Supporting Information for

Electrochemical Lithium Storage Performance of Molten

Salt Derived V₂SnC MAX Phase

Youbing Li^{1, 2, #}, Guoliang Ma^{3, #}, Hui Shao⁴, Peng Xiao³, Jun Lu⁵, Jin Xu⁶, Jinrong Hou⁷, Ke Chen^{1, 2}, Xiao Zhang^{1, 2}, Mian Li^{1, 2}, Per O. Å. Persson⁵, Lars Hultman⁵, Per Eklund⁵, Shiyu Du^{1, 2}, Zhifang Chai^{1, 2}, Zhengren Huang^{1, 2}, Na Jin³, Jiwei Ma⁷, Ying Liu³, Zifeng Lin^{3, *}, Qing Huang^{1, 2, *}

¹Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China

²Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou bay District, Ningbo, Zhejiang, 315336, P. R. China

³College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China

⁴CIRIMAT UMR CNRS 5085, Université Toulouse III- Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

⁵Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping 58183, Sweden

⁶School of Machine Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China

⁷Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China

[#]Y. B. Li and G. L. Ma contributed equally to this work

*Corresponding authors. E-mail: <u>linzifeng@scu.edu.cn (</u>Zifeng Lin);

huangqing@nimte.ac.cn_(Qing Huang)

Supplementary Figures and Tables

Fig. S1 Comparison between the experimental (black crosses) and calculated XRD (red line) patterns of V₂SnC. The deviation plot (gray line) is shown in the lower part of Fig. 1a. The brown, pink, and blue ticks below the pattern represent the peak positions of the V₂SnC, Sn, and VC_x phases, respectively.

Site	Element	x	у	z	Symmetry	Wyckoff symbol
M1	V	1/3	2/3	0.0881	3m	4f
Al	Sn	1/3	2/3	0.75	-6m2	2d
C1	С	0	0	0	-3m	2a
-2.4 - i=a*v ^b					a na	

Table S1 Atomic positions in V₂SnC determined from the Rietveld refinement

Fig. S2 *b* values calculated from CVs at oxidation peaks (~0.6 V) and reduction peaks (~1.1 V). *b* value of cathodic process is 0.81 and anodic process is 0.73, suggesting the combination of diffusion-control and non-diffusion-control behavior of the V₂SnC electrode.

Nano-Micro Letters

Fig. S3 a XRD patterns of V₂SnC MAX phase before and after ball milling. SEM image of V₂SnC **b** before and **c** after ball milling. **d** Elemental mapping clearly proved the uniform distribution of V, Sn, and C element. **e** Particle size distribution of V₂SnC after ball milling.

Fig. S4 Electrochemical characterization of V₂SnC materials without ball milling: **a** Cyclic voltametric profiles at the 1st, and 2nd cycle at 0.1 mV s^{-1} within potential from 0.01 to 3V vs. Li/Li⁺. **b** Galvano charge-discharge profiles recorded at current densities range from 0.05 to 5 A g⁻¹. **c** Capacities and coulombic efficiency at various current densities of the electrode

Fig. S5 a *ex-situ* XRD patterns and **b** magnified XRD patterns at (002), (004) and (103) diffraction peaks of V_2 SnC electrode at different potentials

Fig. S6 SEM results of V_2 SnC electrode after long cycle electrochemical tests. **a-c** SEM image of V_2 SnC at different magnifications. **d-e** Elemental mapping clearly proved the uniform distribution of V, Sn, and C element.

Fig. S7 TEM results of V₂SnC electrode after long cycle electrochemical tests. **a** Elemental mapping of V-K α , Sn-K α and C-K α elements of V₂SnC. **b** TEM-EDS of the V₂SnC. **c**-**d** HR-TEM image and **e** Selected area electron diffraction pattern of V₂SnC

Fig. S8 TEM results of V₂SnC electrode after long cycle electrochemical tests. a TEM image and b corresponding element mapping distribution. c HR-TEM image and d magnified TEM image of V₂SnC