present, the preparation of most nanodevices combines 
the above two manufacturing strategies to construct a more 
flexible and stable structure. For example, in the case of 
the kinked nanowire probe, a 120° bending structure was 
obtained by changing the vapour pressure in the VLS reac-
tion, and remote electrical interconnects were made through 
e-beam lithography to separate the kinked nanowire structure 
from the substrate (Fig. 2d) [87]. During the preparation of a 
branched intracellular nanotube FET, the trunk and branched 
structure was first fabricated by the combination of VLS, 
electron beam lithography, metal evaporation and ALD, and 

then etching was performed to finally obtain the nanotube 
structure (Fig. 2e) [102]. For vertical nanodevices, the target 
structure was usually constructed by the top-down manu-
facturing strategies, and the passivation layer (e.g. Al2O3, 
Si3N4/SiO2) was then deposited by ALD or CVD to electri-
cally isolate the non-active region from the culture medium 
(Fig. 2b, c) [89, 91]. Recently, great progress has been made 
in combining nanodevices with industrial CMOS technology. 
Thousands of nanodevices were fabricated directly on top of 
a CMOS circuit to achieve large-scale parallel recordings at 
the network level [92, 94]. Although CMOS fabrication is 
limited by high-cost and compatible processing technology, it 
is still an effective strategy to implement high-resolution and 
high-throughput integration, which has unique advantages in 
studying cellular network electrical activity. The materials 
and processes of nanodevices can be unified one by CMOS 
fabrication. The large-scale parallel fabrication techniques, 
such as photolithography and electrodeposition, are more 
conducive to develop high-fidelity and high-throughput nan-
odevices for satisfying the commercial requirements.

3  Intracellular Access Strategies

To obtain a high-fidelity intracellular signal, the probe of 
nanodevice is demanded to penetrate the cell plasma mem-
brane and form a tight coupling with the membrane. High-
performance intracellular access is expected to obtain high-
quality and long-term signal recording while maintaining 
cellular viability. The intracellular access should be achieved 
by the penetration methods that can be divided into spon-
taneous penetration and aided penetration. Spontaneous 
penetration mainly depends on cell phagocytosis and cell 
adhesion, while aided penetration requires external promot-
ing factors such as chemical modification, electroporation 
or plasmonic optoporation.

3.1  Spontaneous Penetration

Spontaneous penetration takes advantage of natural cellu-
lar processes such as phagocytosis with less influence of 
native cell viability. Activation of their phagocytotic-like 
mechanisms is necessarily required, since cardiomyocytes 
and neurons present the strong capacity to internalize the 
foreign bodies as macrophages and endothelial cells, Hai 
et al. designed a functionalized gold-spine electrode (FGSE), 



Nano-Micro Lett.          (2021) 13:127  Page 7 of 27   127 

1 3

(a)

(c)
(i)

(ii)

(ii)(i)
(d) (e)

(b)

I

S

Cytoplasm Cytoplasm

FETFET

HiPSC-CM, extracellular HiPSC-CM, intracellular
2 mV

1 mV

Electroporation

Nanometre sized pores Recording after electroporation

0.5 s

0.5 s

50
 µ

V
5 

m
V

Recording before electroporation

0 1 2 3 4
Time (s)

5 6 7 8 0 1 2 3 4
Time (s)

5 6 7 8

5 ms

Extracellular
fluid

Conducting
nickel silicide

Conducting
nickel silicide

D FET

Neuron

Gold spine
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Reproduced with permission from Ref. [97]. Copyright 2010, Nature. b Schematic illustration of nanowire probe entrance into a cell. Dark pur-
ple and blue colours denote the phospholipid bilayers and cytosol, respectively. Reproduced with permission from Ref. [87]. Copyright 2010, 
American Association for the Advancement of Science. c (i) Schematic illustration of U-shaped nanowire probe with different radii of curva-
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which was modified by an engulfment-promoting peptide 
(EPP) with multiple Arg-Gly-Asp (RGD) repeats [97, 98], 
and the peptide effectively induced Aplysia californica neu-
rons to actively engulf the gold-spine electrode to record 
the intracellular action potentials and subthreshold synap-
tic potentials (Fig. 3a). Moreover, induced phagocytosis 
can enhance the adhesion and electrical coupling of the 
cell–electrode interface, resulting in a high SNR that is com-
parable to conventional patch clamp recording.

Though the 3D spine electrode can achieve the intracel-
lular access, the large dimension and geometry of electrodes 
potentially increase the difficulty of membrane penetration. 
To improve the efficiency of intracellular access, 3D nanow-
ire electrodes were introduced due to their superiority of 
their sharp geometry and rigidity [9, 113, 135]. Two penetra-
tion mechanisms have been proposed, namely impaling as 
cells land onto the nanowire array and penetrating mediated 
by adhesive cells spreading on the substrate [136]. The for-
mer presents a low penetration probability by cell gravity, 
while the latter is more efficient under the action of adhesive 
forces to form a tight coupling between cells and the sub-
strate. But in general, spontaneous penetration cannot satisfy 
efficient and stable intracellular recording.

3.2  Aided Penetration

Spontaneous penetration possesses the superiority at intra-
cellular access, however, only a fraction (< 7%) of 3D nan-
odevices can spontaneously penetrate cellular membranes 
[89, 137–139]. To enhance the penetration efficiency, aided 
penetration strategies are developed to achieve the intracel-
lular access in recent decade, including chemical modifi-
cation, mechanical forces, electroporation and plasmonic 
optoporation.

Chemical modification-aided penetration is based on the 
fusion of the coated phospholipid and the cellular mem-
brane. Lieber group applied the phospholipid bilayer to a 
kinked SiNW, and a continuous shell was formed on the 
nanoprobes by fusion with unilamellar vesicles of phospho-
lipid bilayers [1,2-dimyristoyl-sn-glycero-3-phosphocholine 
(DMPC)] (Fig. 3b) [87, 107, 109]. The lipid surface coat-
ing presents less effect on the conductance and sensitivity 
of nanodevices and possesses also less mechanical invasion 
to the cell, allowing for the recordings of robust intracellu-
lar potentials. By successful applications on kinked SiNW 
devices, the phospholipid modification was also applied 

for their nanotube field-effect transistors [102, 103]. It is 
worth noting that this penetration method possesses good 
reusability. When the nanoelectrode is retracted from the 
cell after the intracellular recordings, the nanostructure 
remains intact without blockage or damage; hence, it can 
gently recontact with the cell and repeat the high-quality 
intracellular recordings. To reveal the dimension effect of 
nanodevices on cell–device fusion, Zhao et al. designed a 
scalable U-shaped nanowire probe to explore the optimal 
structures and parameters of nanodevice for intracellu-
lar recordings [109]. Nanoscale membrane curvature will 
affect the endocytosis of cells. As the radii of curvature 
(ROC) of probe increased from 0.75 to 1.5 μm, the intracel-
lular access based on endocytosis became weaker, and the 
amplitude of recorded action potentials decreased from ~ 34 
to ~ 21 mV, respectively. Meanwhile, probe with 2 μm ROC 
can only perform the extracellular recording due to unsuc-
cessful intracellular access (Fig. 3c). In addition, to trigger 
the spontaneous penetration, the biomimetic lipid bilayers 
of cell membrane were functionalized on the device surface 
as another effective chemical modification for aided pen-
etration strategy [10, 140], which contains two hydrophilic 
ends and an intermediate hydrophobic band. Self-assembled 
monolayers were introduced to modify as the hydrophobic 
structure to achieve the fusion of cell membrane and func-
tionalized electrode. Chemical modification penetrations 
are demonstrated to be minimally invasive, robust and reus-
able for intracellular recordings, but the chemical modifi-
cation strategies still remain the low efficiency of intracel-
lular access and modification processes are complicated. 
In addition, mechanically aided penetration is also another 
extensively intracellular access strategy, including pressing, 
micromanipulators or centrifugation [138, 139]. These stud-
ies highlight the potential of nanoelectrodes combined with 
physical forces to monitor intracellular activity.

To improve the efficiency of intracellular recording, the 
electroporation strategy is developed to achieve intracellu-
lar access. Because 3D nanoelectrode and the cell couple 
tightly and the surrounding electric field is localized at the 
tip of the electrode, the nanopores on the cell membrane 
generate at the cell–device interface with a low voltage 
(~ 1–3 V). A series of intracellular recording were based 
on nanoelectrode electroporation, and the signal ampli-
tude is obviously enhanced while signal shape presents 
the intracellular feature with typical depolarization, repo-
larization and resting phases, demonstrating the access to 
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intracellular environment (Fig. 3d). An alternating voltage 
pulse (0.5–1 V, 100 Hz, 300 ms) was applied to gold-mush-
room-shaped microelectrodes (gMμEs) to achieve neuron 
electroporation, and the resting potential was recovered after 
a period of ~ 300 s [99]. Similarly, vertical SiNW and nano-
pillar devices have successfully accessed to the intracellular 
environment by administrating voltage pulses with ampli-
tudes of ± 3 and ± 2.5 V on the cells, respectively [89, 91]. 
The intracellular potential recorded by nanopillar electrode 
arrays disappeared approximately 10 min after electropo-
ration, and the duration was transient due to the resealing 
of cell membrane. To prolong the intracellular recording, 
Cui et al. developed a nanotube electroporation strategy, 
which achieved stable intracellular recording up to 1 h due 
to spontaneous infiltration of the cellular membrane into the 
nanotubes [101]. In addition, integrated current clamp is an 
effective strategy for electroporation and maintaining intra-
cellular recording of neurons. Continued current injection 
can compensate for the current leakage from inside the cell 
in addition to maintaining membrane penetration, which is 
conducive to achieving sensitive subthreshold intracellular 
recording [94]. Though the electroporation strategy effec-
tively improves the efficiency of intracellular recording 
(~ 100%), the tight cell-nanodevice coupling and seal are not 
essentially formed. Its instinct shortcomings and limitations 
should be urgently solved to ensure the native intracellular 
recordings. The electroporation pulse may interfere with the 
native cellular electrophysiological activities. Secondly, a 
recording interruption of ~ 10 s remains after electropora-
tion to wait for recovery of amplifier saturation. Moreover, 
the duration and signal quality are still limited due to the 
transient nature of electroporation causes the recorded intra-
cellular potential to be attenuated and thus provide no sig-
nificant improvement on the electrode-cell interface.

To achieve the accurate and independent recording of 
cells in different regions, a plasmonic optoporation tech-
nique was developed [96, 100]. Dipalo et al. combined verti-
cal nanodevices with plasmonic optoporation to achieve high 
signal-to-noise, long-term and stable intracellular recording 
(Fig. 3e) [100]. The nanoelectrode is stimulated by a short-
pulse laser (8 ps, 1064 nm, 80 MHz) to open transient nano-
pores on the cell membrane. This process only occurs at the 
tip of the electrode, which has no effect on the cell–electrode 
seal and does not interfere with the spontaneous electrical 
activity. In contrast to electroporation, plasmonic optopora-
tion does not require the passivation of planar electrodes, 

which can be used to simultaneously record intracellular and 
extracellular potential. Furthermore, the recording interrup-
tion is nonexistent in plasmonic optoporation, and conse-
quently, continuous recording can be achieved. It is worth 
noting that the addressed plasmonic optoporation allows 
each nanoelectrode to be independently plasmonic and per-
forated independently, thus enabling the accurate selection 
of the cellular compartments for intracellular recording. 
However, plasmonic optoporation is difficult to perform 
high-throughput parallel regulation. 3D moving platform 
under the microscope is the only way to solve the multisite 
optoporation and realize the high-throughput precise regu-
lation of cells. The development goal of aided penetration 
strategies is to combine the advantages of the approaches 
for achieving moderate, high-throughput, controllable and 
stable intracellular access.

4  Principle and Simulation 
of Electrophysiological Recording

Action potentials or transmembrane potentials derive from 
the transfer of transmembrane ion currents of electrogenic 
cells [115, 141]. Intracellular ion concentration changes 
directly cause the fluctuation of transmembrane potential. 
Based on the defined recording and reference sites, the 
intracellular or extracellular potentials can be monitored. 
Two main types of nanodevices have been developed to 
detect electric signals: active field-effect transistor arrays 
that trigger gate signals through surface potential changes 
and passive electrode arrays that induce currents through 
interface impedance. By advanced micro/nanofabrication 
technologies, the versatile 3D nanoscale multitransistor and 
multielectrode are manufactured as the powerful tools to 
collect the electrophysiological information of cells from 
the extracellular to the intracellular.

4.1  Active Field‑effect Transistor Recording

The field-effect transistor is conventionally fabricated on a 
semiconductor substrate, a source, a drain and a gate elec-
trode. In a conventional FET, the gate metal electrode is 
used to apply a gate voltage  (Vg) [142]. When Vg exceeds 
the threshold voltage, electrons or holes are induced to 
move towards the semiconductor oxide interface, lowering 
the channel barrier and generating a significant tunnelling 
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current. For the electrophysiological recording, the effec-
tive potential generated by action potential is applied on 
the gate electrode, which can regulate the conductance and 
tunnelling current between the source and drain electrodes. 
However, the source/drain (S/D) electric contacts for current 
injection and collection greatly limit the device to achieve 
the intracellular access. To solve this problem, Lieber et al. 
designed a 3D kinked nanowire probe, making a significant 
breakthrough for intracellular recording [87]. A FET sensi-
tive region is defined at the tip of the kinked nanowire enter-
ing the intracellular, while the S/D structure remains extra-
cellular. On this basis, the branched intracellular nanotube 
FET (BIT-FET) has been subsequently developed, where a 
branched hollow  SiO2 nanotube penetrates the membrane as 
the 3D bioprobe of FET gate, and the S/D is positioned on 
the extracellular Si nanowire [102]. In particular, for p-type 
FETs, the negative gate voltage causes carrier accumulation 

and conductivity to increase, while the positive gate voltage 
causes carrier depletion and conductance to decrease; hence, 
the recorded conductance is inversely proportional to poten-
tial on the gate electrode, and intracellular potential recorded 
by nano-FET device is independent of the interface imped-
ance, which effectively avoids the signal loss caused by the 
electrode impedance and can achieve high-fidelity intracel-
lular recording [107, 109, 143]. To visually describe the FET 
recordings, an equivalent circuit is applied to simulate the 
cell-FET coupling (Fig. 4a). V0 refers to action potential 
of cell, Cnj and Rnj refer to nonjunctional capacitance and 
resistance, respectively, Cj refers to junctional capacitance, 
which consists of cell capacitance, nanotube capacitance 
and bilayer capacitance, Rj refers to junctional resistance, 
and Rseal refers to seal resistance. When an action potential 
occurs, V0 diffuses from the intracellular region. The gate 

(a) (c)

(d)
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Fig. 4  The equivalent circuit for simulating cell-nanodevice coupling. a Circuit model for describing the active field-effect transistor recording. 
b Extracellular and intracellular recording by active field-effect transistor. Reproduced with permission from Ref. [87]. Copyright 2010, Ameri-
can Association for the Advancement of Science. c Circuit model for describing the passive nanoelectrode array recording. d Extracellular and 
intracellular recording by passive nanoelectrode array. Reproduced with permission from Ref. [92]. Copyright 2017, Nature
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potential is equal to the junctional potential Vj, which can be 
calculated as follows:

Zj refers to junctional impendence, and ω refers to angular 
frequency of potential. The variation in Vj can regulate the 
conductance of the FET from source to drain electrodes. 
The cell–electrode coupling of an FET can be evaluated by 
the ratio between Vj and V0; a higher ratio refers to better 
coupling and thus better recording capability.

According to Eq. (1), the coupling is dependent on Zj 
and Rseal. Zj presents to the interface impedance from the 
action potential to the FET gate. Rseal presents to the seal 
capability after cell adhesion, and a tighter adhesion on the 
device leads to a better seal. Cell–electrode coupling can 
be observed by recording the results. Figure 4b shows the 
extracellular and intracellular recording from the same cardi-
omyocyte by FET probe [87]. In the extracellular recording, 
the cell membrane had not been punctured, so Zj expressed 
high impedance. In the intracellular recording, Zj was close 
to the zero due to the direct contact between the cytoplasm 
and FET gate after penetration.

4.2  Passive Electrode Arrays Recording

Since Thomas et al. pioneered the use of microelectrode 
array technology to detect extracellular signals of isolated 
chicken embryonic cardiomyocytes, various types of MEAs 
have been developed to record the electrophysiological 
activities of cells [29, 32, 88, 144–146]. In MEAs, metal 
microelectrodes, leads and passivation layers are fabricated 
on an insulating substrate by various fabricating processes. 
The electrode is a bridge between the cell and the peripheral 
circuit, one end is in contact with the cell to receive a weak 
electrical signal, while the other is connected to an ampli-
fier. After the cell couple on the electrode, the cell–electrode 
interface reaches electrochemical equilibrium to form a dou-
ble layer. The electrode surface produces polarization, and 
the double-layer capacitor charges and discharges to detect 

(1)Vj = V0 ⋅
Rseal

Zj + Rseal

(2)Zj =
Rj

1 + i�CjRj

.

the fluctuation of surface potential induced by action poten-
tial of cell. The electrode is usually connected to an exter-
nal amplifier by metal traces covered with dielectric mate-
rials for signal processing, which is suitable for the study 
of single-cell potential changes and multicellular network 
transmission both in vivo and in vitro [20, 41, 147–149]. 
To improve the cell–electrode coupling, 3D nanoelectrode 
arrays were developed for intracellular recordings with the 
advantages of minimal invasion and high spatial resolution, 
the layout complexity of interconnects hampered the density 
and resolution of nanodevices, besides the increase in elec-
trode impedance significantly raises noise and lower the sig-
nal amplitude [93, 150]. To overcome this constraint, CMOS 
technologies are introduced for nanodevice fabrication. 
The electronic components for amplification and stimula-
tion were integrated on a CMOS circuit, so the nanodevices 
directly located above the circuit to reduce the layout dif-
ficulty and interconnect impedance between the electrodes 
and exterior condition circuits [92, 94]. The active nanoe-
lectrode-based CMOS device combines the advantages of 
passive electrode and active electrode, and has a prominent 
superiority in achieving large-scale cell network recording.

To visually describe the passive nanoelectrode array 
recording, an equivalent circuit of passive nanoelectrode 
array is shown in Fig. 4c. The equivalent model of cell–elec-
trode is the similar as the FET case, while the junctional 
voltage Vj is different that serves as the gate voltage in the 
FET. In the nanoelectrode array equivalent circuit, Vj con-
ducts further to Ve and is then recorded by the amplify-
ing circuit. The junctional potential Vj can be calculated as 
follows:

(3)Vj = V0 ⋅

Zsys

Zj + Zsys

(4)Zj =
Rj

1 + i�CjRj

(5)Zsys = Rseal ⋅

Zamp + Ze

Rseal + Zamp + Ze

(6)Ze =
Re

1 + i�CeRe
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where Zsys the system impedance, consisting of a hybrid 
junction with a seal resistance (Rseal), electrode impedance 
(Ze) and amplifier impedance (Zamp). Re and Ce refer to 
electrode resistance and capacitance, respectively. Rin and 
Cin refer to the amplifier input resistance and capacitance, 
respectively. Cstray is the stray capacitance.

Consequently, the electrode voltage (Ve) can be written as:

The cell–electrode coupling efficiency of an MEA can 
be defined as the ratio of Ve to V0. From the derivation of 
Eq.  (8), higher seal resistance and amplifier impedance 
are beneficial to improve the signal quality, while junction 
impedance and electrode impedance are contrary.

System impedance Zsys is related to seal resistance, ampli-
fier impedance Zamp and electrode impedance Ze; as shown in 
Eq. (5), electrode impedance is expected to be low. Ampli-
fier impedance mainly depends on the input resistance Rin 
of the amplifier. Theoretically, larger input resistance results 
in larger amplification and higher coupling efficiency. How-
ever, limited by the input power of the amplifier, the input 
resistance has an upper limit, which depends on the amplifier 
type. Seal resistance Rseal depends on the adhesion between 
the cell and the electrode. Junction impedance Zj is close 
to zero by achieving the puncture of the cell membrane 
(Fig. 4d). Therefore, the supplementation of electropora-
tion or plasmonic optoporation for intracellular recording 
can obviously enhance the coupling and intracellular signals 
[91, 100].

For instance, the 3D mushroom electrode obviously 
increased the seal resistance from 1 to 100 MΩ compared 
to the planar electrode [97, 151]. The application of a 3D 
nanowire array and hollow nanotube array further improved 
the seal resistance [89, 101]. These were ascribed to the 
bionic interface of the vertical structure, which provided 
an excellent microenvironment for cell adherence. On the 
other hand, a single vertical structure led to high electrode 
impedance because of the decrease in the cross-sectional 
area [97]. Overall, the application of 3D nanodevice can 
achieve a remarkable cell–electrode coupling efficiency for 

(7)Zamp =
Rin

1 + i�Rin

(

Cstray + Cin

)

(8)

Ve = Vj ⋅

Zamp

Ze + Zamp

= V0 ⋅

Zsys

Zj + Zsys
⋅

Zamp

Ze + Zamp

= V0 ⋅

Rseal ⋅ Zamp

Zj
(

Rseal + Zamp + Ze
)

+ Rseal ⋅

(

Zamp + Ze
) .

intracellular recordings. To improve the performance of pas-
sive nanodevices mainly includes two aspects: (1) Enhanc-
ing the seal resistance between the cell and the electrode to 
minimize signal loss to the bath medium. Optimizing the 
three-dimensional geometries of nanodevices can improve 
the bio-interface coupling. (2) Reducing the cell-interface 
impedance to increase signal collection efficiency. Effec-
tive aided penetration strategy is beneficial for decrease in 
cell-interface impedance. Through the continuous optimi-
zation of passive devices, it is expected to replace active 
ones, becomes a powerful tool for high-fidelity and high-
throughput electrophysiology research.

5  In‑Cell Nanoelectronics for Cardiology 
and Neuroscience

A variety of nanodevices have been developed to obtain 
intracellular potentials (Table 1). Based on their characteris-
tics, applying nanodevices to basic active units (cardiomyo-
cytes and neurons) can enable breakthroughs in the field of 
cardiology and neuroscience. Intracellular recording can get 
closer to the true action potential to explore the mechanisms 
of ion channels with the high-resolution detail for modelling 
diseases and screening drugs. Second, intracellular record-
ing possesses high sensitivity, which is also conducive to 
the study of subthreshold potential or membrane oscillations 
and is of great significance to the exploration of the activi-
ties of cell network. Finally, intracellular recording enables 
one-to-one correspondence between cells and electrodes, 
which lays a foundation for high-precision recording and the 
manipulation of individual target cells. The amplitude, shape 
and duration are key parameters to assess the performance 
of intracellular recording, so optimizing the cell–electrode 
interface and effective aided penetration strategy are poten-
tial strategies to promote one or all of these parameters for 
long-term chronic practical applications.

5.1  In‑Cell Nanoelectronics for Cardiomyocytes

Cardiomyocytes are the main bioactive and functional com-
ponents of the heart, and their unique membrane structure is 
composed of a phospholipid bilayer and membrane proteins, 
which can not only control ion transport to maintain the 
homeostasis of intracellular environment but also provide 
varieties of specific ion channels as the basis to generate 
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action potentials [153, 154]. According to the characteristics 
of potential, the transmembrane potential of cardiomyocytes 
can be divided into resting potential and action potential. 
When cardiomyocytes are in the “resting” state, the cellu-
lar membrane is polarized, with transmembrane potential 
of ~ -90 mV [155, 156]. The action potential is spontaneously 
generated by autonomic cardiomyocytes (e.g. sinoatrial node 
cells), and then is transmitted to working cardiomyocytes 
(e.g. atrial myocytes and ventricular myocytes) [157, 158]. 
The action potential of working cardiomyocytes can be 
mainly divided into five phases: rapid depolarization  (Na+ 
inflow), early rapid repolarization  (K+ outflow), plateau  (K+ 
outflow,  Ca2+ inflow), late rapid repolarization  (K+ outflow) 
and resting state  (Na+,  K+,  Ca2+ concentration recovered by 
ion pump) [159–161]. During the whole process, the action 
potential measured by patch clamp usually possesses an 
amplitude of ~ 100 mV and a duration of ~ 200–400 ms [156, 
160]. It is worth noting that the shape of action potential 
will be affected by cell types, such as pacemaker, ventricu-
lar myocytes and atrial myocytes, which are different in the 
duration, the refractory period, etc. [95, 156]. In contrast to 
working cardiomyocytes, sinoatrial node cells have a depo-
larization  (Ca2+ inflow), then turn into repolarization  (K+ 
outflow) without a plateau. In addition, the high seal resist-
ance and low interface impedance can improve the signal 
quality [162].

To date, intracellular recording based on 3D nano-FET 
devices comes the closest to the true action potential. Kinked 
nanowire FETs were gently exposed to spontaneously beat-
ing embryonic chicken cardiomyocytes, and after an inter-
val of ~ 40 s, the initial 3–5 mV extracellular signal was 
gradually transformed into “action potential” signal with 
larger amplitude and opposite polarity (Fig. 5a) [87]. This 
intracellular signal possessed an amplitude of ~ 80 mV and 
a duration of ~ 200 ms, and the characteristic phases of the 
action potential can be obviously distinguished. Similarly, 
single branched intracellular nanotube FET (BIT-FET) also 
recorded high-quality action potential with 75–100 mV 
amplitude and ~ 200  ms duration from cardiomyocytes 
(Fig. 5b, i) [102]. However, the complexity of FET signifi-
cantly hampered the large-scale manufacturing, and their 
noise is too large to accurately record the weak potential 
and resting potential without stimulation function. To over-
come these shortcomings, increasing attention has been 
paid to intracellular recordings based on vertical electrodes. 
Cui et al. recorded an action potential of 11.8 mV from Ta
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electroporated HL-1 cells by nanopillar electrodes (Fig. 5c) 
[91]. Compared with nano-FET devices, the amplitude 
decreases, but the SNR increases. The details of the high-
resolution HL-1 action potential can be used to distinguish 
the (non-) pacemaker cells and verify the shortening and 
prolongation of the action potential by typical ion block-
ers of nifedipine and tetraethylammonium, respectively. 
For human embryonic stem cell-derived cardiomyocytes 
(hESC-CMs), nanopillar electrodes can measure an intra-
cellular action potential of 25.15 mV [95]. The shape of 
action potential can be used to distinguish all three cardio-
myocyte subtypes, and the parameters of signals are useful 
for ion channel drug screening and heart disease modelling. 

However, the potential recorded by nanopillar electrodes 
gradually decays within 10 min and rapidly turns to extra-
cellular potential, which limits its application in long-term 
recording (Fig. 5c). The IrOx nanotube electrode was opti-
mized against this constraint, which could record the intra-
cellular potential of ~ 15 mV and maintain long-term (~ 1 h) 
intracellular access after electroporation (Fig. 5d) [101]. By 
combining the tubular structure with plasmonic optopora-
tion, tighter intracellular coupling can be achieved, and the 
peak amplitude can remain stable for 20–30 min, even more 
than 80 min (Fig. 5e) [100]. In particular, it can be observed 
that the amplitude gradually increases after plasmonic 
optoporation, which is beneficial to study the formation 
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mechanism of the cell–electrode interface. Furthermore, the 
electrode structure of a nanovolcano combined with chemi-
cal modification can achieve intracellular potential with an 
amplitude of 20 mV while allowing for up to an-hour stable 
recordings [10].

The scalable and minimally invasive characters of nan-
odevices play crucial significant role for the synchronous 
long-term monitoring of cardiomyocytes. The scalability of 
nanodevices was tested on nano-FET devices [102, 103]. 
Two or three independent BIT-FETs were used to simulta-
neously measure cells at the same or different locations to 
obtain full-amplitude intracellular potentials, which demon-
strated their potential for network-level multiplexed meas-
urements (Fig. 5b, ii) [102]. Due to technological diversity 
and structural flexibility, more attempts have been made with 
vertical nanodevices to achieve multiplexed and long-term 
monitoring. Cui et al. conducted two experiments, including 
simultaneous intracellular recording with five different nano-
pillar electrodes and monitoring for three consecutive days 
before and after electroporation, and the action potentials 
with similar shape and duration were obtained [91]. Simi-
larly, simultaneous recording with six different  IrOx nano-
tube electrodes revealed that synchronous activities of the 
cultured cells and continuous monitoring for 8 days could 
directly reflect the maturation and ageing of cells [101]. 
The scalability of nanodevices has been greatly improved 
by combination with CMOS circuits. A total of 1,024 “pix-
els” equipped with vertical nanowire electrodes were used 
to simultaneously detect hundreds of connected cardiomyo-
cytes [92]. The results showed that 968 pixels were coupled 
with cells, and the spatial propagation of action potential 
could be clearly observed before and after electroporation 
(Fig. 5f). The CMOS nanoelectrode array possessed obvious 
advantages in studying the network propagation of mem-
brane potential and detecting drug effects at the single-cell 
and cell network levels, respectively.

5.2  In‑Cell Nanoelectronics for Neurons

Neurons are basic units of nervous organs or tissues, such 
as brain, spinal cord, retina. Excitability and conductiv-
ity are also the main functions of neurons. The electrical 
signals produced by neurons are similar in principle and 
waveform to those of cardiomyocytes [80, 163]. The rest-
ing potential of neurons is generally in the range of -30 to 

-90 mV; when stimulated, the negative potential raises rap-
idly and reached + 30 mV. The action potentials of neurons 
have the following characteristics: (1) The waveform and 
amplitude of action potentials produced by the same cell 
remain the same during signal transduction even if the con-
duction distance and stimulus intensity change [164–166]. 
(2) The transduction of action potentials on the same neuron 
is full-amplitude, active and long-distance without signal 
attenuation. (3) The signal superposition of action potential 
signal is nonexistent because neurons possess a refractory 
period so the excitability of can vary with the transmem-
brane potential. These characteristics lay a foundation for 
studying neural connections and achieving network map-
ping based on electrophysiological recording. In contrast 
to the cardiomyocyte, stable intracellular recordings of 
neurons are more difficult due to the cell connection. The 
cultured cardiomyocytes can fuse and connected with each 
other through electrical gap junctions, while the neurons 
are mainly connected through the chemical synapses with 
few electrical connections, so they are electrically isolated. 
Therefore, the neuronal intracellular recording is much more 
challenging than the cardiac intracellular recording. Many 
nanodevice research has been very successful in intracellular 
recording of cardiomyocytes, but most of them have the dif-
ficulty in intracellular recording of neurons. Though these 
nanodevices coupled intracellularly with neurons, most of 
them still failed to record subthreshold PSPs (± 0.5–10 mV) 
with few successful works [94], which applied the advanced 
integrated current clamp electronics.

The amplitude and SNR of electrical signals are key char-
acters to evaluate the quality of intracellular recordings, and 
the true and clear recording of action potentials (APs) and 
postsynaptic potentials (PSPs) is of great significance for 
neural network investigation. Nano-FET devices possess 
unique advantages in intracellular recording. A U-shaped 
nanowire FET (U-NWFET) designed by Zhao et al. was used 
to synchronously measure six individual dorsal root ganglion 
(DRG) neurons, and potentials with consistent shape and 
duration were observed with an amplitude of 60–100 mV 
(Fig. 6a, i) [109]. In contrast, electrical signals measured by 
vertical nanowire electrodes suffer from partial signal loss, 
and the amplitudes reached up to 20 mV [89, 94, 97, 100, 
113]. However, Liu et al. designed an individually address-
able nanowire electrode, which for the first time measured 
action potentials of 99 mV, comparable to those measured 
by a patch clamp (Fig. 6c) [9]. For the SNR, the intracellular 
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recording by U-NWFET can reach 115 ± 29, which allows 
observation of 3 ~ 5 mV subthreshold signals (Fig. 5a, II), 
demonstrating its potential for measuring postsynaptic 
potentials [109]. In addition, functionalized gold-spine elec-
trodes (FGSEs) were used to record excitatory postsynaptic 
potentials from three buccal neurons (Fig. 6b, i) [97]. The 
depolarizing or hyperpolarizing pulses were applied to adja-
cent cells, and consistent potentials were eventually recorded 
on the intermediate cells by FGSE (Fig. 6b, ii). Other ver-
tical nanowire/nanotube electrodes achieve the high SNR 
neuronal intracellular recordings [9, 94, 100], and only 
CMOS-activated 4096 nanoelectrode arrays record PSPs and 
define characteristic of the PSPs [94]. Robinson et al. aver-
aged the waveforms obtained under the same experimental 
conditions, improving the SNR from ~ 100 to > 1000 [89]. In 
particular, the individually addressable nanowire electrode 
achieved a SNR of 1700 based on a large aspect ratio, which 
provided a larger interaction region for neurons. The detailed 
presentation of action potentials with a high SNR allows 
for signalling blocker screening and dopaminergic neuron 
modelling [9].

The multiplexing of nanodevices is another technique 
used to realize the mapping of neural networks. Multiple 
U-NWFET probes were used to simultaneously measure the 
same/different DRG neurons (Fig. 6a, iii) [97]. The results 
showed that there was no obvious delay or waveform differ-
ence between the two channels from the same cell, and the 
delay of signals between different cells was consistent with 
the propagation speed of neuron potentials. In particular, two 
U-NWFET probes with different curvatures were integrated 
on the same substrate, providing a new concept for the 
simultaneous measurement of intracellular and extracellular 
potentials. Multiple vertical nanotube/nanowire electrodes 
were also implemented to simultaneously record the intra-
cellular potentials of neurons, thus demonstrating their mul-
tiplexing potential [9, 89, 94, 100]. Abbott et al. integrated 
4096 nanoelectrodes (Fig. 6d, i, ii), which could be coupled 
with approximately 44% of cultured rat cortical neurons, 
and could record action potentials with a median amplitude 
of ~ 200 μV (individual amplitudes could reach ~ 10 mV) 
(Fig. 6d, iii, iv). In addition, the electrode array can record 
the transmission of synaptic potential and the burst of action 
potentials by further quantifying the amplitude of synaptic 
potential, and 304 synaptic connections can be mapped from 
the 19-min long intracellular recording data of 1728 neurons 
(Fig. 6d, v) [94].

5.3  Multifunctional In‑cell Nanoelectronics

With the development of nano/microfabrication and bio-
electronics, more attention has been paid to the multi-
functional nanodevices. In addition to single intracellular 
recording, nanodevice can be applied to cell stimulation, 
biological/chemical sensing and intracellular deliv-
ery. The multifunctional nanodevices not only improve 
the practice but also expand the application prospects 
in molecular detection, drug screening and disease 
modelling.

To decipher the functional mechanisms of the heart and 
brain, simultaneous intracellular recording and stimula-
tion are necessary. As a bidirectional connection between 
cells and circuits, nanodevices can not only receive signals 
from the cell but also output electrical stimulation to the 
cell. Park’s team designed a series of vertical nanowire 
electrodes and demonstrated that injecting current/volt-
age pulses into neurons/cardiomyocytes through them can 
induce action potentials or change the firing frequency 
(Fig. 7a, b) [89, 92]. By applying a bias (~ -1.5 V) to the 
nanowires, changes in the cellular membrane potential 
can be recorded, but the change only existed locally due 
to the microscale point source stimulation provided by 
the nanowires. In particular, an electrical signal record-
ing device integrated with 4096 nanoelectrodes can be 
configured in either pseudocurrent-clamp (pCC) mode or 
pseudovoltage-clamp (pVC) mode [94]. In the pCC config-
uration, the circuit has a high input impedance that allows 
electroporation and potential recording to be concurrent, 
and continued current injection can compensate for the cur-
rent leakage from inside the cell in addition to maintaining 
membrane penetration (Fig. 7c, i). In the pVC configura-
tion, the circuit is converted to low input impedance, which 
allows simultaneous voltage injection and current record-
ing and is suitable for neuron ion channel activation and 
current measurement (Fig. 7c, ii).

The nanoscale p–n diode device was developed with the 
dual functions of intracellular recording and biochemical 
sensing (Fig. 7d) [104]. First, the device employed a nano-
structure and membrane penetration strategy which is simi-
lar to the kinked nanowire FET and can record an intracel-
lular action potential of over 60 mV. Second, p–n nanowire 
probes can be coupled to poly(dimethylsiloxane) (PDMS) 
microfluidic channels to detect fluorescently charged poly-
styrene nanobeads in aqueous solution. When the negatively 
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charged nanobead approaches and/or adheres to the p–n 
junction, the conductance of the device increases, and the 
motion of the nanobeads can be further correlated with the 
conductance changes by combining with confocal imaging. 
Moreover, optimization and adjustment of the relative dop-
ing ratio in the p/n region can expand the potential of p–n 
nanowire probes for highly localized sensing in different 
fields. In addition, 3D plasmonic nanostructures combined 
with multielectrode arrays can achieve electrophysiologi-
cal measures of large networks and simultaneous chemical 
analyses by Raman spectroscopy [167]. Another design of 
the multifunctional nanoelectrode is to combine hollow ver-
tical nanostructures with microfluidic channels at the bot-
tom (Fig. 7e). These nanoelectrodes can selectively deliver 
a variety of molecules to targeted cells and simultaneously 
monitor the electrical activity of cardiomyocytes/neurons, 
which provides new methodologies for early pathological 
studies [152, 168].

6  Summary and Perspective

The advances of in-cell nanoelectronics are of great sig-
nificance to achieve the intracellular recordings (Table 1). 
First, regarding the design of 3D nanodevices, the combi-
nation of semiconductive and metal materials improves the 
performance of intracellular recordings and is compatible 
with CMOS technology; the nanoscale dimension of devices 
enables intracellular recording in a minimally invasive man-
ner; the vertical nanotube/nanovolcano structure increases 
the curvature of cell membrane and prolongs the duration 
of intracellular recordings; and advances in top-down and 
bottom-up processing approaches lay the foundation for the 
development and large-scale manufacturing of in-cell nan-
odevices. Second, in terms of intracellular access, various 
aided penetration strategies have significantly improved the 
penetration efficiency of nanodevice and allowed us to derive 
the stable intracellular action potentials. Finally, in terms of 
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electrode-cell coupling, nanodevices based on active mul-
titransistor devices are independent of the interface imped-
ance and can record the intracellular potential with fully 
amplitude; while the passive multielectrode devices possess 
a high SNR and can be integrated with high spatial resolu-
tion, addressable, high-throughput CMOS circuits. Based on 
the superiority of in-cell nanoelectronics, nanodevices are 
minimally invasive, accurate, sensitive and stable; they can 
multiplex the intracellular recordings of cardiomyocytes and 
neurons and have been widely used in drug screening, dis-
ease modelling and cell network mapping. Multifunctional 
nanodevices have also been developed to allow simultaneous 
electrophysiological recording, cellular stimulation, biologi-
cal/chemical sensing or drug delivery, providing a powerful 
platform for mechanism research and disease treatment in 
the fields of cardiology and neuroscience.

Looking forward, many challenges and potentials remain 
in developing and improving nanoelectronics for intracel-
lular recording, particularly in neuroscience. First, it is nec-
essary to optimize the structure, improve the performance 
and simplify the manufacturing process of the nanodevice. 
Sensitivity is important to disclose a great deal of infor-
mation contained in subthreshold activities (e.g. PSPs) for 
exploring the neuron circuit behaviour and the change in 
the action potential configuration; scalability makes sense 
for improving efficiency and reducing cost in commercial 
and clinical applications. Currently, only a few CMOS 
MEA devices have enabled to synchronously achieve high-
fidelity and large-scale intracellular recording [92, 94, 96]. 
Electrophysiological detection based on mirror charge that 
transducing cell ionic currents into mirror charges in a 
microfluidic chamber is a novel strategy to realize nonin-
vasive action potential recording [169]. Nanodevices have 
shown potential, and we believe that scalable, low-cost and 
high-performance electrodes can be developed in the near 
future for theoretical investigation, clinical applications and 
commercialization. Second, with multiple functions indicat-
ing a new trend for in-cell nanoelectronics, in addition to 
intracellular recording, nanodevices are expected to append 
electrical/optical stimulation, biological/chemical sensing, 
intracellular delivery/extraction and other functions, which 
will facilitate the accurate regulation and synchronous 
monitoring of cells. Electrical stimulation is an effective 
strategy to regulate cell activity and expression, its combi-
nation with nanoelectronics is exciting for applications in 
biomedical environments, such as pacemakers for precise 

stimulation and synchronous monitoring. Microfluidic is 
a promising technology that can be combined with nano-
electronics to achieve multifunctional delivery and signal 
monitoring [170–172]. Finally, integrating nanodevices into 
implantable devices for intracellular recording in vivo is an 
exciting challenge. The reduced invasiveness of nanodevice 
to biological systems has the advantage of avoiding tissue 
inflammation and maintaining functional integrity in long-
term connections. Based on a stable nanoelectronics-biology 
interface, it is possible to conduct large-scale studies of neu-
ronal/cardiac circuit dynamics in vivo and even achieve the 
telemetric monitoring of physiological processes, as well as 
functional prosthetics of damaged neurons or cardiomyo-
cytes. With future improvements, it is conceivable that the 
development of in-cell nanoelectronics will lead to signifi-
cant breakthroughs in the research and clinical treatment 
of neuroscience, cardiology and associated pharmacology.
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