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Hydrogen Bond‑Assisted Ultra‑Stable and Fast 
Aqueous  NH4

+ Storage
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HIGHLIGHTS

• Zero capacity fading after over 3000 cycles at 1 C.

• Only 6.4% capacity is lost when rate is increased by 50 times.

• Diffusion mechanism of formation and fracture of hydrogen bonds is proposed.

ABSTRACT Aqueous ammo-
nium ion batteries are regarded 
as eco-friendly and sustainable 
energy storage systems. And appli-
cable host for  NH4

+ in aqueous 
solution is always in the process 
of development. On the basis of 
density functional theory calcula-
tions, the excellent performance 
of  NH4

+ insertion in Prussian blue 
analogues (PBAs) is proposed, 
especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via 
electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 
50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during 
the ammoniation/de-ammoniation progresses. More importantly, we propose the  NH4

+ diffusion mechanism in CuHCF based on con-
tinuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for 
rapid charge transfer and superior  NH4

+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to 
explore the practical application of CuHCF. In brief, the outstanding aqueous  NH4

+ storage in cubic PBAs creates a blueprint for fast and 
sustainable energy storage.

KEYWORDS Aqueous ammonium ion batteries; Copper hexacyanoferrate; Ultra-long cycling performance; Excellent rate 
performance; Hydrogen bonds
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1 Introduction

In 1990s, the first rechargeable aqueous lithium-ion battery 
was reported by Dahn to provide a substituent for organic 
batteries [1]. Obviously, the primary difference between 
previous studies is that aqueous solution served as electro-
lyte in their research rather than traditional organic electro-
lyte. During the past three decades, this pioneering work 
has inspired an increasing number of researchers to exploit 
more advanced rechargeable aqueous batteries [2–4]. Under 
this circumstance, aqueous monovalent and polyvalent ion 
batteries have been greatly developed and opened the path 
for practical applications. The inherent security, low price, 
and high ionic conductivity of aqueous batteries are irre-
placeable by organic batteries [5–8]. Hence, the tremendous 
advances in aqueous batteries have opened a novel blueprint 
for the development of energy. To date, the research of aque-
ous batteries mainly focuses on the exploration of electrode 
materials and the optimization for practical performance.

According to the comparison between reported aqueous 
batteries, it is not difficult to find that present researches 
mainly focus on metallic carriers [9–13]. Nevertheless, 
proton  (H+), hydronium  (H3O+), and ammonium  (NH4

+) 
as inexpensive and sustainable nonmetallic carriers have 
rarely been studied [14–16]. In recent years, although some 
electrode materials that can be resided for  H+ and  H3O+, 
such as  MoO3 and  WO3 [17, 18], have been reported, their 
further applications are severely restricted due to the strong 
acidity of the electrolyte, which leads to strong corrosion of 
electrode materials and severe side reactions of hydrogen 
evolution [19–21]. In addition, as presented in Table S1, the 
infinitely abundant  NH4

+ not only exhibits moderate acidity, 
but also demonstrates smaller molecular weight (18 g  mol−1) 
and hydrated ion radius (3.31 Å), which facilitates its rapid 
diffusion [22]. Therefore, aqueous ammonium ion batteries 
have been widely researched. For example, layered MXene 
materials and organic compounds are successfully exploited 
as excellent host for  NH4

+ storage [22–24]. Besides, the 
storage of  NH4

+ in transition metal sulfide is also realized 
by expanding the layer spacing of  MoS2 and constructing 
the  VS2/VOx heterostructure [25, 26]. More importantly, 
 V2O5 and  MoO3 are reported as excellent host materials for 
fast  NH4

+ storage due to the formation of hydrogen bond 

between  NH4
+ and oxide [27, 28]. However, due to the lim-

ited performance or high price, these materials have not been 
able to achieve larger-scale practical applications. Thus, 
Prussian blue (PB) and its analogues (PBAs) are regarded 
as a potential host for novel  NH4

+ storage.
Cubic PBAs materials, which are described as 

 AxLy[M(CN)6]z·nH2O, have long been popular with 
researchers for its unique rigid structure and ion transport 
channels [29–31]. The underlying reasons of the enthusiasm 
for PBAs may also come from the abundant species because 
L site can be displaced by numerous transition metals [32, 
33]. For example, Lee et al. explored the  Na0.69Fe2(CN)6 
as cathode for magnesium ion battery and achieved the co-
insertion of  Mg2+ and  Na+ at high voltage [34]. Besides, a 
host material for alkalis ion storage was synthesized when 
In atom resides in L site to form InFe(CN)6 [35]. In addi-
tion to the above materials that L site is replaced by single 
atom, the PBAs with different transition metals co-residing 
in L site are reported, such as  K1.85Fe0.33Mn0.67[Fe(CN)6]0.98 
and  Na2Mn0.15Co0.15Ni0.1Fe0.6Fe(CN)6 [36, 37]. And PBAs 
materials are applied for aqueous  NH4

+ storage. For exam-
ple, Ji et al. constructed the first “rocking chair” ammonium 
ion battery based on Ni-based PBAs and organic compound 
[24]. And the zero strain characteristic  NH4

+ of insertion in 
Berlin green is also explored [38]. Consequently, there is 
plenty space for researchers to exploit more promising PBAs 
as electrode materials.

In this research, we report cubic copper hexacyanofer-
rate (CuHCF) as host for aqueous  NH4

+ storage. Firstly, the 
favorable electrochemical performance is predicted by DFT 
calculations because of the formation of hydrogen bonds 
between H atoms in  NH4

+ species and N atoms in CuHCF. 
Secondly, the CuHCF shows outstanding electrochemical 
and kinetic performance as predicted in DFT calculations. 
For example, the specific capacity remains at about 77.5 
mAh  g−1 at 1 C even after 3000 cycles without any capacity 
loss. Besides, the rate performance demonstrates that only 
6.4% of the specific capacity is lost when the current rate 
is increased by 50 times. And the capacity retention is as 
high as 72.5% after 30,000 cycles at 50 C. Then, a series of 
ex situ measurements are conducted to prove the reversible 
redox reaction and the existence of hydrogen bonds during 
the ammoniation/de-ammoniation progresses. Lastly, the 
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 NH4
+ diffusion mechanism, which is based on continuous 

formation and fracture of hydrogen bonds, is proposed. And 
the practical application of CuHCF is proved by constructing 
a full cell. Therefore, this study not only provides a research 
method combining computation and experiment, but also 
explores the possibility of PBAs to realize fast and stable 
 NH4

+ storage.

2  Results and Discussion

2.1  Density Functional Theory Calculations

Figure 1a presents the ideal crystal structure of CuHCF 
clearly, which reveals rigid cubic structure. The Fe, Cu, 
C, and N atoms are arranged orderly to form the skeleton, 
thus providing three-dimensional ion transport channels. 

Fig. 1  a Ideal crystal structure of cubic CuHCF and the schematic illustration of the electronic states for Fe and Cu atoms. b Schematic illustra-
tion of four possible interstitial positions for  NH4

+ storage in CuHCF. c‑f Charge distribution when  NH4
+ locates at different sites from DFT 

calculations. c 8c site. d 24d site. e 32f site. f 48 g site. g Visualized hydrogen bonds and its length when  NH4
+ is inserted in 48 g site
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Specifically, six C and N atoms are octahedral coordi-
nated with central Fe and Cu atoms, respectively, where 
the two octahedrons are linked by –C≡N– bridges. And 
the C-coordinated  Fe3+ belongs to low-spin state and 
shows one unpaired electron, which inclines to reduce to 
 Fe2+ during the ion insertion. Then, density functional 
theory (DFT) calculations are performed to confirm 
the low energy model configurations of CuHCF when 
cation ions (such as  NH4

+) are inserted. As displayed in 
Figs. 1b and S1, there are four possible interstitial posi-
tions for  NH4

+ residence in cubic CuHCF, which can be 
described with Wyckoff notations as 8c, 24d, 32f, and 
48 g. Besides, binding energy (Eb) for different interstitial 
positions is calculated to estimate the relative stability 
of CuHCF when  NH4

+ is inserted. The calculated results 
show that  NH4

+ inclines to reside in 48 g site with the 
lowest Eb of -2.986 eV (Table S2), which originates from 
the formation of hydrogen bonds between the H atoms 
in  NH4

+ species and the N atoms in CuHCF to stabilize 
the system. Moreover, Fig. 1c–f demonstrates the charge 
distribution when  NH4

+ locates at different sites. Specifi-
cally, the length of hydrogen bond is about 1.836 Å at 
48 g site and the charge is distributed along the hydrogen 
bonds (Fig. 1g), which facilitates rapid charge transfer. 
Therefore, the diffusion process based on hydrogen bonds 
between host and carrier may be beneficial to achieve 
superior kinetic performance.

2.2  Physical Characterization of CuHCF

To confirm the inference in DFT calculations, the CuHCF 
is prepared by a direct co-precipitation method. Besides, 
the experimental powder X-ray diffraction (XRD) pat-
tern and refined results, which were refined by Rietveld 
refinement method, are displayed in Fig.  2a. The XRD 
results confirm the high crystallinity and purity of CuHCF 
due to the matched and sharp diffraction peaks. In addi-
tion, according to the refined results (Rwp = 5.91%), the 
CuHCF delivers lattice unit cell volume of 1040.31 Å3 with 
a = b = c = 10.1326 Å and α = β = γ = 90°, which assigns to 
the space group of Fm-3 m (JCPDS No. 86-0514). Therefore, 
the broad ion transport channel provides potency for carrier 
residence. In order to further identify the physical ingredient 

in CuHCF, a series of measurements are performed. Firstly, 
Fourier transform infrared (FTIR) is deployed to analyze the 
coordination environment of −C≡N– ligands. As observed in 
Fig. 2b, a distinct stretching peak located at 2100  cm−1 that 
ascribes to –C≡N– is detected. Moreover, certain absorbed/
crystal water is also verified due to the appearance of the 
stretching and bending peaks for O–H, which locates at 3437 
and 1608  cm−1 [39–41]. Secondly, according to the above 
results, the content of absorbed/crystal water is quantified 
via thermogravimetric analysis (TGA) within 650 °C under 
 N2 atmosphere (Fig. 2c). The weight loss in step one below 
150 °C corresponds to 12.3% weight loss, which is attributed 
to the remove of absorbed water in CuHCF. Besides, the 
weight loss of 15.3% between 150 to 200 °C is attributed to 
the remove of crystal water [42, 43], corresponding to about 
5.2  H2O per CuHCF unit.

Besides, X-ray photoelectron spectroscopy (XPS) is 
applied to illustrate the chemical composition and chemi-
cal valence of Fe and Cu elements in as-prepared CuHCF. 
As shown in Figs. 2d and S2, the sample exhibits mixed 
valence of  Fe3+,  Fe2+,  Cu2+, and  Cu+. Specifically, a pair 
of peaks located at 709.9 and 723.4 eV are bounded to the 
2p3/2 and  2p1/2 spin-orbital of  Fe3+, respectively. Likewise, 
the  Fe2+ exhibits a couple of peaks at 708.2 and 721.1 eV 
[44, 45]. And similar phenomenon is detected in XPS spec-
tra of Cu 2p. In fact, although  Cu+ is not stable in air or 
aqueous solutions, it can be stable in the form of coordi-
nation compounds without being oxidized to  Cu2+. Due to 
the fully occupied d orbital, there is no unpaired electron in 
the extra-nuclear of  Cu+. And  Cu+ coordinates with six N 
atoms in CuHCF, which reduces the electrostatic repulsion. 
Therefore,  Cu+ can exist stably in CuHCF without being 
oxidized. Combined the above results with inductively 
coupled plasma optical emission spectrometry (ICP-OES) 
and elemental analysis, the exact formula of as-prepared 
CuHCF is  Cu2.95[Fe(CN)6]1.69·5.2H2O, in which the ratios 
of  Fe3+/Fe2+ and  Cu2+/Cu+ are 3:1 and 7:1. And the detailed 
element contents are displayed in Table S3. The surface 
morphology of CuHCF is observed by scanning electron 
microscopy (SEM) and transmission electron microscopy 
(TEM). Figures 2e and S3 show the SEM images of CuHCF, 
which presents dispersive nanoparticles. And most parti-
cles exhibit regular cubic structure. The layout is similar 
to the random distribution of cubic boxes. Moreover, the 
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TEM images in Figs. 2f and S4 further confirm the conclu-
sion from SEM results. Clearly, the nanoparticles are uni-
formly dispersed in the field of vision and maintain their 
own cubic morphology. The edge length of CuHCF particle 
is about 150 nm as shown in Fig. 2g. In addition, the inset 
in Fig. 2g demonstrates the polycrystalline characteristics 
of cubic CuHCF and the (200) and (220) planes are clearly 
detected. Figure 2h indicates that the Fe, Cu, C, and N ele-
ments uniformly distribute in cubic nanoparticles of CuHCF. 
In addition, the specific surface is 381.5  m2  g−1 and the pore 

size is mainly distributed below 35 nm for CuHCF, which 
demonstrates a mesoporous structure (Fig. S5).

2.3  Electrochemical Characterization of CuHCF

The electrochemical performance of CuHCF is intensively 
demonstrated in Figs. 3 and 4, which is measured at a three-
electrode battery in operating voltage range of 0.3–1.1 V. 
To remove the effect of trace  K+ in the lattice of CuHCF, 

Fig. 2  a Rietveld XRD pattern. b FTIR spectrum. c TGA curve from room temperature to 650 °C at a heating rate of 10 °C  min−1 in  N2 atmos-
phere. d XPS spectrum of Fe 2p region. e SEM image. f‑g TEM images; the inset is the SAED image. h EDS mapping images
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all the electrodes are pretreated prior to test. And the pre-
treatment process is displayed in Fig. S6. First of all, the 
cyclic voltammetry (CV) curves in Fig. 3a reveal that there 
is only one couple of reduction/oxidation peaks located at 
0.77 and 0.78 V, which is ascribed to the ammoniation/de-
ammoniation progresses of CuHCF during the cathodic and 
anodic scans, respectively. Besides, the reproducibility of 
CV curves and low voltage polarization of 0.01 V manifests 
the highly reversible electrochemical reaction of  Fe3+/Fe2+ 
couple. Then, the galvanostatic charge/discharge (GCD) 
curves at a current rate of 1 C (1 C = 100 mA  g−1) are shown 
in Fig. 3b. A couple of distinct slopes are clearly observed 
between 0.7–0.8 V, which is consistent with CV curves. And 
the first charge/discharge capacities are 75.1/74.9 mAh  g−1, 

indicating an initial Coulombic efficiency of about 100%. 
Moreover, the complete coincidence of the first three GCD 
curves further indicates the reversibility of the ammoniation/
de-ammoniation progresses in CuHCF and the high capacity 
retention rate. Figure 3c demonstrates the cycling perfor-
mance of CuHCF at 1 C within ultra-long lifespan and the 
GCD curves at different cycles. Similar to the results in GCD 
tests, the first charge capacity and Coulombic efficiency are 
75.8 mAh  g−1 and 100%. Then, the capacity retention is 
100% after 1000 cycles and the Coulombic efficiency also 
maintains at 100%, indicating a favorable cycling perfor-
mance. More importantly, there is zero capacity fading after 
an ultra-long lifespan of 3000 cycles. The results show that 
cubic CuHCF can maintain its initial capacity and excellent 
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Coulombic efficiency upon repeated cycles, which shows the 
structural stability and the possibility of practical application 
for CuHCF. And the cycling performance is far superior to 
other PBAs as displayed in Fig. 3d [46–48].

In order to explore the nature of excellent cycling per-
formance, ex situ Raman and XPS measurements are con-
ducted. Considering the effect of chemical environment on 
–C≡N– ligands, ex situ Raman spectroscopy is deployed 
to evaluate the average valence state of Fe element in 
CuHCF during ammoniation/de-ammoniation progresses. 
And ex situ Raman spectra are recorded at different states 

of charge (Fig. 3e) as shown in Fig. 3f. A distinct peak 
located at 2158   cm−1 is observed in pristine CuHCF, 
which is ascribed to  Fe3+–C≡N– groups [41]. After dis-
charge progress (ammoniated state), a visible red shift, 
which moves to 2148 from 2158  cm−1, is detected. And 
this phenomenon is ascribed to the low average valence 
state of Fe element in CuHCF, indicating the reduction 
progress of  Fe3+ during  NH4

+ insertion [49]. Besides, 
opposite change occurs in de-ammoniation progress and 
the peak turns back to 2160 from 2148  cm−1, manifesting 
the oxidation of  Fe2+ to  Fe3+. Consequently, this variation 
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reflects the high reversibility of  Fe3+/Fe2+ couple. Fur-
thermore, ex situ XPS spectroscopy is applied to verify 
the content and variation of  Fe2+ and  Fe3+ in CuHCF. As 
depicted in Fig. 3g, compared with pristine sample, most 
 Fe3+ are reduced to  Fe2+ after  NH4

+ insertion in CuHCF 
lattice (ammoniated state). In addition, upon  NH4

+ extrac-
tion from CuHCF,  Fe2+ is oxidized to  Fe3+ and the dis-
tribution of  Fe3+/Fe2+ content is similar with the pristine 
sample, which confirms the reversible redox reaction of 
 Fe3+/Fe2+ couple. And the XPS results are consistent with 
the conclusions in Raman spectra. In contrast, the valence 
state of Cu rarely changes during ammoniation/de-ammo-
niation progress as depicted in Fig. S7. The highly revers-
ible redox reduction of  Fe3+/Fe2+ couple observed in both 
ex situ Raman and XPS results manifests the low voltage 
polarization and excellent cycling performance.

Generally speaking, the cycling performance at low cur-
rent density is usually the basis of rate performance. For 
another, the fast charge transfer originated from the forma-
tion of hydrogen bonds is also a favorable factor for high rate 
performance. Therefore, the rate performance is surveyed 
to prove the results in DFT calculations. As depicted in 
Figs. 4a and S8, CuHCF delivers a charge capacity of about 
76 mAh  g−1 at 1 C. Then, when the current rate is increased 
to 35 C, the capacity drops to 72 mAh  g−1, indicating a 
high capacity retention of 94.7% compared with 1 C. Even 
at a higher rate of 50 C, the capacity maintains at 71 mAh 
 g−1 and the capacity retention is as high as 93.6%. Besides, 
the capacity increases to 76 mAh  g−1 when the current rate 
decreases to 1 C. And the Coulombic efficiency remains 
at 100% throughout the change in current rates. Therefore, 
the rate performance demonstrates that a 50-fold increase in 
current rate only results in a 6.4% total capacity loss, which 
is an outstanding advantage over other electrode materials 
in Fig. 4b and Table S4 [46–48, 50–54]. Furthermore, the 
long-span cycling performance at a high current rate of 30 
C is shown in Figs. S9 and S10. High capacity retention of 
74.5% is achieved after 23,000 cycles. Even at higher cur-
rent rate of 50 C, the capacity retention is as high as 72.5% 
after over 30,000 cycles (Figs. 4c and S11), corresponding 
a low capacity decay of 0.001% per cycle. Therefore, the 
outstanding rate performance is the experimental evidence 
of rapid charge transfer.

Then, to illustrate the favorable high rate performance, 
pseudocapacitance and diffusion contributions are surveyed 
by investigating the kinetic feature of CuHCF at various scan 

rates of 0.1–2.0 mV  s−1 [55, 56]. As presented in Fig. S12, 
at 2.0 mV  s−1, the main ratio (blue area) accounts for 87% of 
the total capacity, which is attributed to the capacitive con-
tribution. Furthermore, the capacitive contributions at other 
scan rates demonstrate that the capacitive contributions 
ascend gradually with the increase in scan rates [57–59]. 
Specifically, the capacitive contributions are 68%, 72%, 75%, 
79%, 82%, and 87% at 0.1, 0.2, 0.3, 0.5, 1.0, and 2.0 mV  s−1, 
respectively. The dominated pseudocapacitive contribution 
reflects the non-diffusion behavior and mainly stems from 
the topo-chemistry reaction mechanism between  NH4

+ and 
cubic CuHCF. Consequently, the high capacitive contribu-
tion is the reasonable explanation of high rate performance 
for CuHCF nanoparticle. Besides, the transfer resistance 
and diffusion coefficient for  NH4

+ transport are evaluated 
by electrochemical impedance spectra (EIS). As displayed 
in Fig. S13, the transfer resistances are 1.5 and 2.0 Ω for 
ammoniated and deammoniated CuHCF, respectively. In 
addition, the corresponding calculated diffusion coefficients 
are 1.20 ×  10–11 and 4.53 ×  10–12  cm2  s−1.

After unveiling the reversible redox reduction of  Fe3+/
Fe2+ couple in Fig. 3, the inner nature of rapid charge trans-
fer is also explored. It is well known that the hydrogen bonds 
are regarded as particular chemical bonds between H and N 
or O atoms. Therefore, ex situ FTIR and solid-state nuclear 
magnetic resonance (SSNMR) are conducted to detect the 
changes in chemical environment and the species of protons 
in CuHCF. As shown in Fig. 4d, compared with the pristine 
sample, all the stretching peaks of –C≡N– bonds maintain 
at about 2100  cm−1, indicating the stable basic framework 
of CuHCF during the ammoniation/de-ammoniation pro-
cesses. Besides, in addition to the unvaried –C≡N– bonds, 
the bending peaks of N–H located at about 1400  cm−1 are 
also detected and the enlarged region is displayed in Fig. 4e. 
It is clear that the bending peaks of N–H are composed of 
two peaks, which locate at 1402 and 1384  cm−1, respec-
tively. The former is ascribed to the non-bonded H atoms in 
 NH4

+ species. And the latter can be ascribed to the hydro-
gen bonds, which are formed between the H atoms in  NH4

+ 
and N atoms in CuHCF. Specifically, its intensity gradually 
increases from pristine sate to ammoniated state and then 
decreases during de-ammoniation process. Therefore, the 
intensity evolution manifests the alternant formation and 
fracture of hydrogen bonds during ammoniation/de-ammo-
niation processes.
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To further confirm the existence and evolution of hydro-
gen bonds, ex situ SSNMR is conducted to verify the spe-
cies of protons at different states of charge and the 1H NMR 
spectra are shown in Fig. 4f. Firstly, in the pristine sample, 
the main resonances at 4.4 and 9.0 ppm are assigned to the 
hydrogen bonds of adsorbed/lattice water [60, 61], respec-
tively. And the resonating peak at 1.2 ppm may be ascribed 
to the C-H bonds, which is originated from the impurity in 
acetylene black or binder. Then, a new resonance located at 
6.2 ppm is detected at ammoniated state, which is attributed 
to the hydrogen bonds [62, 63], indicating the insertion of 
 NH4

+ in CuHCF and formation of hydrogen bonds between 
the H atoms in  NH4

+ and N atoms in CuHCF. And this phe-
nomenon is completely consistent with the ex situ FTIR 
results. Besides, the formation of hydrogen bonds rarely 
affects the resonances at 1.2 and 4.4 ppm, but causes the 
downfield shift of the resonating peak at 9.0 ppm, which 
moves to about 12.0 ppm. Lastly, the resonating peak of 
hydrogen bonds disappears after the de-ammoniation pro-
cess, indicating  NH4

+ extraction from CuHCF. Then, the 
resonance at 12.0 ppm returns to 9.0 ppm, which is the same 
as the pristine sample. And the changes in protonic species 
indicate the reversible ammoniation/de-ammoniation pro-
cesses in CuHCF lattice. Therefore, the diffusion process 
based on hydrogen bond is beneficial to achieve excellent 
kinetic performance of  NH4

+ storage in cubic CuHCF.
After the above analysis, it can be found that the per-

formance of CuHCF is closely related to its structure 
and properties. Firstly, CuHCF demonstrates rigid cubic 
structure and large ion transport channels for  NH4

+ trans-
port. And the structure is considerable stable in aqueous 
electrolyte after repeated ammoniation/de-ammoniation 
progresses. Secondly, the high reversible redox reaction 
of  Fe3+/Fe2+ couple is the inherent essence of ultra-sta-
ble long-term cycling performance. And the ex situ XPS 
and Raman measurements confirm the high reversibil-
ity. Lastly, the excellent cycling performance provides 
a favorable basis for the rate performance. Besides, the 
high pseudocapacitive contribution and diffusion coeffi-
cient promote the fast  NH4

+ transport in CuHCF lattice. 
More importantly, the hydrogen bond between  NH4

+ and 
CuHCF, which is detected by FT-IR and NMR measure-
ments, facilitates rapid charge transfer. Thus, CuHCF also 
demonstrates outstanding rate performance.

2.4  Exploration on Reaction Mechanism

To probe the structural evolution of CuHCF during ammo-
niation/de-ammoniation progresses, the XRD patterns are 
monitored at different states of charge within the first cycle. 
The overall XRD spectra and corresponding charge/dis-
charge curves are presented in Fig. 5a, b. Generally speak-
ing, the CuHCF maintains the same cubic structure with 
pristine samples after the first cycle because no impure 
phase is detected in all XRD spectra, which indicates as a 
solid solution reaction. Moreover, the enlarged figures of 
different crystal planes are displayed in Fig. 5c, f. All the 
crystal planes demonstrate the same evolution trend dur-
ing repeated charge/discharge progresses. Specifically, the 
diffraction peaks move to the high angles during ammo-
niation progress (discharge) and turn back to the original 
position during de-ammoniation progress (charge), which 
is corresponding to the lattice contraction and expansion 
as schematically shown in Fig. 5g. And this evolution is 
contrary to the materials previously reported [64]. Here, the 
lattice contraction is derived from the decrease in Fe–C bond 
distance during reduction progress. Specifically, during the 
discharge process,  NH4

+ insertion takes place in the lattice 
of CuHCF, which results in the reduction of  Fe3+ to  Fe2+, 
thus leading to the decrease in Fe–C bond distance and the 
lattice contraction of CuHCF. Then, the reverse phenomenon 
occurs during charge process, resulting in the lattice expan-
sion. According to the refined XRD result,  NH4

+ resides in 
48 g site in cubic CuHCF. Figure 5h exhibits the changes of 
lattice parameters (a/b/c), which decreases to 10.01138 Å 
(ammoniation) and then increases to 10.10867 Å (de-ammo-
niation). The slight change in lattice parameters is related to 
the stable framework and thus resulting in favorable cycling 
and rate performance. In addition, after 3000 cycles, CuHCF 
still maintains its initial cubic structure, indicating its struc-
tural stability (Fig. S14).

The study on diffusion mechanism is a deeper understand-
ing than the study of structural and component changes. It is 
well known that the configuration of extra-nuclear electron 
of  Fe3+ is  [Ar]3d5. Therefore, there is only one unpaired elec-
tron in the low-spin  Fe3+ in CuHCF. After cation insertion, 
 Fe3+ is reduced to  Fe2+, and the unpaired electron is zero. 
However, the configuration of extra-nuclear electron of  Cu2+ 
is  [Ar]3d9, which shows only one unpaired electron in both 



 Nano-Micro Lett.          (2021) 13:139   139  Page 10 of 16

https://doi.org/10.1007/s40820-021-00671-x© The authors

high-spin and low-spin states. As shown in Fig. 6a, b, in the 
pristine sample, CuHCF shows a small band gap of about 
3.15 eV. At ammoniated state, the changes in electronic den-
sity of states are mainly concentrated in Fe atoms, while Cu 
atoms are almost unchanged (Fig. S15), which is completely 
consistent with XPS results. And some unoccupied spin 

states above Fermi level are noticed, which may be caused by 
changes in the valence state of Fe atoms. Besides, the diffu-
sion process of  NH4

+ in CuHCF and corresponding diffusion 
activation energy are displayed in Fig. 6c–e. When  NH4

+ is 
inserted in 48 g site, the H atoms form hydrogen bonds with 
the N atoms in CuHCF. Therefore, the diffusion process of 

Fig. 5  a Overall XRD patterns and the two-dimensional color map. b Corresponding GCD curves and projection view of XRD patterns. c–f 
Enlarged regions of 16°–19°, 23°–27°, 35°–45°, and 50°–60°. g Schematic illustration of the changes in Fe–C bond distance during ammonia-
tion/de-ammoniation progresses. h Lattice parameter changes during charge/discharge cycle
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 NH4
+ from one 48 g site to another is mainly based on the 

continuous formation and fracture of hydrogen bonds. At the 
beginning of diffusion process, the total energy of the sys-
tem is increased, which results in the fracture of hydrogen 
bonds when the activation energy reaches its maximum value 
(~ 0.37 eV). Then,  NH4

+ spreads forward until new hydrogen 
bonds are formed and energy is released, thus leading to the 
decrease in total energy (step 1). And step 2 is similar to 
step 1, but there are differences. Firstly, the fracture process 
of hydrogen bond is the same as step 1. Secondly,  NH4

+ is 
rotated when the hydrogen bonds are fractured completely, 
and the activation energy of the system increases continu-
ously in this process (~ 0.49 eV). Therefore, the total energy 
is higher than that in step 1. Lastly, the new hydrogen bonds 
are formed in next 48 g site and the total energy is decreased, 
which is the same as step 1. And the visual  NH4

+ diffusion 

progress based on the continuous formation and fracture of 
hydrogen bond is displayed in Video S1.

2.5  Full Cell Application

The practical application of CuHCF is further exploited by 
coupling pre-ammoniated CuHCF cathode with polyaniline 
(PANI) anode to fabricate CuHCF//PANI full cell. And 
the first five CV curves at voltage window of 0.0–0.9 V 
are displayed in Fig. 7a. Besides, the corresponding GCD 
curves at current density of 2000 mA  g−1 are shown in 
Fig. 7b, which demonstrates charge/discharge capacities of 
56.1/55.3 mAh  g−1 and high initial Coulombic efficiency 
of 95.1%. More importantly, the charge capacity of the 
CuHCF//PANI full cell drops to 41.7 from 56.1 mAh  g−1 
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after over 1240 cycles, indicating a high capacity retention 
of 74.3% (Fig. 7c). Figure 7d exhibits the light-emitting 
diodes array with “NH4

+” shape powered by CuHCF//PANI 
full cell and further proves their possibility of practical 
application. The operation mechanism of CuHCF//PANI 
full cell is visually depicted in Fig. 7e, which is based on 

the “rocking-chair” insertion/extraction of  NH4
+ between 

CuHCF cathode and PANI anode. Specifically, during 
the charge process,  NH4

+ extracts from pre-ammoniated 
CuHCF cathode into electrolyte, and the oxidation reaction 
of  Fe2+ to  Fe3+ occurs. Meanwhile,  NH4

+ inserts into the 
PANI anode from electrolyte and electrons are transferred 

Fig. 7  a Initial five CV curves of CuHCF//PANI full cell. b Initial five GCD curves at current density of 2000 mA  g−1. c Cycling performance 
at 2000 mA  g−1. d An LEDs array powered by CuHCF//PANI full cell. e Schematic illustration of CuHCF//PANI full cell
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through an external circuit. Then,  NH4
+ extracts from 

PANI and inserts into CuHCF simultaneously during the 
discharge process, thus constituting the “rocking-chair” 
operating mechanism of  NH4

+, which guarantees the con-
tinuous operation of CuHCF//PANI full cell. Therefore, the 
possibility of practical application is verified.

3  Conclusions

In conclusion, CuHCF demonstrates outstanding per-
formance for aqueous  NH4

+ storage as predicted in DFT 
calculations. On the one hand, CuHCF shows small volt-
age polarization about 0.01 V and ultra-long cycling per-
formance with zero capacity fading after over 3000 cycles, 
which manifests the reversible redox reaction of  Fe3+/Fe2+ 
couple in CuHCF. And the result is proved by ex situ Raman 
and XPS measurements. On the other hand, the rate per-
formance demonstrates that the capacity decreases by only 
6.4% when the current rate is increased by 50 times. Besides, 
after over 30,000 cycles, the capacity retention is as high as 
72.5% at 50 C, corresponding to a low capacity decay of 
0.001% per cycle. The favorable rate performance is mainly 
originated from the formation of hydrogen bonds and then 
resulting in fast charge transport, which can be observed in 
ex situ FTIR and solid-state 1H NMR results. In addition, 
kinetic property and research on structural evolution further 
verify the high pseudocapacitance contributions and stable 
cubic structure of CuHCF. Lastly, the diffusion mechanism 
of “continuous formation and fracture of hydrogen bonds” is 
presented. Hence, the cubic CuHCF may provide an infinite 
development space for stable and fast aqueous  NH4

+ storage.
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