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HIGHLIGHTS 

• This review focuses on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.

• Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted.

• Challenges, future directions and applications for new photocatalysis and electrocatalysis exploiting 2D nanomaterials are suggested.

ABSTRACT Photocatalysis and electrocatalysis have been essential parts of electro-
chemical processes for over half a century. Recent progress in the controllable synthesis 
of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk 
materials. This has led to significant interest in the exploitation of 2D nanomaterials 
for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for 
catalysis, but related issues of differences and similarities between photocatalysis and 
electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive 
overview on the differences and similarities of photocatalysis and electrocatalysis in 
the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D 
nanocatalysts are highlighted, which point out the differences and similarities of series 
issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their 
catalytic applications are discussed. Finally, opportunities, challenges and development 
directions for 2D nanocatalysts are described. The intention of this review is to inspire 
and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
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1 Introduction

Developing new forms of renewable energy generation can be 
considered the most promising strategy to tackle the world’s 
growing environmental challenges and the global energy crisis 
[1–5]. Catalysis has received intensive interest in sustainable 
energy development and environmental remediation since the 
work of Fujishima et al. in 1972, due to their pioneering work 
on titanium dioxide  (TiO2) photoelectrodes [6]. Generally, 
photocatalysis, as one of common catalysis, is the utilization 
of semiconductor photocatalysts to accelerate photochemical 
reactions, where the photogenerated separated electron–hole 
pairs participate in the following oxidation–reduction reac-
tions [7–9]. Electrocatalysis is a specific form of catalysis 
that accelerates charge transfer between the electrodes and the 
electrolyte interfaces [10, 11], where most commonly elec-
trocatalysts are a kind of catalysts attached on the surface of 
electrodes or as the electrode surface that are largely beneficial 
for electron transfer between reactants and electrodes [12–14]. 
So far, photocatalysis and electrocatalysis are often essential 
parts of chemical processes for water splitting and pollution 
treatment, which are important reactions for harvesting ubiq-
uitous forms of ambient energy [15–23].

As the gradually deepening process of two-dimensional 
(2D) nanomaterials in molecular design and synthesis 
[24–29], a number of 2D nanomaterials have been used as 
a catalyst in their three-dimensional (3D) bulk form; how-
ever, their performance as a photocatalysis or electrocatal-
ysis continues to suffer from a low efficiency in terms of 
charge separation and low transfer kinetics compared to 2D 
nanomaterials [12, 30–32]. As an example, the traditional 
design of graphitic carbon nitride (g-C3N4)-based materials 
has considered bulk nanosheets [33]. However, due to the 
strong stacking forces between atom layers, the use of a bulk 
nanomaterial leads to a low surface reactivity, a high prob-
ability of charge recombination and poor solar absorptivity 
[34, 35]. It can therefore be assumed that the dimensionality 
and surface characteristics play an important role in deter-
mining the key catalytic properties for practical applications 
and the optimum fabrication process of the material [12]. 
Hence, research that aims to develop atomically thin 2D cat-
alysts with enhanced charge carrier dynamics and improved 
mobility continues to attract interest.

To enhance the photocatalytic and electrocatalytic per-
formance, growing attention has been attached to the 

development of 2D nanomaterials with good electrical 
conductivity and large surface area [34]. In contrast to con-
ventional 3D bulk nanomaterials, these atomically thin 2D 
nanomaterials have attracted attention in environmental and 
energy-related research sectors as a result of their extraordi-
nary stability and activity, often on account of their high spe-
cific surface area, robust mechanical structure and excellent 
electrical conductivity. In addition, 2D nanomaterials have 
been pursued as economical alternatives to more expensive 
precious metals, such as platinum and rhodium [35]. Recent 
progress in multiple atomically thin 2D nanomaterials has 
broken new ground; there have been rapid developments in 
the synthesis of 2D nanomaterials, and their resulting prop-
erties, surface chemistry and catalytic applications [36]. To 
date, a detailed understanding on the rational design and 
construction of efficient 2D nanomaterial-based catalysts 
as well as the issues associated with industrial scale appli-
cations is still not comprehensive enough [37]. Therefore, 
comprehensive overview is still needed to provide new 
insights on the fabrication and application of recent develop-
ments, and fundamental studies are needed for clear reaction 
processes to improve catalytic performance for applications 
that are ripe for industrial exploitation [38–40]. There have 
been a variety of excellent reviews on 2D nanomaterials for 
catalysis [10, 34, 41–44]. However, related issues of differ-
ences and similarities between photocatalysis and electro-
catalysis in 2D nanomaterials are still vacant, but worthy of 
great attention since demands to generate exceptional cata-
lytic activities are strongly different for photocatalytic and 
electrocatalytic reaction systems.

Herein, a comprehensive overview will focus on the 
differences and similarities of photocatalysis and electro-
catalysis in the latest 2D nanomaterials. A comparison of 
differences and similarities of photocatalysis and electro-
catalysis in 2D nanomaterials is concluded in Table 1. We 
will begin with strategies for performance enhancement of 
2D nanocatalysts as a highlight, which will point out the 
differences and similarities of photocatalysis and electro-
catalysis. Then, the traps of catalytic-related systems in 2D 
nanomaterials will be emphasized to direct related experi-
ment processing to consider and exclude several details for 
all-round research. Moreover, an introduction of typical 
2D nanocatalysts that have long been considered research 
hotspots will be exhibited, including their classification, 
structures, synthesis approaches and characterizations. The 
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catalytic applications of 2D nanomaterials in the areas of 
environmental treatment and biochemical technologies will 
be discussed. Finally, opportunities, challenges and develop-
ment directions for 2D catalysts for photocatalysis and elec-
trocatalysis will be described. The intention of this review 
is to inspire and direct interest in this research realm for the 
creation of future 2D nanomaterials for photocatalysis and 
electrocatalysis.

2  Strategies for Catalytic Performance 
Enhancement of 2D Nanomaterials

Carrier separation and transfer kinetics are generally con-
sidered as the most significant issues for improving perfor-
mance for photocatalysis and electrocatalysis [45], which 
can be considerably related to structure–activity correlation 
of catalysts [46, 47]. To date, 2D layered nanomaterials 
including graphene and graphite-like materials continue to 
suffer from a variety of issues that restrict their functionality 
and practicability in applications related to semiconductors, 
sensors and catalysis [37]. Therefore, diverse and abundant 
strategies must be explored and analyzed to produce layered 
nanomaterial-based catalysts with enhanced photocatalysis 
and electrocatalysis performances. Obviously, 2D nano-
catalysts show a variety of advantage contrasted to 3D bulk 
catalysts, which will be presented in the following subsec-
tion. In addition, differences and similarities in strategies 
of photocatalysis and electrocatalysis will be, respectively, 
discussed and all of these contents are concluded in Fig. 1.

2.1  Superiority of 2D Nanocatalysts

Structure–activity correlation of 2D nanocatalysts illus-
trates a significant influence of geometric configurations in 
catalytic performance [46–48], which can be attributed to 
the unique characteristics 2D nanocatalysts possessing as 
follows:

(1) Surface-active sites. The general geometric configura-
tions of 2D nanocatalysts result in large specific surface 
area, which can lead to large exposed lattice planes and 
surface-active sites with high density for further. High 
density surface-active sites can enhance the catalytic 
reactions on the material surface. Another approach 
to increase the exposure of surface-active sites is to 
decrease 2D nanocatalysts’ lateral size [49]. For exam-
ple, it is reported that ultrasmall molybdenum disulfide 
 (MoS2) exhibits enhanced hydrogen evolution reaction 
(HER) performance than bulk  MoS2, which can be 
attributed to an enrichment of active sulfur edges for 
HER [50].

(2) Carrier mobility. High electron mobility has been 
extensively observed in various ultrathin 2D nanoma-
terials, including graphene, transition metal dichalcoge-
nides (TMDs) and black phosphorous (BP) nanosheets 
[30, 51]. For instance, the reported mobility of gra-
phene and  MoS2 ranges in  102 ~  104  cm2  V−1  s−1 [52–
56] and around  101  cm2  V−1  s−1 [57–61], respectively. 
The unique ultrathin structure of 2D nanocatalysts 
provides relatively high charge migration due to short 
transport path and small basic resistance. Yu et al. 
observed an obvious drop of HER performance when 
 MoS2 attached by additional atomic layer, which can be 

Table 1  Comparison of differences and similarities for photocatalysis and electrocatalysis in 2D nanomaterials

Photocatalysis Electrocatalysis

Characteristics of catalysts Type 2D nanomaterial 
powders or compos-
ite thin films

2D nanomaterial thin films or powders loaded on an electrode 
surface

Hydrophilicity Hydrophilic Hydrophobic or hydrophilic
Recyclability Complex for pow-

ders, feasible for 
thin films

Feasible

Conditions of reaction systems Energy input Solar energy Externally applied electric bias
Configuration One reaction chamber One reaction chamber or two chambers separated by mem-

brane
Charge transfer pathway Relatively short Relatively long

Benefits Cost Low High including expensive electrode and electric energy
Efficiency Low Relatively high
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interpreted as the restriction of electron mobility along 
a vertical direction between the material layers [62].

(3) Energy band structures. For a variety of 2D layered 
nanomaterials, changing number of layers in the crystal 
can tune the band gap, where the tunable band structure 
determines the light absorption properties of materials 
for photocatalysis. The band gap of  MoS2 can be tuned 
via changing the number of cumulate layers, where the 
band gap of single-layered and few-layered  MoS2 are 
1.8 ~ 1.9 and 1–1.2 eV, respectively [63]. The reported 
band gap of g-C3N4 can be tuned ranging from 1.6 to 
− 1.1 eV versus normal hydrogen electrode (NHE) 
[64]. For bismuth-based 2D layered nanomaterials, the 
band gap can be manipulated ranging in 0.3–3.6 eV via 
introducing various cations and anions into intrinsic 
structure, whose corresponding light response covers 
ultraviolet to near infrared [65, 66]. In addition to the 
light absorption properties, the interfacial adsorption/
desorption free energy between catalysts and reactants 
can also be regulated via the tunable band structure as 
well as the changing electron distribution [67].

(4) Electronic properties. Through controlling the thick-
ness of 2D nanocatalysts can realize the regulation of 
the electronic properties [68]. As reported, the elec-
tronic structures of 2D nanomaterials are able to regu-
late the bond strength between reactants and catalytic 

active sites and reduce the desorption kinetic barrier 
[69]. Fang’s group reported a battery based on 2D 
mesoporous covalent organic frameworks (COFs) 
with superior areal capacitance, gravimetric power and 
maximum power density of 5.46 mF  cm−2, 55 Kw  kg−1 
and 4.1–5.4 W  cm−3, respectively; this was two orders 
of magnitude better than conventional Li thin-film bat-
teries [70]. Atomic ultrathin 2D nanocatalysts bring 
the benefits of abundant in-plane defects that are con-
ducive to the electronic properties such as electrical 
conductivity [71], which improves the conduction of 
electricity energy sources generated during catalysis. 
Voiry et al. reported abundant defects of monolayered 
tungsten disulfide  (WS2) nanosheets are beneficial for 
HER, which related to the induced lattice distortions 
[72].

(5) Mechanical properties. 2D nanomaterials prone to pos-
sess prominent mechanical properties [73–75], which 
confer high catalyst durability that is a path to practical 
application for benefit of humankind. In addition, the 
robustness of 2D nanomaterials offers the possibility in 
the development of hybrid nanocatalysts for catalytic 
enhancement.

On the basis of the above concluded superiority of 2D 
nanocatalysts, great progress has been achieved in 2D 

The number of reactive sites

Electrocatalysis

Photocatalysis

 Strategies for 
2D nanocatalysts

Light absorption

Electron transfer

Doping
Heterojunctions

Phase transition Defects

Surface/interface characteristics

Electron states

Energy band structures

Fig. 1  A series of general strategies for 2D nanocatalysts cover the number of reactive sites, surface/interface characteristics, electron states and 
energy band structures. Specific strategies for photocatalysis and electrocatalysis are, respectively, on the basis of light absorption and electron 
transfer. Besides, approaches, such as doping, heterojunctions, phase transition and defects, perform the function as lubricants to realize the 
above-mentioned strategies for catalytic performance enhancement



Nano-Micro Lett.          (2021) 13:156  Page 5 of 38   156 

1 3

nanomaterials for photocatalysis and electrocatalysis [10, 
34, 43, 44]. Nevertheless, the catalytic activity of 2D nano-
materials needs to be further enhanced, and there are a series 
of strategies gradually emerging [76–78], which will be sug-
gested in the following subsections.

2.2  Similarities in Strategies of Photocatalysis 
and Electrocatalysis

For various strategies of photocatalysis and electrocatalysis 
in 2D nanomaterials, there are differences as well as simi-
larities in specific catalytic systems. Herein, we will discuss 
the similarities in strategies of 2D nanocatalysts’ photoca-
talysis and electrocatalysis.

In general, the similar strategies of 2D layered nanocata-
lysts for both photocatalytic and electrocatalytic enhancement 
can be concluded both kinetically and thermodynamically 
through regulating the following guidelines, such as (1) the 
number of reactive sites, (2) surface/interface characteris-
tics, (3) electronic properties and (4) energy band structures, 
where these common guidelines can be promisingly realized 
via regulating morphology, doping, constructing heterostruc-
tures, importing defects and engineering phases, etc.

(1) The number of reactive sites. As above-mentioned in 
the last subsection, 2D nanocatalysts with a unique 
morphology of ultrathin atomic layers bring the ben-
efits of the highest number of catalytic reactive sites 
according to the highest surface area in theory. Set 2D 
layered  MoS2 nanosheets as an example, an enhanced 
electrocatalytic HER ability has been achieved by mor-
phologically controlling the surface structure with the 
regulation of size and thickness to expose more elec-
trocatalytic reactive sites [35]. For photocatalytic deg-
radation reactions, Parzinger et al. demonstrated that 
monolayered  MoS2 nanosheets’ edges sites were more 
resistant than those of multilayered  MoS2 nanosheets 
[79]. In addition, the catalytic reactive sites can be 
induced via doping, and different doping atoms always 
generate desperate catalytic sites [10]. In the case of 
graphene catalysts, the electrocatalytic reactive sites 
for oxygen reduction reaction (ORR) in B-doped gra-
phene are B atoms [80, 81], but those of N-doped gra-
phene are C atoms next to N dopants [82]. In addi-
tion, improved photocatalytic performance has been 
obtained in B-doped and P-doped g-C3N4 nanosheets 
[83–85].

(2) Surface/interface characteristics. In general, the basal 
planes of most 2D nanocatalysts are inertial [76]. A 
typical example is TMDs. As exhibited by many exper-
iments, doping is able to effectively activate the S sites 
on the original inertial surfaces for catalysis via intro-
ducing Fe, Co and Ni atoms in TMDs [86, 87]. This 
phenomenon can be attributed to reduced antibonding 
states [88]. As reported, the ΔGH* of Co-doped  MoS2 
nanosheets dropped to 0.1 eV from the original 0.2 eV 
of  MoS2 nanosheets [89]. Constructing heterostructures 
is another significant protocol for controlling surface/
interface characteristics to enhance catalytic activi-
ties, according to the complex chemical bonds at the 
interfaces of disparate nanomaterials [77, 90, 91]. At 
the meanwhile, synergistic interactions regulate the 
surface/interface properties via physically adjusting 
confined electron transfer. For instance, Qiao’s group 
composited g-C3N4 and N-doped graphene and realized 
an enhanced electrocatalytic HER, as a result of the 
heterostructure structures and their synergistic inter-
actions are beneficial to the proton adsorption/reduc-
tion kinetics at the surfaces/interfaces [77]. Besides, 
Tu et al. observed an obvious enhanced photocatalytic 
simultaneous reduction-hydrolysis in a hybrid struc-
ture of  TiO2-graphene nanosheets, whose  Ti3+ on the 
surface can prevent the recombination of electron–
hole pairs during the production of methane  (CH4) and 
ethane  (C2H6) [92].

(3) Electronic states. For all catalytic reaction systems, 
electronic states determine the separation and transport 
of electric carriers, which will have a large impact on 
practical catalytic performance [34]. In general, high 
level of carrier transport mobility benefits to these elec-
tric carriers moving to the catalytic reactive sites. Xie 
and the co-workers modulated the electronic structures 
and raised the intrinsic conductivity of  MoS2 electro-
catalysts through the ways of constructing controllable 
disordered structures and oxygen doping, which dem-
onstrated excellent electrocatalytic HER [93]. In a two-
dimensional catalyst, the electronic states of defects 
and their adjacent regions are often different from those 
of other parts without defects [94]. Take graphene as 
an example, density functional theory (DFT) calcula-
tions have been performed to support defects enriched 
at zigzag edges of nanomaterials, which exhibited dis-
tinct electronic density of states that were react actively 
for electrocatalytic ORR [71, 95, 96]. In addition, the 
electronic states of 2D nanocatalysts can be altered by 
lattice strain as well, which can optimize catalysis per-
formance for further [97–99]. It was reported that lat-
tice-strained 1 T  WS2 nanosheets performed enhanced 
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HER, which owned crystal lattices with large deforma-
tion and ~ 3% high local strain regions [72].

(4) Energy band structures. As generally known, the light 
absorption properties of 2D nanomaterials for photoca-
talysis are largely dependent on energy band structures 
[100], where photoinduced related discussions will be 
analyzed in the next subsection for the specificity in 
strategies of 2D nanomaterial-based photocatalysis. In 
addition to the controlling for light absorption proper-
ties, energy band structures typically regulate redox 
potentials to drive electric carrier dynamics for catalysis 
reactions including photocatalysis as well as electro-
catalysis [101–103]. Additionally, the phase transition 
of 2D nanocatalysts can also regulate the energy band 
structures as well as related electronic states for control-
ling catalytic performance [104]. Take TMDs as exam-
ple, through the approach of lithium intercalation for 
monolayered  MoS2,  WS2 and tungsten selenide  (WSe2), 
their band gap structures were regulated to improve the 
charge transfer kinetics, and their electronic properties 
exhibited metallic [105]. As a result, the electrocatalytic 
HER performance could be enhanced within the phase 
transition from 2H to 1 T [105]. In addition to the modi-
fied band gap structures according to the improved layer 
spacing, the oxidation states of Mo and W decreased 
with the regulation of d-band filling, on the basis of the 
experimental results [104].

Generally, the above-mentioned four aspects are the most 
common strategies for catalytic performance enhancement 
covering photocatalysis and electrocatalysis, where they are 
correlative instead of independent of each other; as a result, 
they are always conditioned together.

2.3  Differences in Strategies of Photocatalysis 
and Electrocatalysis

The biggest differences between photocatalysis and elec-
trocatalysis are diverse driving ways for redox reactions 
that photoinduced electric carriers and external circuit-
induced carriers dominate the catalytic reaction processing, 
respectively.

For photocatalysis, the development of light absorption 
catalysts is a key goal for photocatalysis [6], but conven-
tional photocatalysts suffer from an uncontrolled extinction 
coefficient and severe photocorrosion during irradiation by 
sunlight; these factors result in poor catalytic performance 
and limited practical applications [106]. For example, as a 

representative all-organic semiconductor material, a lay-
ered g-C3N4 has been widely reported in catalytic-related 
applications [107–111]. However, pure g-C3N4 nanomate-
rials continue to suffer from secondary pollution, limited 
visible light absorbance and high electron–hole recombina-
tion, which remain significant challenges for the develop-
ment of highly efficient catalysis [112–116]. To meet these 
challenges, a variety of g-C3N4-based composite catalysts 
with core–shell structures have been reported in an effort 
to improve the photoresponse to visible light and carrier 
separation [117–120]. The core–shell structures of hybrid 
catalysts promote the separation of photoinduced carriers in 
disparate components, resulting in an enhanced photocata-
lytic performance. Wang et al. reported on a sol–gel synthe-
sized few-layered g-C3N4@TiO2 core–shell nanocomposite 
catalyst for efficient visible light photocatalysis, where the 
layers could be finely controlled through the regulation of 
the colloidal suspension concentration and calcination tem-
perature, as shown in Fig. 2a [121]. In this case,  TiO2 makes 
up for the lack of light absorption and photoresponse of the 
layered g-C3N4 nanomaterials, while the generated chemical 
bonds of the g-C3N4 shell and  TiO2 core benefit for photoin-
duced carrier separation [121]. In addition, the doping of 
layered g-C3N4 nanomaterials, as an effective modification 
strategy, is able to regulate the electronic structure to control 
the light responsive range and improve carrier separation 
[110, 120, 122–128], where the S, B, F and C atoms replace 
lattice atoms, and transitional metals are incorporated into 
the framework [129–135]. Xiong et al. designed a unique 
electronic structured K-doped g-C3N4 nanomaterial and 
achieved an excellent enhancement in photocatalytic nitric 
oxide (NO) removal performance, as shown in Fig. 2b [136]. 
According to the DFT calculations, the use of K intercalated 
doping with a specific structure of K atoms that can bridge 
the layers leads to a narrowing of the bandgap of g-C3N4, 
thereby leading to decreased electronic localization, posi-
tively shifted valence band position and an enlarged π conju-
gated system. As a result, the K-doped g-C3N4 nanomaterial 
provides an enhanced visible light absorbance, effective car-
rier separation and strong oxidizing property [136].

Take COFs as example, most photocatalysis-related 
research based on COFs is in the field of the reduction in 
carbon dioxide and production of hydrogen; however, there 
are few reports of the use of COFs for photocatalytic treat-
ment of toxic organic pollutants in wastewater. In addition, 
the disadvantages of high cost, harsh synthesis conditions 
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and long reaction time make COFs less economically viable 
for practical applications such as environmental wastewater 
treatment. This is probably a result of the COFs structure 
being formed by covalent bonds, in contrast to metal organic 
frameworks (MOFs) which are formed by coordination 
bonds. In addition, the most significant challenges for the 
creation of new COFs catalysts are their low chemical stabil-
ity, low catalytic efficiency and low cost-efficiency, where a 
series of strategies for synthesis and design approaches are 
needed; this includes a need for excellent chemical stabil-
ity, strong catalytic activity and high cost-efficiency. As a 
result, COFs are often combined with other materials, such 
as  TiO2,  MoS2, cadmium sulfide (CdS), zinc sulfide (ZnS), 
cadmium selenide (CdSe) and graphene, to enhance vis-
ible light absorption, promote electric carrier transfer effi-
ciency and increase specific surface area [137–140]. This is 
achieved by taking advantage of its large conjugated struc-
ture that is conducive to electron transport and strong visible 
light absorption. It is worth highlighting that another strat-
egy for optimizing COFs is to establish favorable electron 
donor–acceptor characteristics, for example by using active 
metal nanoparticles to provide improved charge separation 

and a broadening of the absorption range [141–146]. As a 
result, a range of optimized COFs matrix composites with 
excellent photocatalytic activity has been reported to provide 
efficient treatment of organic pollutants in wastewater.

For electrocatalysis, electrochemical water splitting has 
promising capacity for hydrogen and oxygen production; 
however, the oxygen evolution reaction is limited due to a 
non-negligible overpotential and depressed reaction kinet-
ics [147–149]. In general, active sites for oxygen genera-
tion are located on the catalyst surface; thus, a large sur-
face area of the catalyst is desirable for excellent catalytic 
performance [13, 78, 148]. Ni–Fe-layered double hydrox-
ides (LDHs) have been reported as an excellent oxygen 
evolution catalyst in an alkaline solution due to synergis-
tic interactions between Fe and Ni [150–154]. The subtle 
design of nanomaterial structure can be considered to be 
one of the most significant strategies for catalysis reaction 
enhancement for electrocatalytic applications [155]. Zhang 
et al. synthesized Ni–Fe LDH nanocages with regulated 
tunable shells, and realized noble electrocatalysis for the 
oxygen evolution reaction, where Ni–Fe LDH materials 
with an optimal chemical composition possessed a large 

(a)

Bulk g-C3N4

g-C3N4

CN-sol solution

80 oC   4 h

Add TiO2

80 oC   3 h

HNO3

K intercalation

Bridging the layers

K intercalated g-C3N4
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MIL-88A

Ni-Fe LDH SSNCs

Ni-Fe LDH DSNCsMIL-88A@Ni-Fe LDH
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Re-assembled
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(b) (c)

Fig. 2  Strategies for catalytic activity enhancement. a Core–shell structures of g-C3N4@TiO2 promote carrier separation. Reproduced with per-
mission [121].  Copyright 2018, Elsevier. b K-doped g-C3N4 nanomaterials to achieve enhanced visible-light absorption, efficient carrier separa-
tion and strong oxidation capability. Reproduced with permission [136]. Copyright 2016, American Chemical Society. c Ni–Fe LDH nanocages 
with regulated tunable shells perform optimal chemical composition possessing large electroactive surface area. Reproduced with permission 
[155]. Copyright 2020, Wiley–VCH
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electroactive surface area, as shown in Fig. 2c [155]. In 
addition, the process of sonication can modify the LDH 
hydrophobic surface in a xylene solution and break the 
LDH into small fragments with an average lateral size that 
is decreased to dozens of nanometers [156].

To sum up, there are abundant strategies that have been 
explored and analyzed for photocatalytic and electrocata-
lytic activity enhancement in 2D nanomaterials, which can 
be generally concluded as the number of reactive sites, 
surface/interface characteristics, electron states and energy 
band structures; however, specific strategies for photoca-
talysis and electrocatalysis are, respectively, on the basis 
of light absorption and electron transfer. The above-men-
tioned strategies can be achieved via the approaches, such 
as doping, heterojunctions, phase transition and defects.

3  Traps of Catalytic Systems in 2D 
Nanomaterials

As researchers gradually in-depth research in the research 
field of photocatalysis and electrocatalysis, there are 
increasing publications focused on catalytic performance 
enhancement of 2D nanomaterials. Most of the catalytic-
related laboratory works, ultrahigh catalytic behaviors are 
desirable, but these probably seem to be a series of traps 
under the laboratory circumstances, due to rare 2D nano-
catalyst products possessing long-term stability in efficient 
catalytic activity in reality. Besides, each research group 
draws up specific rules for their own catalytic reaction 
systems including the experimental parameters of additive 

amount, external energy input and environmental implica-
tion. The specificity of catalytic system designing is hard 
to avoid the yielding of a series of traps during the experi-
mental processes according to such freedom. These traps 
can be considered as details that are easy to be overlooked 
during the catalytic reaction systems, which may lead to 
improved catalytic activities. In this section, we will give 
a brief summary for general and special traps of different 
catalysis systems in 2D nanomaterials, which also can be 
seen in the dendrogram of Fig. 3.

For general catalysis, experimental environment and 2D 
nanocatalyst-related issues are the most factors that are 
able to be possible traps in experimental catalysis systems. 
First, the impurities from the catalytic reaction systems are 
able to largely influence the final catalytic performance 
including the purity of 2D nanocatalysts and the contami-
nation of glassware, especially when the reaction product 
yield at a relatively low level. For instance, the generation 
and deposition of metallic impurities from the counter 
electrode during the catalytic reaction may give the cata-
lytic possibility for materials originally incapable of cata-
lytic activity [157, 158]. When the catalytic solutions are 
extremely alkaline, the generation of silicates from glass-
ware could have an impact on the results of the catalytic 
experiments [159]. Second, in addition to the resulting 
generation of impurities from surroundings, the solution 
pH is considered as a key role in controlling protonated 
states of reactants; as a result, the pH parameters should be 
disclosed when writing articles. For example, the forma-
tion of bicarbonate when catalytic carbon dioxide  (CO2) 

Traps of catalytic systems in 2D nanomaterials

General issues

Impurities

pH

Sacrificial electron donors

Surface oxidation

Light related information

Explanations of mechanisms 

Configurations

Loading and surface area

Photocatalysis issues Electrocatalysis issues

Fig. 3  A brief summary for general and special traps of different catalysis systems in 2D nanomaterials. General issues include impurities, pH, 
sacrificial electron donors and surface oxidation. Specific photocatalysis issues include light-related information and explanations of mecha-
nisms. Specific electrocatalysis issues include configurations and loading and surface area
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reduction reactions can decrease the pH of the solutions 
[160]. Third, during catalytic  CO2 reduction activities and 
hydrogen evolution, sacrificial electron donors are always 
added for the promotion of reductive reactions [161], but 
the product yields may impact when introducing sacri-
ficial electron donors. For example, when catalytic  CO2 
reduction reactions processing, organic sacrificial electron 
donors, such as ethylene diamine tetraacetic acid (EDTA) 
and triethanolamine (TEOA), may be oxidized, which will 
further generate  C1 [162]. Similarly, the oxidation of alco-
hols and  SH– can evolute  H2 during catalytic hydrogen 
evolution reactions [163]. Fourth, surface oxidation of 
2D nanocatalysts for photocatalysis and electrocatalysis 
is common phenomenon, where the formation of hydrox-
ide or metal oxide surface layer could protect the cata-
lyst for stable catalytic activities [164]. Herein, it is of 
great significance to make the real substance clear through 
surface-sensitive techniques before and after the catalytic 
reactions.

For photocatalysis, the photocatalytic performance-related 
performances, covering the parameters of quantum yields, 
energy efficiencies and reaction rates, depend largely on 
photon flux, wavelength and scattering [165]. Therefore, 
these light-related information as well as nanocatalyst’s light 
absorption are key factors for photocatalysis that must be 
considered and mentioned in the manuscript, but till now 
less photocatalytic-related papers involve the information. 
This undoubtedly makes it difficult for other researchers to 
repeat and improve the experiments. In addition, the expla-
nations of mechanism for photocatalytic systems are limited 
in hydroxyl radical-mediated reactions and interfacial elec-
tron transfer processes. However, simple assumption accord-
ing to previous work is far from enough to prove the photo-
catalytic mechanisms, due to every photocatalytic reaction 
system is unique [166]. As a consequence, more analysis is 
needed to rule out the irrelevant explanations for specific 
photocatalytic reaction systems.

When conducting electrocatalytic experiments, specific 
electrochemical configurations are of great importance, 
such as three-electrode or two-electrode configurations. For 
three-electrode configurations, there will be large deviation 
for electrocatalytic products of counter electrode compart-
ment, if the counter electrode’s potential does not keep a set 
level. For electrocatalytic reaction systems possessing the 
separating membrane between different compartments, the 
drop of voltage for membrane structure should be considered 

rigorously [167]. Similarly, when reporting overpotential, 
it is important to carefully consider relevant configuration 
issues [168]. In addition to configuration issues, the loading 
and surface area of 2D nanocatalysts also exhibit impact on 
the specific electrocatalytic overpotential; as a result, the 
information of 2D nanocatalyst loading and morphological-
based surface area must be provided in the manuscript, but a 
great deal of literatures are not available [169].

In this section, we have discussed the general and special 
traps of different catalysis systems in 2D nanomaterials. 
General issues include impurities, pH, sacrificial electron 
donors and surface oxidation. Specific photocatalysis issues 
include light-related information and explanations of mecha-
nisms. Specific electrocatalysis issues include configurations 
and loading and surface area.

4  D Nanocatalysts

In Sect. 4, we will briefly introduce typical 2D nanocatalysts 
that have long been considered research hotspots for general 
catalytic applications, through discussing their classifica-
tion, structures, synthesis approaches and characterizations 
in turn as the following subsections.

4.1  Classification of 2D Nanocatalysts

The development of atomically thin 2D graphene nanoma-
terials has propelled progress in related ultrathin 2D nano-
materials [12]. In general, most 2D nanomaterials can be 
sketchily classified into layered materials [44], where van 
der Waals interactions between layers make layer stacking, 
and continuous atom layers within layers are typically strong 
chemical bonded [170]. Typical 2D layered nanomaterials 
for catalysis include graphene, graphitic carbon nitride, a 
family of mono-elemental compounds, TMDs, COFs, metal 
carbides and nitrides (MXenes), LDHs, bismuth-based lay-
ered compounds, hexagonal boron nitride (h-BN) MOFs and 
2D metal nanomaterials, etc.

The structure of graphite was determined with the advent 
of single-crystal X-ray crystallography, where graphene 
is generally considered as an atomically thin single-layer 
graphite crystal [171]. Atomically thin graphene nanoma-
terials are promising materials with a performance that can 
exceed conventional semiconductors for catalytic applica-
tions [12, 37]. However, graphene nanomaterials are a form 
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of zero band gap semi-metal  [172]; therefore, they are usu-
ally considered as a co-catalyst or an effective catalyst sup-
port, rather than a catalyst directly [173].

One of the most well-known structural graphene-like 2D 
nanomaterials is g-C3N4 [107]. Generally, g-C3N4 nanoma-
terials are able to act as a potential catalyst in numerous 
redox reactions due to their chemical inertness under strong 
acid or alkali environments [64]. However, challenges such 
as high electric carrier recombination rate, low specific area 
and poor mass transfer can restrict the efficiency of catalysis, 
where approaches such as heterojunction coupling, surface 
defect engineering and element doping have been considered 
to address this deficiency [124].

Pnictogens are mono-elementals of group VA that exhibit 
a high energy and power density and can be produced by 
stacking layered materials of various characteristics to cre-
ate a heterostructure to combine the superior aspects of each 
material [174]. As a typical family of mono-elemental com-
pounds, an ultrathin 2D structure of BP in the orthorhom-
bic phase was first synthesized in 1914 [175]. Compared to 
graphite, black phosphorus can enhance the specific capacity 
from 372 to 4200 mAh  g−1, with a reversible reaction with 
Li and Na [176–179]. Moreover, their thermodynamically 
stable properties for electronic applications enable operation 
at extreme temperatures and at humidity in air, which results 
in efficient and stable catalytic reactions [180–184].

TMDs generally consist of chalcogen atom layers, with 
a transition metal atom interlayer [185, 186]. Changing 
the number of layers in the crystal provides an opportu-
nity to regulate the band gap of TMDs.  MoS2-based nano-
materials, as a typical TMD material, exhibit unique lat-
tice vibration properties, high catalytic activity, low cost 
and natural abundance [63]. To date, 2D layered  MoS2 
nanomaterials have demonstrated significant potential to 
replace graphene nanomaterials in a variety of applications 
due to their unique characteristics. Zhang et al. utilized 
 MoS2 to achieve outstanding catalytic properties for the 
 N2 reduction, compared to other catalysts reported under 
the same circumstances, where the Faradaic efficiency 
and the  NH3 yield rate reached high levels of 1.17% and 
8.08 ×  10–11 mol  s−1  cm−2, respectively [187].

COFs are formed from organic ligands through revers-
ible covalent bonds and are considered as advanced crys-
talline porous materials. In 2005, Yaghi and co-workers 
provided the first demonstration of connecting small 
symmetric organic structural units to a covalent organic 

skeleton of a porous crystal using the principle of dynamic 
covalent chemistry [188]. Tan’s group explored a green 
and facile approach for creating a 2D heterogeneous 
P6-Au-COF hybrid nanomaterial that was formed using a 
COF and pillar[6]arene reduced Au nanoparticles (P6-Au), 
which showed high catalytic performance for the reduction 
in nitrophenol isomers [189].

Graphene-like MXenes have been synthesized from 
stacks of scrolls and sheets, including mono-transition-
metal MXenes and double-transition-metal MXenes 
[190–198]. Monolayered MXenes show metallic proper-
ties due to their high electron state concentration near the 
Fermi level [192, 199–202]. A high electron state con-
centration near the Fermi level indicates that MXenes are 
potential layered materials for catalytic applications [191]. 
MXenes possess excellent electronic conductivity, high 
elastic moduli and good hydrophilic properties that have 
been exploited in a variety of applications such as hybrid 
electrochemical supercapacitors and Li-ion battery anodes 
[194, 200, 203–212].

LDHs are constructed using brucite-like host layers and 
interlayered structural water with positive charges and 
negatively charged anions, respectively [213, 214]. LDHs, 
especially those that contain transition metals, are widely 
reported to be a promising catalyst with a high catalytic 
activity for applications related to the generation of oxygen 
and hydrogen [215]. Zhang’s group reported on ultrathin 
NiFe-LDH nanosheets with a 0.6 nm thickness and achieved 
an overpotential of 254 mV for the electrocatalytic water 
splitting reaction, and demonstrated superior charge transfer 
properties [216].

Bismuth, as an environmentally friendly metal, possess 
a wide range of interesting features for a range of appli-
cations, including catalysis [217–221]. Bismuth-based 
2D layered nanomaterials have been reported to demon-
strate high performance for energy conversion and stor-
age devices [222–227]. The band gap can be manipulated 
from 0.3–3.6 eV, by introducing a variety of cations and 
anions into the intrinsic structure, whose corresponding 
light response spans the ultraviolet to near infrared [65, 66]. 
Besides, the effective mass and mobility of photoexcited 
electric carriers are restricted and improved, which is ben-
eficial to applications such as optoelectronic energy conver-
sion, photodetection and photochemical catalysis [228, 229].

The h-BN is a hexagonal crystal system with a graphite-
like hierarchical structure. It has been utilized as a catalyst 
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carrier or catalyst as a result of its high temperature resist-
ance, high thermal conductivity of ~ 390  W   m−1   K−1, 
extremely stable chemical properties, strong acid corrosion 
resistance, and high electrical insulation. Nevertheless, due 
to its low electrical conductivity, attempts have been made 
to functionalize the h-BN monolayer by combination with 
electrically conductive materials such as reduced graphene 
oxide (rGO) [230, 231] and carbon nanotubes (CNTs) [232], 
which can expand its range of applications [233].

Yaghi et al. reported a coordination compound which 
was synthesized from rigid organic ligands and a transition 
metal with a 2D structure, as a MOF [234]. MOFs exhibit 
a single-layered lamellar structure which is one-atom thick, 
resulting in high aspect ratio and the possibility of post-syn-
thetic modification that can help realize tailor-made pores 
for selective adsorption and catalysis and the incorporation 
functional groups into the MOFs [235, 236]. Since transi-
tion metals represent a large proportion of the MOF, it is 
beneficial to provide large pore dimensions, large surface 
area and a versatility of the type of MOF structure formed.

2D metal nanomaterials, especially noble metals [237], 
are synthesized as the forms of nanosheets [238–240], 
nanodisks [241], nanoplates [242, 243], nanoribbons [244], 
nanorings [245] and nanobelts [246], etc. Due to the interest-
ing electronic and structural properties, 2D metal nanoma-
terials have been applied in a variety of catalysis [71, 247, 
248]. Huang et al. reported 2D Pd nanosheets performed 
large enhancement in electrocatalytic formic acid oxidation 
reaction (FOR) in comparison with commercial Pd black 
[238], attributed to abundant active sites on the catalyst sur-
face [247].

4.2  Structures of 2D Nanocatalysts

In the last subsection, we have discussed the classification 
of 2D nanomaterials. These 2D nanomaterials possess dis-
tinct crystal phases related to atomic coordination, atomic 
arrangement and layered stacking [97, 249, 250], which 
can largely regulate the properties and catalytic activities 
[105, 251–253]. Here, we will discuss the structures of the 
above-mentioned 2D nanocatalysts, where a range of 2D 
catalytic nanomaterials with distinct structures is highlighted 
in Fig. 4.

Graphene comprises hexagonal or honeycomb-like geom-
etry carbon atoms in sp2-hybridized form, where every 

carbon atom connects with the adjacent three atoms via 
σ-bond covalently bonding [254].

The planar structure of g-C3N4 is specifically different 
from that of graphene, where carbon and nitrogen atoms 
constitute N-substituted graphite frameworks in sp2-hybrid-
ized form [255–257]. In general, g-C3N4 possesses two typi-
cal structures that are formed by tri-s-triazine units and s-tri-
azine units [255, 258, 259]. For g-C3N4 with tri-s-triazine 
units, at a temperature of 900 K in vacuum, the structure 
of the g-C3N4 monolayer becomes disordered, where the 
hydrogen bonds within NH/NH2 groups are broken, result-
ing in NH/NH2 groups twisting outward, as seen in Fig. 4a 
[260]. Such amorphous g-C3N4 nanomaterials can achieve 
enhanced photocatalysis for hydrogen generation in contrast 
to the crystalline form of g-C3N4 when illuminated by vis-
ible light [260].

The layered puckered honeycomb structural BP exhibits 
an orthorhombic crystal and a space group of Cmca. Each 
P atom connects with the adjacent three P atoms, in which 
three locate at the same plane, but the rest one atom locates 
at another plane [261, 262]. Figure 4b illustrates the typical 
structure of BP from a top view [263].

Monolayered TMDs stack together to form layered TMDs 
via van der Waals interactions in general. Individual mon-
olayered TMD is made of one sandwiched transition metal 
atomic layer and two chalcogen atomic layers [24]. The 
structure of a TMD is shown in Fig. 4c which indicates both 
the top and side views, where the chalcogen atoms and the 
metal atoms are bonded covalently with trigonal prismatic 
coordination [264].

Periodic porous COFs are orderly formed by organic 
building block units with covalent connection [265, 266]. 
A typical structure of a COF is illustrated in Fig. 4d [189], 
which has the advantages of a high level of inherent poros-
ity, adjustable aperture, good conjugation structure, large 
surface area, crystallizability, no secondary pollution and 
wide visible light response range.

Layered MXenes  (Mn+1XnTx) can be gained via selective 
etching treatment for A-group elements from parent lay-
ered ternary carbides  (Mn+1AXn, MAX) [194–198], where 
MAX possesses hexagonal structure with a space group of 
P63/mmc [267]. Geng et al. achieved notable catalytic hydro-
gen evolution reactions using a  Mo2C-on-graphene MXene 
heterostructure, where the crystal structure of  Mo2C can be 
seen in Fig. 4e [191].
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The general formula of LDHs is  [M1-x
2+Mx

3+(OH)2] 
 (An−)z/n·yH2O, where the marks of  M2+,  M3+ and  An− rep-
resent divalent metal cation, trivalent metal cation and inter-
layer anion, respectively.  An− locates in the hydrated inter-
layer gap, while  M2+ and  M3+ locate octahedral holes in 
the brucite-like layer [268–270]. Wang et al. synthesized 
ultrathin CoFe LDH nanosheets for use as a highly effi-
cient oxygen evolution electrocatalyst, where the Ar plasma 
exfoliation fabrication process and the variety of structures 
formed can be seen in Fig. 4f [271].

Bismuth-based 2D layered nanomaterials achieve high-
dispersion band due to s-p hybridization and anisotropic p, 
and thus, the photogenerated carriers exhibit low effective 
mass and electron–hole pairs with high mobility [272–274]. 
In particular, bismuth oxychloride (BiOCl) is a typical bis-
muth-based layered nanomaterial with a tetragonal structure 
and a P4/nmm space group. The electronic properties and 
lattice dynamics of this material have been reported, and the 

layered crystal structure is illustrated in Fig. 4g, where the 
Bi and O atom layers are sandwiched between the Cl atom 
layers [275].

H-BN is a hexagonal crystal system with a graphite-like 
hierarchical structure, whose crystal structure can be seen 
in Fig. 4h [276]. Normally, h-BN nanosheets are formed 
from sp2 hybridized B atoms, along with N atoms that are 
regularly arranged in a hexagonal ring network between the 
individual layers [276]. In a similar manner to most layered 
nanomaterials, the B and N atoms are tightly covalently 
bonded within the layer planes. Moreover, the weak van der 
Waals interactions of the interlayer bonding are beneficial 
for material exfoliation to create ultrathin nanosheets [12].

In general, MOFs can be considered as the metal–organic 
skeleton materials that are self-assembled via coordination 
bonds between metal ions/clusters and organic ligands. 
The organic ligands in MOFs are called the linkers, and the 
metal ions or clusters are called the nodes, which are then 
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self-assembled into coordination compounds with periodic 
structures. Li and the co-workers constructed 2D layered 
MOFs from LDHs via a facile ligand-assisted procedure, 
where the material exhibited a superior performance for 
water oxidation, which are illustrated in Fig. 4i [277]. How-
ever, the electrical conductivity of 2D MOFs is relatively 
poor, below  10−14 S   cm−1 [278, 279], as a result of the 
internal porosity due the stacking of several atomic layers 
[280]. In addition, 2D MOFs suffer from a high sensitivity 
to humidity and structural instability; this is due to the weak 
coordination bonds that are located between the metal nodes 
and linkers [280, 281].

4.3  Synthesis of 2D Nanocatalysts

The top-down and bottom-up methods are regarded as the 
two primary procedures for the synthesis of 2D layered 
nanomaterials synthesis, and the general approaches are 
summarized in Fig. 5. These approaches include a variety of 
common methods which are based on top-down and bottom-
up methods.

Top-down synthesis is generally considered as a demixing 
processes of layered bulk materials by the external forces 
[282]. The key to the approach is the breaking of weak inter-
layered van der Waals interactions and achieve the cleav-
age of bonds along the layer plane to obtain 2D ultrathin 
nanosheets [280]. There are a number of approaches for 
synthesizing 2D nanomaterials via top-down methodolo-
gies, these include liquid/gas exfoliation [283], mechanical 
cleavage [284, 285], shaking treatment [286], wet ball mill-
ing [287, 288], sonication [216, 289] and chemical etching 

[287]. In the following discussion, we will discuss common 
approaches for top-down 2D layered nanomaterial synthesis.

Liquid exfoliation methods have been considered as one 
of the most popular ways for the preparation of multiple 2D 
layered nanomaterials, whose synthesis mechanism is based 
on weakening interlayer interactions by introducing guest 
molecules to enlarge the spacing of interlayers, and inter-
facial debonding for the formation of a steady sol via ultra-
sonic processing [290]. Zhang’s group utilized N-methyl-
2-pyrrolidone solutions for exfoliation of few-layer black 
phosphorus nanosheets to synthesize 2D layered electrocat-
alysts and achieved high electrocatalytic performance for 
oxygen generation applications [24, 226].

The mechanical cleavage method is also a common pro-
cedure for the preparation of multiple 2D layered nanoma-
terials. Subbiah and Jayasena utilized an ultrasharp dia-
mond wedge that was assisted by ultrasonic oscillations to 
exfoliate 2D graphene layers with an approximate area of 
300 × 900 μm2 [285]. The well-known Scotch tape method, 
regarded as one of most common mechanical exfoliation 
methods [24], led to the discovery of graphene [291] and is 
able to prepare high-quality 2D monolayered nanomaterials 
with desirable performance. For example, Fuhrer’s group 
demonstrated a large single crystal of diindium triselenide 
 (In2Se3) exhibits strong optical properties, which was formed 
by exfoliation in a similar way to graphite using sticky tape 
(3 M Scotch) with a thickness of ~ 100 nm [284].

The wet ball milling approach is a method of grinding 
materials, solvents and zirconia spheres into nanometer 
slurry at a certain ratio. Yang’s group reported on the syn-
thesis of ultrathin layered MOFs with high crystallinity, 
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large lateral area and 1 nm thickness, via a wet ball mill-
ing and ultrasonic exfoliation procedure, where the rotation 
speed was at a low level of 60 rpm, and propanol and metha-
nol were used for ultrasonication exfoliation [288].

Although top-down methods benefit the preparation of 2D 
nanomaterials with exceptional properties using a straight-
forward approach to provide a low cost product [286], these 
methods continue to exhibit limitations which limit the use 
of 2D nanomaterials for practical applications. These include 
the formation of unstable nanosheets, uncontrollable layer 
numbers, poor homogeneity, being limited to layered mate-
rials, low product yield and the stripped nanosheets often 
break up and restack. Hence, we believe basic research of 
top-down 2D nanomaterial synthesis in needed, where pro-
gress on strategies and development will expectedly improve 
more effort [292], such as intercalation-assisted expansion 
and exfoliation [293–296], and exfoliation of layer materials 
containing ions or molecules between the layers [192, 293].

The bottom-up synthesis for 2D layered nanomaterials 
can be generally considered on the basis of the anisotropic 
assembly of small molecules with growth limitations in 
vertical directions [297]. The bottom-up wet chemical syn-
thesis approaches are easier to realize for large-scale pro-
duction and provides a more controllable synthesis of 2D 
nanomaterials. These include surfactant-assisted synthesis 
[298], surfactant self-assembly [299], chemical vapor dep-
osition [300–303], template-assisted synthesis [304], inor-
ganic–organic lamellar [305] and solvothermal synthesis 
[306, 307]. The following discussion will discuss typical 
methods for 2D nanomaterials synthesized using bottom-up 
methods.

Lang and co-workers synthesized atomic layered binary 
MOF nanosheets via a bottom-up solvothermal method and 
achieved excellent electrocatalysis for oxygen generation 
with a solvent based on a N,N-dimethylacetamide solution 
[307]. Chemical vapor deposition is a popular approach for 
large-scale 2D material production with promising supe-
riority in a controllable size and thickness of material for 
practical applications [308]. Ji’s group present a chemi-
cal vapor deposition-based approach for the synthesis of 
2D black phosphorus, with average areas generally over 3 
μm2. Song’s work demonstrated chemical vapor deposition 
growth of high-quality h-BN nanomaterials with a thickness 
that typically ranged from two to five atomic layers. In this 
work, ammonia borane was used as the precursor for the BN, 

followed by a gas flow of Ar/H2 at a temperature of around 
1000 ℃s, with a typical growth time of 30–60 min [300].

However, traditional bottom-up synthesis strategies often 
require the aid of substrate materials and surfactants. It is 
therefore difficult to prepare dispersed 2D nanomaterials, 
and the residual surfactants in the products are difficult to 
remove, which can limit their applications.

4.4  Characterization of 2D Nanocatalysts

In the above subsections, we have discussed the classifica-
tion, structure, synthesis of 2D nanocatalysts. In addition 
to these topics, the advances in characterization technolo-
gies propel the rapid development of 2D nanomaterials for 
related application in catalysis as well [44, 309]. So far, there 
have been a series of sophisticated characterization tech-
nologies for 2D nanomaterials, including multiple optical, 
electron and probe microscopies and various spectrosco-
pies, that can uncover material information of morpholo-
gies, defects, crystal phase, electron density of states and so 
on [310–313]. In this subsection, we will briefly introduce 
several typical characterization technologies for distinguish-
ing 2D nanomaterials.

The optical microscopy (OM) can rapidly provide the 
location and morphology information of materials [314]. 
By the utilization of OM, Chiu et al. demonstrated that 
the stacking layers of  MoS2/WSe2 heterostructures exhib-
ited a clear distinction with color contrast [315]. However, 
more accurate value of material morphology information 
needs much preciser characterization such as electron 
and probe microscopies. Scanning electron microscopy 
(SEM) is the most common technique for structure, topol-
ogy and morphology characterization of nanocatalysts, 
whose resolution generally achieves several nanometers 
[316]. Transmission electron microscopy (TEM) is another 
strong technique for morphology, crystallinity and phase 
characterization of nanocatalysts; besides, it can always be 
combined with selected area electron diffraction (SAED) 
patterns to get more crystallinity information [317]. Jung 
et al. fabricated a  CO2 reduction composite photocatalyst 
 TiO2-graphene-MoS2 and observed the composite structure 
and morphology through SEM, the crystallinity and phase 
information through TEM, respectively [318]. More accu-
rate thickness information and electronic properties of 2D 
nanocatalysts can be obtained by scanning probe microscopy 
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(SPM) [319], such as atomic force microscopy (AFM) [320], 
scanning tunneling microscopy (STM) [76], kelvin probe 
force microscopy (KPFM) [321] and electrostatic force 
microscopy (EFM) [322]. Heath’s group utilized monolay-
ered graphene to visualize water adlayer on mica with the 
average height of 0.37 ± 0.02 nm [323]. Jaramillo et al. con-
trolled different active sites of  MoS2 electrocatalysts, and 
identified these active sites via STM; as a result, the HER 
electrocatalytic activity showed a linear relation with the 
amount of catalytic active sites [76]. Additionally, EFM was 
used to analyze the electrostatic screening effects of  MoS2 
atomically thin layers [322].

Apart from advanced microscopies, various sophisticated 
nondestructive spectroscopies are also used for characteri-
zation of 2D nanomaterials, including Raman spectroscopy 
[324], X-ray photoelectron spectroscopy (XPS) [72] and 
X-ray absorption spectroscopy (XAS) [325]. Raman spec-
troscopy provides spatial resolution and high spectral in the 
electronic and structural information of 2D nanomaterials 
[326]. XPS is able to distinguish different crystal phases 
within 2D nanocatalysts [327]. Voiry et al. calculated quan-
titatively each phase concentration of  WS2 nanosheets with 
the help of XPS [72]. XAS can characterize the atomic-scale 
structural information, including species of the atoms, coor-
dination chemistry and oxidation states [328]. Sun et al. pro-
posed a pits-confined  CeO2 nanosheet platform for catalytic 
CO oxidation evaluation at a variety of active catalytic cent-
ers, where it indicated by XAS that the average coordination 
number of pit-surrounding cerium sites was 4.6 when the 
artificial  CeO2 nanosheets with ~ 20% pits occupancy [325].

In Sect. 4, we have overviewed the classification, struc-
ture, synthesis and characterization of 2D nanocatalysts. 
The classification and structure have been discussed in a 
range of 2D nanocatalysts including graphene, graphitic 
carbon nitride, a family of mono-elemental compounds, 
TMDs, COFs, MXenes, LDHs, bismuth-based layered 
compounds, h-BN, MOFs and 2D metal nanomaterials. 
The common synthesis procedures for 2D nanomaterial 
are based on top-down and bottom-up methods. Top-
down methods include liquid/gas exfoliation, mechanical 
cleavage, chemical etching, shaking treatment, wet ball 
milling, and sonication. Bottom-up approaches include 
surfactant-assisted synthesis, surfactant self-assembly, 
chemical vapor deposition, template-assisted synthesis, 
solvothermal synthesis and inorganic–organic lamellar. 

In addition, we have introduced a series of typical charac-
terization technologies for 2D nanomaterials covering the 
microscopies of OM, SEM, TEM, SPM and the spectros-
copies of Raman, XPS, XAS.

5  Catalytic Applications of 2D Nanomaterials

In this section, we provide a discussion on the photocata-
lytic and electrocatalytic applications of 2D nanomaterials 
based on recent publications, which are mainly focused 
on environmental treatment and biochemical technolo-
gies including dye degradation, elimination of toxicant, 
HER, oxygen evolution reaction (OER), carbon dioxide 
reduction reaction  (CO2RR) and cancer therapy. In addi-
tion, Table 2 summarizes the variety of 2D nanomaterial-
based electrocatalysts applied for specific electrocatalytic 
reactions for practical applications, along with synthesis 
methods, applied conditions, detailed electrocatalytic per-
formance and basic catalysis mechanisms.

Today, we all use a wide variety of medicines and per-
sonal care products, leading to irreversible damage as they 
enter the ecosystem [329]. Antibiotics and their metabo-
lites have potential toxicological risks with regard to non-
resistant microorganisms, phytoplankton, fish and other 
aquatic organisms that may disrupt the aquatic food chain 
[330]. They are difficult to fully degrade by traditional bio-
logical processes, and their toxicity may be further ampli-
fied as they accumulate in our aquatic ecosystems [331]. 
Therefore, there is a need to explore advanced technolo-
gies that are able to destroy organic compounds in aquatic 
environments. Here, we will discuss the recently reported 
catalytic related applications in environmental treatment 
and biochemical technologies using 2D nanomaterials.

5.1  Dye Degradation

With regard to dye degradation, it should be emphasized 
that 2D nanomaterials are suited for oxidative dye pho-
todegradation reactions since their small kinetic barriers 
and optimal thickness provide a high surface area [39]. 
For example, Zhang and co-workers synthesized highly 
crystalline BiOCl single-crystalline nanosheets through 
a hydrothermal method [332]. Figure 6a demonstrates 
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Table 2  Overview of range of 2D nanomaterials for electrocatalytic applications

2D nanomaterials Synthesis Application Conditions Performance or parameter Activity origin or 
mechanism

Refs

Double-gyroid  MoS2 Electrodeposition, 
followed by sulfidiza-
tion

HER Acidic medium Overpotential = 150–
200 mV

Tafel slope = 50 mV 
 decade−1

Surface embellish-
ment for edge site 
exposure

[35]

Co3S4 Physical etching HER Alkaline medium Ƞ10 = 63 mV
Tafel slope = 58 mV 

 decade−1

Abundant sulfur vacan-
cies

[340]

Co–N-GA Solvothermal HER Acidic medium Onset = 0 V,
Ƞ10 = 46 mV
Tafel slope = 33 mV 

 decade−1

Synergetic effect of 
N-doped carbon and 
inner metal Co

[306]

MoS2 Hydrothermal HER Acidic medium Ƞ-200 = 198 mV
Tafel slope = 36 mV 

 decade−1

Facilitated ion dif-
fusion by channel 
engineering

[36]

WSe2 Hydrothermal HER Acidic medium Onset = 150 mV
Tafel slope = 78 mV 

 decade−1

Many exposed edge 
sites can provide 
abundant active reac-
tion sites

[186]

Mo2CTx Ball milling, HF etch-
ing

HER Acidic medium Ƞ10 = 189 mV
Tafel slope = 70 mV 

 decade−1

Tx as surface func-
tional groups

[287]

NiFe-LDH Ultrasonication OER Alkaline medium Ƞ10 = 254 mV
Tafel slope: 32 mV 

 decade−1

Metal and oxygen 
vacancies

[216]

Ni–Fe-MOF Solvothermal OER Alkaline medium Ƞ10 = 221 mV
Tafel slope = 56 mV 

 decade−1

Fe constitutes the 
active site

[307]

CoFe LDH Hydrothermal and 
Water-plasma-ena-
bled exfoliation

OER Alkaline medium Ƞ10 = 232 mV
Tafel slope = 36 mV 

 decade−1

As-exfoliated increased 
active sites and 
multi-vacancies

[215]

CoCo-LDH Soft template
method

OER Alkaline medium Ƞ10 = 319 mV
Tafel slope = 42 mV 

 decade−1

More highly active 
edge sites with lower 
coordination number 
and mass diffusion 
promotion

[346]

Ni(OH)2 Chemical etching OER Alkaline medium Ƞ10 = 335 mV
Tafel slope = 65 mV 

 decade−1

Holes developed inside 
the sheet structure 
supply tremendous 
permeable channels 
for ions adsorption 
and transportation

[344]

BP Liquid phase exfolia-
tion

OER Alkaline medium Onset = 1.45 V,
Ƞ10 = 300 mV
Tafel slope = 88 mV 

 decade−1

Reduction in thickness 
generates active sites 
and improves specific 
surface area

[283]

Ni-MOF@Fe-MOF Ultrasonication OER Alkaline medium Ƞ10 = 265 mV
Tafel slope = 82 mV 

 decade−1

Hybridization and 
cooperativity 
between Ni and Fe

[289]

Co-C3N4/CNT Polycondensation 
reactions, and acid 
leaching process

ORR and OER Alkaline medium HER onset = 0.9 V,
OER onset = 1.5 V
Tafel slope = 68.4 mV 

 decade−1

M-N2 coordination [171]

Fe-Co/N-rGO-Al Solvothermal ORR Alkaline medium Onset = 0.98 V
half-wave poten-

tial = 0.84 V

Four electron transfer 
mechanism and a 
lower  HO2− yield

[347]
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photoexcitation degradation in BiOCl nanomaterials, and 
the direct semiconductor degradation efficiencies were 
99% and 59% in BiOCl-001 and BiOCl-010, respectively. 
An indirect semiconductor exhibited a lower photocata-
lytic activity compared to direct semiconductor, and the 
BiOCl nanomaterials demonstrated higher photoexcitation 
performance under UV light than under visible light. In 
addition, Yang et al. constructed BiOCl and BiOCl-OH 
photocatalysts for efficient photocatalysis and degradation 
of Rhodamine B dye in wastewater illuminated by UV 
light at a wavelength of 365 nm, as illustrated in Fig. 6b, 
c [333]. The BiOCl-OH exhibited an enhanced photoca-
talysis compared to pure BiOCl since the UV light induced 
increased the number of oxygen vacancies, and the peaks 
in the FT-IR spectra correspond to hydroxyl groups and 
indicate the significant role of hydroxyl groups in the 
photocatalytic activity for Rhodamine B dye degradation 

[333]. Zheng et al. developed a layered hetero-structured 
black phosphorous/graphitic carbon nitride (BP/CN) nano-
material to obtain efficient photocatalysis for dye degra-
dation and produce the highly reactive oxygen species of 
 H2O2, as shown in Fig. 7 [334].

5.2  Elimination of Toxicants

Phenolic compounds are highly toxic organic pollutants that 
pollute water. These compounds are derived from pharma-
ceutical, printing, dyeing, pesticide and oil refining indus-
tries. The presence of phenols in industrial sewage makes 
surface water extremely vulnerable to pollution. The search 
for efficient and safe degradation technologies is therefore 
worthy of worldwide attention [37]. For example, Liu and 
co-workers found that a hetero-junctioned photocatalysts 
based on g-C3N4/Bi2WO6/rGO (incorporated with 3 wt% of 

Table 2  (continued)

2D nanomaterials Synthesis Application Conditions Performance or parameter Activity origin or 
mechanism

Refs

Pd Thermal treatment ORR Alkaline medium Mass activity 
(0.85 V) = 21.1 mA  mg−1

electron transfer num-
ber = 3.73–3.85

Unique structural 
features

[237]

WSe2 Chemical vapor trans-
portation

CO2RR Acidic media Current den-
sity = 18.95 mA  cm−2

CO formation turnover 
frequency = 0.28  s−1

Overpotential = 54 mV

Presence of ionic liq-
uids and high density 
of edges

[349]

Ru/MgAl Wet impregnation CO2RR Gas phase
reaction

CO2 conversion = 85%
CH4 yield = 84%

Non-thermal plasma 
(NTP) activated  CO2 
hydrogenation

[348]
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rGO) exhibited a 86% and 98% reduction in ibuprofen by 
photocatalytic degradation under optical light and solar light 
irradiation, respectively [335].

Antibiotics are able to cause irreversible damage due to 
their easy accumulation in the human body, and photocata-
lytic oxidation has been applied as an efficient approach to 
antibiotics removal for wastewater treatment. Norvill and co-
workers demonstrated that the antibiotic tetracycline could 
be reduced by 93% and 99% with a biomass concentration 
and chemical oxygen demand (COD) at hydraulic reten-
tion times of 4 and 7 days under summer-like conditions, 
although the lower photodegradation during the winter can 
lead to a reduced overall removal efficiency [336]. These 
results are the first to provide an effective demonstration of 
tetracycline removal in an outdoor wastewater environment 
and demonstrate that algal wastewater treatment provides a 
higher removal capacity compared to conventional biologi-
cal wastewater treatment.

5.3  Hydrogen Evolution Reaction (HER)

Today, there is a need to develop new energy under the 
current worldwide circumstances of increasing environmen-
tal pollution and the energy crisis [337–339]. Hydrogen 

energy, as one of new and clean energy resources, pos-
sesses not only no secondary pollution, but also has a high 
energy density and has emerged as a low-carbon and zero-
carbon energy. The HER is the cathodic reaction that can 
be described as  2H+  +  2e− →  H2, known as the half part of 
water splitting [340]. For more detailed processes of the 
HER in acidic solutions, it can be divided into two main 
procedures including proton adsorption and hydrogen des-
orption, whose basic mechanisms are on basis of the Vol-
mer mechanism, the Heyrovsky mechanism and the Tafel 
mechanism, where the adsorption sites of electrocatalysts 
play a significant role for the HER [12]. Numerous research 
on developing 2D material catalysts is exploring their 
attractive physicochemical properties as a potential cata-
lyst for efficient HER activity with high efficiency [341]. 
For example, Ma and co-workers prepared ice-assisted 
exfoliated BP/g-C3N4 nanosheets from bulk black phos-
phorous, which exhibited the properties of high product 
quality, a low density of anomalous structural defects and 
large lateral size [183]. Figure 8 illustrates the correspond-
ing properties of the synthesized BP/g-C3N4 nanosheets. 
The absorption spectra for individual BP, g-C3N4 and BP/g-
C3N4 nanosheets indicate that the absorption band of the 
BP nanosheets ranges broadly in the UV, visible and NIR 
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regions, while the absorption edges of g-C3N4 and BP/g-
C3N4 nanosheets are ~ 466 and ~ 474 nm, respectively. In 
addition, the differing component ratios for BP/g-C3N4 
nanosheets have been analyzed, where the BP/g-C3N4 
nanosheets provide a clear photocatalytic enhancement for 
the HER compared to individual BP and g-C3N4 catalysts, 
in terms of both photocatalytic hydrogen generation rate 
and total amount of product. The existence of BP enlarges 
the absorption band of the BP/g-C3N4 and the addition of 
g-C3N4 not only preserves the BP against oxidization, but 
it also provides a shallow interface of trapped charge sites 
for promotion of electric carrier separation in the composite 
photocatalysts, which reduces the limitations of fast carrier 
recombination in the BP or g-C3N4 nanosheets.

5.4  Oxygen Evolution Reaction (OER)

As the other half part of water splitting, the OER can be 
regarded as an oxidative reaction that demands four electrons 
and proton transfer, resulting in an overpotential requirement 
and a kinetically sluggish response [342–344]. On account 
of its atomic level thickness, large specific area and large 

amount of surface atoms, 2D LDH nanosheets are able to 
realize a significant improvement in catalytic performance 
[343]. Song et al. presented an orthogonal approach for 
catalytic OER enhancement using layered LDH nanosheets 
which were processed via liquid phase exfoliation [345]. 
As can be seen in Fig. 9, the bulk-layered LDHs exhibit 
a lower OER performance compared to exfoliated single-
layer LDH nanosheets. In addition, Qin et al. synthesized a 
2D CoCo-LDH nanomesh as an OER electrocatalyst, where 
there were abundant high activity atoms with low ligancy, 
and the mesoporous structure of the CoCo-LDH nanomesh 
improved the diffusion of reactants and products, as illus-
trated in Fig. 10 [346]. The onset overpotential and the over-
potential (η10) of the CoCo-LDH nanomesh were decreased 
to 220 mV and 319 mV, respectively.

5.5  Carbon Dioxide Reduction Reaction  (CO2RR)

Currently, scientists have found that the  CO2 concentration 
in the atmosphere surpasses the previous level of 23 mil-
lion years and is increasing at an unprecedented rate [347]. 
 CO2 is considered to be one of the most potent greenhouse 

Fig. 8  BP/g-C3N4 nanosheets with properties of high-quality, large lateral size and lower anomalous structural defects for high efficiency cata-
lytic  H2 production. Reproduced with permission [183].  Copyright 2019, Wiley–VCH
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pollutants, and the increase in  CO2 concentration is closely 
related to climate change [348]. The capture and efficient 
use of  CO2 is an urgent global problem [349]. As a result, 
2D layered nanomaterials have attracted effort in terms of 
photocatalysis and electrocatalysis for  CO2RR applications 
to transform  CO2 into nontoxic organics [350]. Ye and co-
workers realized an efficient  CO2RR with a  CO2 adsorp-
tion capacity of 103.8  cm3  g−1 for homogeneous Zn-MOF 
nanomaterials with a 4.7 nm layer thickness, as shown in 
Fig. 11a, b [350]. In comparison with bulk MOFs of low 
efficiency, the synergistic effect of prolonged lifetime of pho-
togenerated electric carriers offers the possibility of using 
2D layered MOF nanosheets with desirable catalytic  CO2RR 
activity. Zhao’s group exploited 2D ZnO for photocatalytic 
 CO2RR, as shown in Fig. 11c-e [351]. Compared with their 
bulk counterpart, the 2D ZnO nanosheets have the advan-
tages of desirable bandgap, optical absorbance and large 
surface catalytic active sites for  CO2RR.

5.6  Cancer Therapy

During recent decades, cancer is one of great threats to 
humankind and societal health, which inspires the devel-
opment of functional nanomaterials with desirable charac-
teristics and suitability for cancer therapy [352–361]. Du’s 
group demonstrated cancer therapy by using 2D nanoma-
terials based on rare-earth metals [362, 363]. Dai et al. 
realized noble ablation of tumors that was attributed to the 
combination of physiochemical properties and photocata-
lytic effect in hydrothermally synthesized 2D O-BiOCl-PVP 
nanosheets, where the oxygen vacancies were constructed on 
material surfaces via UV light irradiation, as illustrated in 
Fig. 12 [364]. This recent work provides a new direction for 
defect engineering strategy of nanomaterials and enlarges 
the biomedical applications of 2D layered nanomaterials.

Here, various catalytic applications of 2D nanoma-
terials have been discussed in this section that contain 
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environmental treatment and biochemical technologies 
including dye degradation, elimination of toxicant, HER, 
OER,  CO2RR, as well as cancer therapy.

6  Future Perspective and Challenges

We now provide an overall perspective on recent progress 
in 2D nanomaterials for photocatalytic and electrocatalytic 
applications. This begins with the range of structures and 
synthesis approaches. We then focus on the emerging strat-
egies for improving catalytic properties by enhancing light 

absorption ability, increasing reactive sites, accelerating car-
rier separation and charge migration, and improving surface 
reaction. Their applications in the realm of environmental 
treatment and biochemical technologies are highlighted.

Compared with traditional bulk nanoscale catalysts, 2D 
layered nanomaterials in the fields of photocatalysis and 
electrocatalysis exhibit specific advantages such as an expo-
sure to more active sites, being more conducive to reactant 
diffusion and a larger specific surface area. In addition, much 
effort in optimizing these materials have been devoted to 
enhancement of stability, electrical and mechanical proper-
ties through changing layer thickness, surface modification 
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and external stimulation. Research progress and future direc-
tions in 2D nanocatalysts are aiming to tackle a range of 
issues and challenges, which are summarized below:

(1) The macroscopic and controlled production of 2D 
nanomaterials is key to the practical application of 
catalysis. Chemical vapor deposition and liquid phase 

dissection are potential synthesis approaches for the 
production of 2D layered nanomaterials. Recently, 
in situ characterization equipment has been developed 
that is able to detect thermodynamic and kinetic reac-
tions during material synthesis, which can be highly 
beneficial for developing a detailed understanding of 
the growth mechanisms of 2D nanomaterials. In addi-
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tion to existing progress in the manufacture of 2D 
nanocatalysts within a controlled microenvironment, 
the use of confined synthesis could be a significant 
growth approach that is able to operate at a molecule 
level to offer precise control for the synthesis for 2D 

nanomaterials for catalytic applications. In the longer 
term, the large-scale preparation of controllable struc-
tures of non-layered atomic thickness nanosheets with 
intrinsic catalytic activity remains to be developed, 
which faces significant challenges, especially in achiev-

Fig. 12  2D BiOCl nanosheets for photonic tumor ablation with the combination of physiochemical properties and photocatalytic effect. Repro-
duced with permission [364].  Copyright 2020, Royal Society of Chemistry
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ing precise control for the production of high-quality 
and homogenous 2D nanomaterials.

(2) In general, catalytic activity is closely related to the 
structure and surface characteristics of a 2D nanocat-
alyst, which can adjust the electronic properties and 
electron transfer. The structure and surface character-
istics of 2D nanomaterials is related to its dimensions 
(interlayer spacing, thickness and transverse dimen-
sions), exposed surface atom density, the existence of 
surface impurities, additional functional groups and 
surface energy states. It is worth highlighting that the 
abundant edges of 2D nanomaterials lead to a high 
electron transfer activity, compared to basal planes. 
Thus, the design of 2D catalytic nanomaterials can ben-
efit from the regulation of defects, heteroatom-doping 
and the tuning of edges and planes.

(3) The creation of 2D nanomaterials with hybrid com-
posite structures has become topic of intense research 
interest, where two or more compounds with a differ-
ent degree of anisotropy and characteristics create new 
possibilities in the design of 2D nanocomposites with 
multi-functional and tailored properties for catalysis 
applications. In addition, heterostructures that are 
built by combining individual materials are showing 
promising potential in providing control of structure 
and electronic properties. Future directions for cata-
lytic-related applications in 2D nanomaterials could 
therefore involve the creation of sandwich structures, 
confined space structures, and strong electron interac-
tions. In addition, the concept of coupling multiple 
systems provides new opportunities to enable multiple 
mechanisms to operative cooperatively. For example, 
piezoelectric semiconductors possess piezoelectricity 
and photovoltaic effects simultaneously. By combin-
ing these two effects, the photocatalytic activity can be 
enhanced by an internal piezoelectric field that couples 
both piezoelectric and photovoltaic effects.

(4) With regard to developing a greater theoretical under-
standing of the mechanisms of catalysis in 2D nanoma-
terials, there have been anastomotic models that link 
experimental results and theoretical analysis. How-
ever, current catalytic studies of 2D nanomaterials 
have placed an emphasis on catalytic activity enhance-
ment, rather than the underlying science of the catalytic 
mechanisms, and much of research on 2D nanocatalyst-
based catalysis involves trial and error. In addition, the 
use of 2D layered nanocatalysts makes the reaction 
system more complex compared to 3D bulk materi-
als; thus, new developments in the underlying science 
of 2D catalytic nanomaterials are beneficial for mate-

rial design and discovery. For example, with regard 
to photocatalysis, the bandgap of a semiconductor for 
catalysts using light excitation is a dominant factor. The 
fundamental mechanisms and specific impact of the 
dimensionality of 2D nanomaterials and 3D bulk mate-
rials to control the energy bandgap positions remain 
unclear. To date, the theoretical catalytic mechanisms 
of 2D nanomaterials are still not easily applicable to 
real complex reaction systems, thus more theoretical 
and fundamental studies on catalytic mechanisms are 
worthy of study.

(5) In addition to technology development for mass pro-
duction, the ability for catalyst shaping is of interest 
for end-use applications. When 2D nanomaterials are 
used in the form of loose powders they can agglomer-
ate which can restrict their application. The potential 
of fixing 2D nanomaterials to a substrate provides a 
promising approach for improving their ease of use. For 
example, 2D nanomaterials could be epitaxially grown 
on the surface of other materials, be assembled into a 
foam, or be supported on carbon fiber paper or nickel 
foam for catalytic activity enhancement.

2D nanomaterials have become one of the most promis-
ing forms of catalysts applied to both photocatalysis and 
electrocatalysis, but it is merely on the threshold for com-
prehensive analysis both in terms of experimental data and 
theoretical understanding. By furthering our understand-
ing in 2D nanocatalysts in terms of production, material 
design, hybridization, catalytic mechanisms, and appli-
cations, the potential of 2D nanomaterials for practical 
catalysis in the future will be more clearly understood. The 
intention of the review is therefore to inspire new efforts 
to accelerate the development of 2D layered materials for 
catalysis-related applications.
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