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HIGHLIGHTS 

The characteristics of Prussian blue analogues PBAs in different aqueoussystems are analyzed.

The relationship between structure and performance of PBAs is summarized.

The measures to improve electrochemical property of PBAs are proposed.

ABSTRACT In the applications of large-scale energy storage, aqueous batteries 
are considered as rivals for organic batteries due to their environmentally friendly 
and low-cost nature. However, carrier ions always exhibit huge hydrated radius in 
aqueous electrolyte, which brings difficulty to find suitable host materials that can 
achieve highly reversible insertion and extraction of cations. Owing to open three-
dimensional rigid framework and facile synthesis, Prussian blue analogues (PBAs) 
receive the most extensive attention among various host candidates in aqueous 
system. Herein, a comprehensive review on recent progresses of PBAs in aqueous 
batteries is presented. Based on the application in different aqueous systems, the 
relationship between electrochemical behaviors (redox potential, capacity, cycling 
stability and rate performance) and structural characteristics (preparation method, 
structure type, particle size, morphology, crystallinity, defect, metal atom in high-
spin state and chemical composition) is analyzed and summarized thoroughly. It 
can be concluded that the required type of PBAs is different for various carrier ions. 
In particular, the desalination batteries worked with the same mechanism as aqueous batteries are also discussed in detail to introduce 
the application of PBAs in aqueous systems comprehensively. This report can help the readers to understand the relationship between 
physical/chemical characteristics and electrochemical properties for PBAs and find a way to fabricate high-performance PBAs in aqueous 
batteries and desalination batteries.
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1 Introduction

As is known to all, energy is the source of economic devel-
opment and the material basis for human survival. Therefore, 
energy has always been a common concern of the world. 
Traditional energy sources have brought many changes to the 
development of human society and the world. However, the 
excessive use of traditional energy produces carbon dioxide 
and other pollutants, causing serious ecological problems. 
To solve these environmental problems, scientists are begin-
ning to explore renewable energy sources to reduce environ-
mental pollution and meet the needs of social development 
[1–5]. However, these clean energy sources generally have 
the disadvantages of location dependence [6–10], high cost 
and low efficiency, which restrict their large-scale applica-
tions [11–16]. In this case, a lot of attentions have been paid 
to the developments of rechargeable batteries [17–22], fuel 
cells [23–29] and supercapacitors [30–35], among which the 
rechargeable batteries have received the most attention. For 
rechargeable batteries, most of them are powered by organic 
electrolytes due to high voltage, high energy density and 
wide electrochemical window of organic electrolyte systems 
[36–41]. However, the volatilization, toxicity and flammabil-
ity of organic electrolytes have brought many environmental 
and safety problems to their widespread applications [42, 
43], especially in large-scale electrical storage applications. 
To get better batteries, much effort has been paid to aqueous 
electrolytes due to their advantages of high safety, environ-
mental friendliness and low cost [44–46].

Aside from electrolytes, the selection of electrode mate-
rial also occupies an important position in the application of 
energy storage devices. In various types of electrode materi-
als, tunnel- and layered-type transition metal oxides [47–53], 
polyanionic compounds [54–59], PBAs [60–70] have been 
widely studied. In recent researches, the most commonly 
used cathode materials are metal oxides because of their 
high theoretical capacity. However, this material has two 
disadvantages. One is that the synthesis method is complex, 
and the other is that many metal oxides are unable to resist 
the erosion of corrosive electrolytes, which are usually char-
acterized by low rate capacity and poor structural stability. 
Polyanionic compounds as typical electrode materials pos-
sess high safety, low cost and environmental friendliness. 
However, their poor electrochemical properties restrict the 
practical application. PBAs are blessed with the advantages 

of acceptable theoretical capacity, high stability and low 
cost. In particular, many PBAs can be synthesized by simple 
methods, and nano-structured materials are usually obtained 
by the co-precipitation method. Therefore, these materials 
have great application prospects in rechargeable batteries. In 
the early eighteenth century, the PB was first synthesized in 
Berlin, but is initially used as a pigment. With the develop-
ment of energy storage technology, the requirement of the 
low cost of the electrode materials promotes the applica-
tion of PB in the battery industry. In 1978, Neff et al. first 
explored the reversible inserted/extracted electrochemical 
property of  K+ in  K2FeIIFeII(CN)6 and opened the door of 
PBAs as electrode material [71]. Then, in 1999, the various 
types of PBAs used as electrode in organic  Li+ battery are 
reported [72, 73]. However, the extensive research of PBAs 
as electrode material in aqueous batteries began to rise after 
the twenty-first century. In 2012, Cui et al. proved that  Li+, 
 Na+,  K+ and  NH4

+ exhibit reversible inserted/extracted abil-
ity in  K0.9Cu1.3Fe(CN)6 and  K0.6Ni1.2Fe(CN)6, respectively, 
which inspires the research interest for PBAs in aqueous 
battery [74]. Aside from these monovalent ions, they later 
demonstrated that the multivalent ions  (Zn2+,  Mg2+,  Al3+, 
etc.) can also be reversibly inserted/extracted in PBAs [75, 
76]. Especially for aqueous multivalent-ion batteries, Zhi 
et al. recently found that CoFe(CN)6 shows the high capacity 
and long cycle performance in aqueous  Zn2+ batteries, which 
further promoted the research of PBA in aqueous multivalent 
ions batteries [77]. Meanwhile, the application of PBAs in 
desalination battery as a kind of aqueous battery also has 
attracted more and more attention in recent years; particu-
larly, it has great development potential in realizing the non-
membrane of desalination battery [78]. To understand the 
development process of PBAs in aqueous batteries more 
intuitively, we also summarized other milestone applica-
tions of PBAs in aqueous batteries in the timeline in Fig. 1.

Obviously, PBAs have been widely studied as battery 
electrode material for some years [71–81], so there are 
some relevant reviews on the application of PBAs in the 
battery field. For example, Li and co-workers introduced 
the application of PBAs in sodium-ion and potassium-ion 
batteries in detail, and some strategies for performance 
optimization are proposed [82]. Srinivasan discussed 
the application of various electrode materials, including 
PBAs, in aqueous  Zn2+ and  Al3+ batteries [83]. Ji and 
co-workers introduced the PBAs as electrodes for aque-
ous monovalent-ion batteries [84]. Zhi and co-workers 
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analyzed the PBAs as host materials for various carriers in 
both organic and aqueous electrolyte [85]. However, none 
of these reviews systematically discusses the application 
of PBAs in aqueous batteries. In this review, we compre-
hensively introduce the application of PBAs in aqueous 
monovalent-ion batteries and multivalent-ion batteries. 
Impressively, the electrochemical properties of various 
PBAs and their structural characteristics are discussed. 
Meanwhile, various aqueous desalination batteries with 
unique characteristics are also introduced because they 
are working with the same mechanism as aqueous batter-
ies. Therefore, this paper has a high reference value for 
future research on the PBAs used as electrode materials 
in aqueous batteries and desalination batteries.

2  PBAs in Aqueous Batteries

With a metal–organic open framework, PBAs possess a 
general composition of  AxM[R(CN)6]·wH2O in which A 
is the alkali metals and M and R represent the transition 
metal. It is worth noting that most of the R-site in PBAs 
for the aqueous battery is replaced by Fe atom. Here, the 
classic PBAs structure is illustrated in Fig. 2. In this face-
centered cubic structure, the nitrogen and carbon atoms 
from the CN ligands combine with the M and R atom, 
respectively, creating open ionic channels and spacious 
interstitial spaces [86]. As electrode material used in 
aqueous batteries, PBAs release and store energy through 
the insertion and extraction of host ions in PBAs. Here, 

PB was first synthesized

Neff et al. firstly explored the K2FeIIFeII(CN)6
for aqueous K+ storage [71].

Imanishi et al. used various PBAs
for organic Li+ storage [72, 73].

Zhao et al. used K2NiFe(CN)6·1.2H2O for
aqueous K+ storage [80].

Cui et al. explored PBAs for aqueous
Zn2+, Mg2+, AB3+, etc. storage [75, 76].

Zhi et al. used CoFe(CN)6 for
aqueous Zn2+ storage [77].

Cui et al. explored K0.9Cu1.3Fe(CN)6
and K0.6N1.2Fe(CN)6 for augoues Li+,
Na+, K+, NH+

4 storage [74].

Ji et al. first used (NH4)1.47Ni[Fe(CN)6]0.88
for auqeous NH+

4 storage| 79].

Ji et al. firstly used Cu[Fe(CN)6]0.63·□0.37·3.4H2O
for aqueous H+ storage [81].

Choi et al. used Cu3[Fe(CN)6]2 achieving
non-membrane desalination battery [78].

18C 1978 1999 2012 2013/2015 2017 2018 2019 2019 2019

Fig. 1  A summary of the key milestone in the development of PBAs used as electrode material in aqueous batteries

Fig. 2  a Schematic crystal structure of PBAs frameworks: An intact  AxM[R(CN)6] framework without structural defects. b A defective 
 AxM[R(CN)6] framework with vacancies and interstitial water existing in each unit cell
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 AxM[R(CN)6]·wH2O is taken for example as a cathode. 
During the discharging process, host ions in the electro-
lyte are inserted into PBAs, which causes the R or M and 
R atoms to simultaneously undergo a reduction reaction 
to release energy. In the charging process, host ions are 
extracted from PBAs with R or M and R atoms simultane-
ous undergoing oxidation reaction to store energy. The 
charging and discharging process can be reflected by the 
following chemical reaction equation:

Furthermore, Fig.  3a also shows the insertion and 
extraction process of host ions in PBAs. For the aqueous 
battery, host ions will undergo a hydration process before 
entering into PBAs and then dehydrate after entering 
into PBAs. As shown in Fig. 3b, the hydration ion radius 
will be larger than the original ion radius after hydration, 

(1)
A

x
M
[

R(CN)6
]

⋅ wH2O ↔ xA+ + M[R(CN)6]
−x

⋅ wH2O.

which puts forward higher requirements for the structural 
stability of PBAs.

For PBAs, it possesses the 3D cubic structure and tun-
able chemical compositions that give PBAs some advan-
tages when inserting ions with large hydrated ionic radius. 
Firstly, there are many available “A” sites with large inter-
stitial (~ 4.6 Å diameter) in the body center of PBAs lattice. 
Meanwhile, the PBAs possess a special ions channel with 
approximately 3.2 Å diameter in the (100) direction [87, 88]. 
The large insertion site and ion channel ensure the fast reac-
tion kinetics of most host ions with small hydrated radius 
when they are inserted/extracted in/from PBAs, which usu-
ally brings well cycling stability to PBAs [89, 90]. Secondly, 
PBAs exhibit multivalent redox-active centers such as the 
 M3+/M2+ and  Fe3+/Fe2+ couples, which means that PBAs 
can provide more capacity. The theoretical capacities of dif-
ferent PBAs in characteristic aqueous systems are summa-
rized in Fig. 4. For FeFe-PB, CoFe-PBAs and MnFe-PBAs, 
their theoretical capacities are all over 150 mAh  g−1. But the 
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Fig. 3  a Schematic of host ion insertion and extraction in PBAs. b Histogram of ionic radius and hydration radius of various host ions
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theoretical capacity utilization of NiFe-PBAs, CuFe-PBAs 
and ZnFe-PBAs is only 50% because Ni, Cu and Zn in PBAs 
are electrochemically inert. In addition to these structural 
advantages, PBAs also have some structural defects that 
need to be addressed. During the preparation process of 
PBAs through co-precipitation, it will inevitably bring some 
interstitial water and vacancies in PBAs crystals, and Fig. 2 
exhibits the crystal structure diagram of PBAs with vacan-
cies and interstitial water. For interstitial water, it will cause 
the following two disadvantages to PBAs. First of all, the 
presence of interstitial water will occupy the insertion site of 
host ions, resulting in a capacity decrease of PBAs [91, 92]. 

Secondly, interstitial water in PBAs may enter into the elec-
trolyte in the process of ion insertion and extraction, result-
ing in the decrease of electrolyte concentration that will 
aggravate the dissolution of PBAs structure. For Fe(CN)6 
vacancies, its random distribution can cause the distortion 
of PBAs lattice, thus reducing the structural stability. Espe-
cially for reduced-form PBAs, due to the oxidation reaction 
of transition metal elements, the structural instability is more 
serious. Furthermore, as shown in Fig. 5a, in the process 
of host ions insertion/extraction in PBAs, its structure will 
change from cubic structure to monoclinic structure, which 
reduces the stability of PBAs. Generally, it is concluded that 

Fig. 4  Theoretical capacity of different PBAs in various aqueous batteries (the shaded part represents the un-activated capacity of the single-
atom redox PBAs)

(b)

(a)
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Fig. 5  Structure transformation of PBAs a between monoclinic and cubic structures and b among monoclinic, cubic and rhombohedral struc-
tures



 Nano-Micro Lett.          (2021) 13:166   166  Page 6 of 36

https://doi.org/10.1007/s40820-021-00700-9© The authors

the host ions-deficient PBAs present the cubic phase, while 
host ions-rich PBAs usually present the monoclinic phase. 
Impressively, the asymmetrical occupation of electrons from 
transition metal atom in the degenerate orbitals will pro-
duce John–Teller effect in PBAs structure. This phenomenon 
will cause different shielding effects of electrons in different 
directions on central ions, thus distorting the geometric con-
figuration of PBAs molecules, reducing the symmetry and 
degeneracy of the orbitals and finally reducing the energy of 
the system. Figure 5b exhibits the phase transitions between 
monoclinic, cubic and rhombohedral structures caused by 
John–Teller distortion. Despite the presence of these vacan-
cies and interstitial water in PBAs, a large number of studies 
have shown that their content can be well controlled by a 
controlled crystallization method. Besides, the John–Teller 
distortion can also be inhibited by partial substitution of 
the transition metal attached to N by other metal ion. Thus, 
PBAs are suitable electrode materials for aqueous batteries. 
Herein, for the sake of better introducing the application of 
PBAs in aqueous batteries, we review the recent advances of 
PBAs in aqueous monovalent-ion batteries and multivalent-
ion batteries, respectively. 

2.1  PBAs for Aqueous Monovalent‑Ion Batteries

The application of PBAs in aqueous monovalent-ion batter-
ies can be divided into different fields: aqueous  Na+,  Li+, 
 K+,  H+ and  NH4

+ batteries. For aqueous  Na+ and  K+ batter-
ies, PBAs usually show excellent cyclic stability due to the 
better structural compatibility and moderate hydrated radius 
for  Na+ and  K+. Usually, these PBAs in aqueous  Na+ and  K+ 
batteries can maintain more than 80% of the initial capacity 
within 300 cycles. Although PBAs have poor cyclic stability 
in aqueous  Li+ batteries due to the large hydration ion radius 
of  Li+ (higher than  Na+,  K+,  H+, and  NH4

+), mixed-ion 
batteries composed of  Li+ and other metal ions have great 
application prospects in the improvement in energy density. 
Besides, the excellent rate performance and cycling stability 
of PBAs in aqueous  H+ batteries and aqueous  NH4

+ batteries 
have also attracted more and more attention in recent years 
due to the special transport mechanism of  H+ in aqueous 
electrolyte and the good structural compatibility of  NH4

+ 
and PBAs. This section will comprehensively introduce 
the application of PBAs in these aqueous monovalent-ion 
batteries.

2.1.1  PBAs for Aqueous Na+ Batteries

For the PBAs in aqueous  Na+ batteries (ASIB), they can be 
divided into single-metal-atom redox PBAs (NiFe-PBAs, 
CuFe-PBAs and ZnFe-PBAs) and double-metal-atom redox 
PBAs (FeFe-PB, CoFe-PBAs and MnFe-PBAs). The single-
metal-atom redox PBAs mean that only Fe atom can undergo 
the redox reaction and provide capacity during the inser-
tion and extraction of  Na+. Therefore, as shown in Fig. 4, 
the theoretical capacity utilization of the single-metal-atom 
redox PBAs is only 50%. The double-metal-atom redox 
PBAs means that both Fe atom and M atom can undergo 
redox reaction and provide capacity during the insertion and 
extraction of  Na+. Herein, for better comparison, PBAs in 
ASIB are cataloged into two groups: PBAs with single-atom 
redox and PBAs with double-atom redox.

2.1.1.1 PBAs with  Single‑Atom Redox From the above 
introduction, when the Ni, Cu, and Zn are located at M-site in 
 AxM[Fe(CN)6]y·nH2O, these types of PBAs belong to the sin-
gle-metal-atom redox PBAs. The typical single-metal-atom 
redox nickel hexacyanoferrate  (K0.6Ni1.2Fe(CN)6·3.6H2O, 
NiFe-PBA) was firstly synthesized by Cui and co-workers 
through spontaneous precipitation in aqueous solution as 
electrode materials for ASIB [43]. As only  Fe3+/Fe2+ redox 
couple possess electrochemical activity, its discharge capac-
ity only has 60 mAh  g−1 at the current rate of approximately 
0.8 C. However,  K0.6Ni1.2Fe(CN)6·3.6H2O exhibits excel-
lent electrochemical stability with almost no capacity fad-
ing at 8.3 C after 5000 cycles due to the small structural 
changes and structural stress–strain in the  Na+ insertion/
extraction process. But it is in a Na-deficient state, mak-
ing it impossible to construct a practical ASIB with con-
ventional Na-free anodes [93]. Generally speaking, a Na 
insertion cathode should be designed in a Na-rich state (a 
discharged state), so as to act as a  Na+ reservoir to provide 
removable  Na+ for the  Na+-deficient anode, thus enabling 
a rocking-chair Na-ion battery. To address this problem, a 
Na-rich  Na1.94Ni1.03Fe(CN)6·4.8H2O was synthesized by 
Yang and co-workers and construct a practical ASIB with 
 NaTi2(PO4)3 [94].

Later, Zhu and co-workers also synthesized Na-rich 
 Na1.45Ni[Fe(CN)6]0.87·3.02H2O and construct a practical 
ASIB with  NaTi2(PO4)3 (Fig. 6a). Besides, they find mono-
clinic  Na1.45Ni[Fe(CN)6]0.87·3.02H2O has advantages in 
reversible capacity and cycle stability compared with cubic 
 Na1.21Ni[Fe(CN)6]0.86·3.21H2O [95]. The reasons can be 
concluded into three points. Firstly, the monoclinic crystal 
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structure possesses more sodium that makes it contain fewer 
crystal defects in the lattice. Secondly, during the synthesis 
of monoclinic  Na1.45Ni[Fe(CN)6]0.87·3.02H2O, the addi-
tion of chelating agents and surfactants reduces the crys-
tallization rate and makes the crystal shape of monoclinic 
 Na1.45Ni[Fe(CN)6]0.87·3.02H2O more uniform, thus increas-
ing the contact area between the electrode and the electrolyte 
and shortening the migration path of ions. Thirdly, a slower 
reaction rate leads to the formation of higher crystallinity 
product with less interstitial water and vacancy, thus accel-
erating  Na+ insertion/extraction rate. Moreover, an ex situ 
X-ray photoelectron spectroscope (XPS) at different charge/
discharge states in Fig. 6b explored the valance state change 

of Fe and Ni atoms during  Na+ extraction/insertion. The 
result shows that the valance change only occurs in Fe atom, 
which fully explained the Ni atom in NiFe-PBAs with no 
electrochemical activity. Although NiFe-PBAs show accept-
able performance in terms of electrochemical stability, its 
low redox potential is not suitable for aqueous energy stor-
age applications.

For the redox potential (E) of host ions in PBAs, there is 
a qualitative relationship [96]:

The value of Eredox is related to the potential of the redox 
couple itself. Eion-host is related to the interaction between host 

(2)E = Eredox + Eion - host + Eion - ion.

Fig. 6  a Schematic illustration of  Na1.45Ni[Fe(CN)6]0.87·3.02H2O/NaTi2(PO4)3 full cell. b Ex situ XPS of Fe 2p (left) and Ni 2p (right) spec-
tra. Reproduced with permission from Ref. [95]. Copyright 2020, Elsevier. c Schematic illustration of sodium-ion intercalation mechanism in 
 Zn3[Fe(CN)6]2. d SEM images of the pristine  Zn3[Fe(CN)6]2. Reproduced with permission from Ref. [100]. Copyright 2018, Elsevier. e Sche-
matic fabrication process of  K2Zn3[Fe(CN)6]2·9H2O on carbon cloth. f SEM image of  K2Zn3[Fe(CN)6]2·9H2O. Reproduced with permission 
from Ref. [101]. Copyright 2019, Wiley–VCH
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ions and PBAs framework, which usually increases as the 
radius of the ion enlarges. Eion-ion is related to the repulsion 
between host ions in PBAs. Since the redox couple of single-
metal-atom redox PBAs is only [Fe(CN)6]3−/[Fe(CN)6]4−, 
the redox potential will not differ much between them when 
the same ion is inserted in PBAs. However, the increase of 
electrons in the antibonding orbital (eg) of M atom in PBAs 
can cause [Fe(CN)6]3−/[Fe(CN)6]4− redox potential to move 
toward more positive values [97]. Thus, the redox poten-
tial vs. standard hydrogen electrode (SHE, all the potentials 
in this manuscript are reported versus the SHE) of these 
single-metal-atom redox PBAs follows the order: ZnFe-
PBA > CuFe-PBA > NiFe-PBA. Obviously, CuFe-PBA and 
ZnFe-PBA are more suitable as cathode material compared 
with NiFe-PBA in terms of redox potential. The typical Na-
rich  Na2CuFe(CN)6 with the insertion potential of 0.82 V 
was synthesized by Wu and co-workers, and a practical 
ASIB was constructed with  NaTi2(PO4)3 [98]. Impres-
sively, the  Na2CuFe(CN)6-NaTi2(PO4)3 full cell shows high 
operating voltage (1.4 V) due to the high redox potential of 
 Na2CuFe(CN)6. Combining the high stability of NiFe-PBA 
with high redox potential of CuFe-PBA, Zhang and co-work-
ers synthesized Ni-substituted copper hexacyanoferrates 
 (Na2Cu1-xNix[Fe(CN)6]) as cathode for ASIB [99]. For this 
 Na2Cu1-xNix[Fe(CN)6] cathode, it can exhibit a discharge 
capacity of 56 mAh  g−1 with a capacity retention of 96% 
after 1000 cycles. Impressively, its redox potential can be 
adjusted from 0.6 to 1.0 V with the increased content of Cu.

For ZnFe-PBAs, it has great potential in improving energy 
density due to its high redox potential. Recently, Liu and 
co-workers reported a full cell that uses  Zn3[Fe(CN)6]2 as 
cathode,  NaTi2(PO4)3 as anode, and  NaClO4–H2O–polyeth-
ylene glycol as electrolyte [100]. Figure 6c, d shows the 
schematic illustration of  Na+ intercalation mechanism in 
 Zn3[Fe(CN)6]2 and its basic morphology. For this battery, 
its energy density can reach up to 59 Wh  kg−1 due to the 
high output voltage of 1.6 V. Besides, the energy density 
of ZnFe-PBAs can be further improved by improving the 
synthesis method. Yao and co-workers adopt a two-step 
method of electrodeposition and water bath treatment grew 
 K2Zn3[Fe(CN)6]2·9H2O on carbon cloth (CC@ZnFe-PBAs) 
[101]. The schematic fabrication process is exhibited in 
Fig. 6e, and the as-formed  K2Zn3[Fe(CN)6]2·9H2O cubes 
are uniformly deposited on carbon cloth (Fig. 6f). Since 
the CC@ZnFe-PBA electrode avoids the use of inactive 
substances (conductive additive, binder), it exhibits a high 

energy density of 14.3 mW  cm−2 and high output voltage of 
1.6 V when it is combined with  NaTi2(PO4)3 to form a full 
cell. In general, the single-metal-atom redox PBAs inherit 
the advantage of high electrochemical stability that makes it 
possible to be used as ASIB electrode. However, considering 
the specific capacity, double-mental-atom redox PBAs are 
more competitive.

2.1.1.2 PBAs with  Double‑Atom Redox Obviously, sin-
gle-metal-atom redox PBAs have a disadvantage that their 
capacity is not high. The essential cause of this problem is 
that only one redox-active couple  (Fe3+/Fe2+) releases its 
redox capacity. In contrast, double-metal-atom redox PBAs 
have the advantage in capacity because both  Fe3+/Fe2+ and 
 M3+/M2+ can provide capacity. As typical double-metal-
atom redox PBAs, NaFeFe(CN)6 [102] and  Co3[Fe(CN)6]2 
[103] are initially proposed as host materials for  Na+ stor-
age. However, its specific capacity is approaching 70 mAh 
 g−1 which is much less than the theoretical capacity (Fig. 4). 
Through reviewing the recent advances of PBAs in ASIB, 
there are four main reasons for the low capacity of double-
metal-atom redox PBAs. Firstly, the disadvantage of the 
synthesis method results in a lot of Fe(CN) vacancies. Sec-
ondly, more interstitial water in PBAs hinders  Na+ inser-
tion. Thirdly, the low concentration of electrolyte results in a 
narrow voltage window, which affects the charge/discharge 
capacity. Finally, M atoms connecting with N atoms have 
weaker electrochemical activity. To a large extent, the above 
four factors limit the released capacity of double-metal-
atom redox PBAs.

For the control of defects and the amount of inter-
stitial water, Yang and co-workers synthesized 
 Na1.33Fe[Fe(CN)6]0.82 with low defect and water content 
by a multi-step crystallization method [104]. The cubic 
morphology is displayed in Fig. 7a. In comparison with 
hydrated FeFe-PBA,  Na1.33Fe[Fe(CN)6]0.82 exhibits a 
higher specific capacity of 125 mAh  g−1 at 2 C. Even at 20 
C, it still can present a highly efficient Na storage revers-
ibility with a desirable capacity of 102 mAh  g−1 (Fig. 7b). 
Later, Yang adopted a similar crystallization method as 
shown in Fig. 7c to achieve vacancy-free  Na2CoFe(CN)6 
 (Na1.85Co[Fe(CN)6]0.99·2.5H2O) [105], which exhibits per-
fect crystal structure without vacancy in Fig. 7d. Because 
of the vacancy-free structure and two redox centers, the 
capacity of  Na2CoFe(CN)6 can approach up to 130 mAh  g−1, 
which is a high value for aqueous battery in existing reports.

Besides the defects and interstitial water of PBAs, elec-
trolyte concentration is also one of the factors affecting 
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the electrochemical performance of PBAs. Take MnFe-
PBAs for example, Okada and co-workers synthesized 
 Na0.13Mn[Fe(CN)6]0.81 and explored the influence of 
electrolyte concentration on electrochemical performance 
[106]. For  Na0.13Mn[Fe(CN)6]0.81/NaTi2(PO4)3 full bat-
tery in 1 M  NaClO4 and 17 M  NaClO4, they find the 

electrochemical window in 17 M  NaClO4 is 2.8 V which 
is higher than the 1.9 V in 1 M  NaClO4 and the initial 
charge/discharge capacities can raise to 124/116 mAh  g−1 
(Fig. 7e). The reason is that the free water molecules in 
high-concentration electrolyte are less than dilute con-
centration electrolyte. Thus, the evolution of oxygen and 

Fig. 7  a TEM images of as-prepared  Na1.33Fe[Fe(CN)6]0.82 nanocrystals. b Rate performance of  Na1.33Fe[Fe(CN)6]0.82. Reproduced with per-
mission from Ref. [104]. Copyright 2015, Elsevier. c Schematic representation of the formation mechanism of  Na2CoFe(CN)6 in a controlled 
crystallization reaction. d Crystal structure of  Na2CoFe(CN)6. Reproduced with permission from Ref. [105]. Copyright 2015, Wiley–VCH. e 
Cyclability dependence on the current density of  Na2MnFe(CN)6 half cell with 17 M  NaClO4 aqueous electrolyte. The first and second charge/
discharge curves of  Na0.13Mn[Fe(CN)6]0.81/NaTi2(PO4)3 full cell and  NaTi2(PO4)3//Zn half cell f in 1  M  NaClO4 electrolyte and g in 17  M 
 NaClO4 electrolyte. Reproduced with permission from Ref. [106]. Copyright 2017, Electrochemical Society. h Crystal structure of manganese–
cobalt hexacyanoferrate with rhombohedral lattice. Reproduced with permission from Ref. [107]. Copyright 2016, The Royal Society of Chem-
istry
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hydrogen is inhibited largely, and the electrochemical 
window is enlarged. Besides, low-concentration electro-
lyte also has a certain influence on the structural stability 
of double-metal-atom redox PBAs. In dilute electrolytes, 
the oxygen evolution is more severe, which can increase 
the amount of  OH− in the electrolyte. After that,  Mn+ 
dissolved in the electrolyte reacts with  OH− to form pre-
cipitation and this irreversible reaction will aggravate the 
structural collapse of double-metal-atom redox PBAs. 
For  Na0.13Mn[Fe(CN)6]0.81, the structural collapse can 
be described in the following chemical reaction:

In addition, according to the crystal field theory, the 
d orbital is subjected to the electrostatic repulsion of the 
octahedron crystal field and split into  t2g and  e2g orbitals. 
Compared with  t2g orbitals, the variation of electrons in 
the  e2g orbital has more influence on the crystal structure 
due to the orientation of the  e2g orbitals along the axis of 
the bond [97]. Because their crystal field fission energy 
is weaker, these transition metals attached to the N atom 
tend to gain and lose electrons in the  e2g orbital when 
they undergo redox reactions. In contrast, the transition 
metal connected to C atom has strong crystal field fission 
energy, and the gain and loss of electrons occur in the 
 t2g orbital. Therefore, the redox reaction of the transition 
metal connected with N atom has a great influence on the 
crystal structure, causing it to contribute less capacity. 
About the relationship of transition metal atoms connect-
ing with N atoms and electrochemical property of double-
mental-atom redox PBAs, Cui et al. conducted a system-
atic study through  Na1.54Co[Fe(CN)6]0.86∙γ0.14∙2.16H2O 
and  Na1.33Mn[Fe(CN)6]0.79∙γ0.21∙1.88H2O [107]. Figure 7f 
exhibits the crystal structure of the above two PBAs. They 
prove that the transition metal connected with C atom 
plays an important role in the stability of the crystal struc-
ture and provides more capacities. On the contrary, the 
transition metal connected with N atom has worse stabil-
ity in crystal structure due to the weak N-coordinated 
crystal field and thus provides fewer capacities. Obvi-
ously, it provides a new idea for future research on the 
mechanism of capacity decline of double-metal-atom 
redox PBAs.

(3)
Na0.13Mn[Fe(CN)6]0.81 + 2NaOH → 0.81Na3Mn

[

Fe(CN)6
]

+ MnO + H2O.

2.1.2  PBAs for Aqueous Li+ Batteries

In aqueous battery system, the host ions inserted in the 
host material are accompanied by a hydration process 
in which the free water molecules in the electrolyte will 
combine with the host ion to form a hydrated ion. After 
hydration process, the hydrated ionic radius of  Li+ will 
get larger. Thus, the insertion performance of  Li+ in PBAs 
is usually poor because the large hydrated ionic radius 
of  Li+ has a severe impact on the structural stability of 
PBAs. Earlier research in the insertion of  Li+ in PBAs 
also confirmed the theory. In 2012, Cui and co-workers 
first reported two types of PBAs,  K0.9Cu1.3Fe(CN)6 and 
 K0.6Ni1.2Fe(CN)6, and studied their ability to store  Li+ in 
aqueous electrolyte [74]. Both PBAs can host  Li+, but both 
exhibit poor cycling performance. Later, Lee and co-work-
ers reduced the particle size of copper hexacyanoferrate 
to nanoscale for achieving Li storage [88]. But the result 
is still disappointing. Figure 8a, b exhibits the insertion 
sites and mechanism of  Li+ in the copper hexacyanofer-
rate, respectively. It is apparent that the cause of poor  Li+ 
insertion ability in PBAs is that in aqueous electrolyte the 
radius of hydrated  Li+ is too large. Thus, it is difficult for 
PBAs to receive hydrated  Li+ intercalation in the structure 
and maintain structural stability during the process of  Li+ 
insertion and extraction.

Although the  Li+ storage performance of PBAs in aque-
ous electrolyte is poor, the co-insertion of  Li+ with  K+ or 
 Na+ in PBAs has received special attention. In 2014, Liu 
and co-workers used  K0.08Ni0.75Zn0.70Fe(CN)6 as cathode 
and  TiP2O7 as anode explored the co-insertion perfor-
mance of  Li+/K+ [108]. Figure 8c exhibits the schematic 
of the battery. Different from PBAs as  Li+ host material, 
 K0.08Ni0.75Zn0.70Fe(CN)6 exhibits good cyclic performance 
for  Li+/K+ storage that can keep 63% of the original capac-
ity after 50 cycles (Fig. 8d). It is worth noting that this 
system delivers an average operating voltage of 1.25 V, 
which is much higher than most PBAs in aqueous electro-
lyte. However, they did not give systematic explanation for 
the increase of operating voltage in this work. Later, they 
reported zero-strain  K0.04Cu1.47Fe(CN)6 to co-insert  Li+/K+ 
and explored this reason, which also exhibits a high operat-
ing potential up to 1.39 V [109]. Figure 8e exhibits the SEM 
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image (top) and TEM image (below) of  K0.04Cu1.47Fe(CN)6. 
They found that the binding energy of  K+ inserted in its 
corresponding redox sites is smaller than  Li+. Thus, 
 K0.04Cu1.47Fe(CN)6 prefers to insert  K+. When  Li+ and  K+ 
co-insert in PBAs, the presence of  K+ will affect the inser-
tion kinetics of  Li+ that can shift the operation potential of 
PBAs to a higher value and this phenomenon can be seen 
in the galvanostatic profiles of the co-insertion of  Li+/K+ 
(Fig. 8f). Obviously, the increase of cathode potential can 

result in the increase of battery operation voltage. For fur-
ther improving the cycling performance of the mixed-ion 
battery, they later explored the co-insertion of  Li+ and  Na+ 
in  Fe4[Fe(CN)6]3 [110]. Impressively, it exhibits a wonder-
ful rate performance with no significant capacity decrease 
from 5 to 2 C and then retains this capacity up to 400 cycles 
(Fig. 8g). In summary, the co-insertion of  Li+ with  Na+ or 
 K+ in PBAs has a broad prospect. However, there are few 
studies on the co-insertion of  Li+ with other ions at present, 

Fig. 8  a Crystal structure of copper hexacyanoferrate. b Schematic of  Li+ intercalation in copper hexacyanoferrate. Reproduced with per-
mission from Ref. [88]. Copyright 2019, Electrochemical Society. c A schematic of  K0.08Ni0.75Zn0.70Fe(CN)6/TiP2O7 battery. d Cycle life of 
 K0.08Ni0.75Zn0.70Fe(CN)6/TiP2O7 battery at 1 C. Reproduced with permission from Ref. [108]. Copyright 2014, Wiley–VCH. e SEM and TEM 
images of  K0.04Cu1.47Fe(CN)6. f Galvanostatic profiles of  K0.04Cu1.47Fe(CN)6/TiP2O7 with co-insertion of  Li+ and  K+. Reproduced with permis-
sion from Ref. [109]. Copyright 2017, The Royal Society of Chemistry. g Rate capability and cycling stability of  Fe4[Fe(CN)6]3/TiP2O7 full cell. 
Reproduced with permission from Ref. [110]. Copyright 2013, American Chemical Society
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so the future study of  Li+ insertion behavior in PBAs can be 
put in this aspect.

2.1.3  PBAs for Aqueous K+ Batteries

Due to the small hydration ion radius of  K+ (Fig. 3b), its 
transport speed in the ion channel will be relatively fast. 
Besides, the 8c site, as the insertion site of  K+ in PBAs, has 
the largest volume among all sites, which will also accelerate 
the transport of  K+ in PBAs [96]. Thus, PBAs usually have 
an excellent rate performance in aqueous  K+ batteries. As 
the crystal structure displayed in Fig. 9a, Cui and co-workers 
synthesized  K0.6Ni1.2Fe(CN)6·3.6H2O by co-precipitation 
method to insert  K+ [43]. Due to the low-strain characteris-
tic of this  K0.6Ni1.2Fe(CN)6·3.6H2O and the characteristic of 
 K+ inserted in PBAs, it can retain 66% of the initial capacity 
even at 41.7 C and its Coulombic efficiency can reach 99% 
at low rates. Soon after, Zhao and co-workers synthesized 
nanosized potassium-rich mesoporous  K2NiFe(CN)6·1.2H2O 
(Fig. 9b) through a diffuse ion-induced co-precipitation 
approach and constructed full cell with  NaTi2(PO4)3 [80]. 
It exhibits ultrafast potassium-ion storage within 4.1 s at 
500 C and 98.6% of capacity retention at 30 C after 5000 
cycles (Fig. 9c). Later, Cui and co-workers proved that 
 K0.9Cu1.3Fe(CN)6 (Fig. 9d) also possesses outstanding rate 
and cycle performance when it hosts  K+ in aqueous elec-
trolyte [74]. Although these PBAs both exhibit well rate 
performance in aqueous  K+ batteries, they have a common 
shortcoming that the reversible capacity only has approxi-
mately 60 mAh  g−1. To achieve high K-uptake capacity, 
Wang and co-workers synthesized high-potassium content 
 K2FeII[FeII(CN)]6·2H2O nanocubes (Fig. 9e, f) as cathode 
to store  K+ [7]. Due to the presence of two redox centers, 
it can exhibit a high discharge capacity of 120 mAh  g−1 
and approximately 85% capacity retention over 500 cycles 
at 21.4 C. Even at higher rates, it still has good electrochemi-
cal performance (Fig. 9g).

Obviously, the FeFe-PBAs used as the cathode for aque-
ous  K+ batteries possess huge application potential and 
thus received more attention in further optimizing its elec-
trochemical performance. The most mainstream methods 
are controlling the size of particle and achieving higher 
crystallinity. The influence of size of particle on perfor-
mance can be summarized as follows: Firstly, small crystals 
provide shorter diffusion paths and thus diffusion rates of 

alkali ions are improved. Secondly, the strain produced by 
volume changes during ion charge and discharge processes 
is minimized, which in turn improves rate capability and 
stability. Thirdly, the increase of the surface area of PBAs 
can effectively improve electron transport and structural 
resilience [111]. Solanki and co-workers synthesized dif-
ferent-sized PBAs  (KFeIIIFeII(CN)6 with size of 50–75 nm, 
 FeIIIFeIII(CN)6 with size of 2–10 microns) as shown in 
Fig. 9h and explored the effect of particle size on the prop-
erties of PBAs for inserting  K+ [112]. The results show that 
PBAs with small particle size do have greater advantage in 
electrochemical performance. For obtaining small particle 
size, in addition to the widely used controlled crystallization 
method, Coronado and co-workers propose a new method 
that uses  MoS2 as reducing agent and platform to synthesize 
PBAs shells with small and uniform particle size (Fig. 9i) 
and got excellent electrochemical performance [113]. There-
fore, in the future preparation of PBAs, supporting materials 
such as  MoS2 can be used to provide two-dimensional active 
carriers to achieve uniform nucleation of nanoparticles. In 
general, the PBAs with open framework possess huge pro-
gress potential in aqueous  K+ batteries and are waiting to 
be further explored.

2.1.4  PBAs for Aqueous H+ Batteries

At present, most of charge carriers of the battery under study 
are metal ions, and there are few researches on such carriers 
as  H+. As shown in Fig. 3b,  H+ has a radius nearly one-fifth 
that of  Li+, and their hydration radius is also much smaller 
than that of commonly used metal charge carriers. Therefore, 
the insertion of  H+ in the electrode material will result in a 
small lattice strain due to its smaller ionic radius [114]. In 
addition to smaller lattice strains,  H+ have another advantage 
as carriers. In aqueous electrolyte, there are a large number 
of hydrogen bonds between water molecules, which form 
a network of hydrogen bonds. As  H+ migrates, the  H+ dis-
places hydrogen ions from one of the water molecules in the 
hydrogen bond network, and the displaced hydrogen ions 
then displace hydrogen ions from the next water molecule 
through the hydrogen bond, thus transferring the  H+ to the 
electrode surface by continuous displacement. This mode of 
 H+ transport is called Grotthuss proton conduction, and it 
is this mode of transport that gives the  H+ faster migration 
dynamics.
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Fig. 9  a Face-centered cubic structure of NiFe-PBA  (K0.6Ni1.2Fe(CN)6·3.6H2O). Reproduced with permission from Ref. [43]. Copyright 
2011, American Chemical Society. b General view of the face-centered cubic crystal structure of  K2NiFe(CN)6·1.2H2O. c Long-term cycling 
performance at 30 C of  K2NiFe(CN)6·1.2H2O. Reproduced with permission from Ref. [80]. Copyright 2018, Wiley–VCH. d Face-centered 
cubic structure of  K0.9Cu1.3Fe(CN)6. Reproduced with permission from Ref. [74]. Copyright 2012, Electrochemical Society. e TEM image of 
 K2FeII[FeII(CN)]6·2H2O nanocubes. f Refined crystal structure of FeFe-PBA. g Long cycle performance of  K2FeII[FeII(CN)]6·2H2O nanocubes 
at different current density. Reproduced with permission from Ref. [7]. Copyright 2017, Wiley–VCH. h Crystal lattice unit cell of Prussian blue 
(left,  KFeIIIFeII(CN)6) and crystal lattice unit cell of Prussian green (right,  FeIIIFeIII(CN)6) (The black, blue, purple and brown balls represent C, 
N, K and Fe atoms, respectively). Reproduced with permission from Ref. [112]. Copyright 2015, Elsevier. i TEM image showing a  MoS2 flake 
uniformly decorated by Prussian blue nanoparticles to form  K0.47Fe4

III[FeII(CN)6]3.14@(MoSO1.7)0.44·18H2O. Reproduced with permission from 
Ref. [113]. Copyright 2018, Wiley–VCH
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For PBAs, it will produce a lot of crystal water in the crys-
tal lattice when using the co-precipitation method. In addi-
tion, due to some defects in PBAs, these defects will expose 
M atoms in PBAs outside the unit cell and combine with 
water molecules. Then, these water molecules bonded with 
M atoms can communicate crystal water in each lattice and 
form a hydrogen bond network in PBAs. Therefore,  H+ can 
also be transported by Grotthuss proton conduction in PBAs 
to achieve faster  H+ transport. Combined with the small ion 
radius of  H+ and the fast dynamics of Grotthuss proton con-
duction, PBAs as electrode for aqueous  H+ batteries will pro-
duce excellent cyclic stability and rate performance. For the 
application of PBAs in aqueous  H+ batteries, Ji et al. first use 
the Cu[Fe(CN)6]0.63∙□0.37∙3.4H2O as cathode and explore 
its electrochemical performance in 2.0 M  H2SO4 electro-
lyte [81]. Impressively, the Cu[Fe(CN)6]0.63∙□0.37∙3.4H2O 
exhibits a capacity of 48 mAh  g−1 at 5000 C that is the half 
capacity in 1 C. In addition, it shows an unprecedented long 
cycle performance that can retain 60% of its initial capac-
ity at 500 C after 730,000 cycles. Later, they find that the 
Ni[Fe(CN)6]0.60∙□0.40∙4.5H2O also exhibits excellent cycle 
and rate performance when it used as electrode for aqueous 
 H+ batteries [115]. Furthermore, they find that Grotthuss 
proton conduction can still occur even at low temperature 
due to the unique chemical environment of crystal water 
in PBAs. At -40 °C, the Ni[Fe(CN)6]0.60∙□0.40∙4.5H2O still 
possesses well rate performance that can deliver ∼50% of 
theoretical capacity at 50 C. Therefore, the application of 
PBAs in aqueous  H+ batteries at low temperature also has a 
broad development prospect.

2.1.5  PBAs for Aqueous NH4
+ Batteries

Apart from  H+,  NH4
+ as a non-metallic charge carrier also 

has received more and more attention in recent years. In 
2011, Cui and co-workers explored the insertion perfor-
mance of  NH4

+,  Na+ and  K+ in  K0.9Cu1.3Fe(CN)6 and 
 K0.6Ni1.2Fe(CN)6 [74]. Due to the large ionic radius of 
 NH4

+, it exhibits a higher insertion potential. Furthermore, 
both of the two PBAs exhibit excellent cycle stability during 
the insertion of  NH4

+, which opens the door of the PBAs in 
aqueous  NH4

+ batteries. The first rocking-chair  NH4
+ battery 

was proposed by Ji and co-workers [79]. For this battery, it 
uses  (NH4)1.47Ni[Fe(CN)6]0.88 as cathode and 3,4,9,10-per-
ylenetetracarboxylic diimide (PTCDI) as anode. Due to 

the good structure stability of (NH4)1.47Ni[Fe(CN)6]0.88, 
it exhibits an initial capacity of 51.3 mAh  g−1 and retains 
74% at 5 C after 2000 cycles. However, due to the lim-
ited stability of the anode, the cycling stability of this full 
cell is worse that can retain 67% at 3 C after 1000 cycles. 
Later, Huang et.al. proposed a novel aqueous  Zn2+/NH4

+ 
hybrid battery that uses the  K0.72Cu[Fe(CN)6]0.78·3.7H2O 
as cathode, zinc as anode in 1 M  (NH4)2SO4/0.1 M  ZnSO4 
electrolyte [116]. It is noteworthy that the insertion/extrac-
tion of  NH4

+ and deposition/plating of  Zn2+ occurs in 
cathode and anode, respectively, during the battery work-
ing. The  K0.72Cu[Fe(CN)6]0.78·3.7H2O shows an excellent 
cyclic stability that can retain 78% at the current density of 
1800 mA  g−1 after 1000 cycles. Impressively, due to the sta-
bility of the zinc anode in the electrolyte, the full cell shows 
a better cycle stability that can retain 76.5% at the current 
density of 1800 mA  g−1 after 1000 cycles. Thus, the zinc 
anode is worthy of consideration in future studies of PBAs 
in aqueous  NH4

+ batteries. Aside from the CuFe-PBAs and 
NiFe-PBAs, the FeFe-PB (Fe[Fe(CN)6]0.88·□0.12·2.8H2O) in 
aqueous  NH4

+ battery also has well electrochemical perfor-
mance [117]. Impressively, the Fe[Fe(CN)6]0.88·□0.12·2.8H2O 
exhibits a nearly zero strain characteristic when it hosts 
 NH4

+. Thus, its cyclic retention rate can reach up to 78% 
after 50,000 cycles. By increasing the agitation rate during 
the preparation of PBAs, Huang and co-workers synthe-
sized  NaFeIIIFeII(CN)6 with ball-cutting morphology [118]. 
Compared with the cubic morphology  NaFeIIIFeII(CN)6, the 
ball-cutting morphology  NaFeIIIFeII(CN)6 improves the uni-
formity and reduces the particle size of  NaFeIIIFeII(CN)6. So, 
it possesses an excellent cycle performance with no fading 
after 50,000 cycles. In conclusion, different types of PBAs 
both have good electrochemical performance in hosting 
 NH4

+ and waiting to be further explored.

2.2  PBAs for Aqueous Multivalent‑Ion Batteries

For the storage of multivalent ions, it mainly presents three 
challenges. Firstly, multivalent ion possesses strong hydra-
tion in the process of ion diffusion [119]. After hydration, 
the hydrated ionic radius of multivalent ion is going to be 
particularly large and the specific change value is shown 
in Fig. 3b. Secondly, the insertion of multivalent ion in 
electrode needs more electrons to retain electric neutrality, 
which means more valence changes will occur. Generally 
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speaking, the large sudden change of valence will cause 
large local deformation to the crystal structure of host mate-
rials [120–122]. Thirdly, the multivalent ion will be subject 
to stronger electrostatic repulsion in host materials that will 
result in the instability of crystal structure. Therefore, the 
selection of electrode materials for aqueous multivalent-ion 
batteries becomes particularly important.

For PBAs electrode materials, it has a large ion insertion 
site which can host the multivalent ion with large hydrated 
ionic radius. Besides, the vacancy with large volume in 
PBAs structure also can be used as insertion site for multi-
valent ion in aqueous electrolyte. As shown in Fig. 2, in the 
crystal structure of PBAs, the vacancy site often absorbs 
some coordinated water molecules. Therefore, compared 
with other insertion site, the vacancy site will allow the host 
ions adjacent to more coordinated water molecules within 
the structure, thus forming a hydration shell. This hydration 
shell can provide more electrostatic shielding to host ions 
and thus improve the thermodynamic stability of host ions 
at vacancy sites. It is this mechanism that allows vacancies 
to be used as insertion sites for multivalent ions. Meanwhile, 
the PBAs possess multiple redox sites, which make them 
able to accept more valence changes. Combined with these 
advantages, PBAs will be a highly potential electrode mate-
rial for aqueous multivalent-ion batteries. Next, these sec-
tions will detail the applications of different PBAs in various 
aqueous multivalent-ion batteries.

2.2.1  PBAs for Aqueous Mg2+ Batteries

Magnesium is one of the largest reserves of metals in nature, 
which makes  Mg2+ batteries have a greater cost advantage 
over  Li+ batteries. In addition, aqueous  Mg2+ batteries also 
show great advantages in terms of safety and environmental 
friendliness. Due to its excellent performance in  Na+ and  K+ 
batteries, PBAs have been promoted to be applied in aqueous 
 Mg2+ batteries in recent years. In 2013, Cui et al. systemati-
cally explored the electrochemical behavior of  Mg2+ storage 
in  K0.6Ni1.2Fe(CN)6 cathode and proposed a novel solution 
to decrease capacity decay [75]. For the insertion of  Mg2+ 
in  K0.6Ni1.2Fe(CN)6, they found that the partial dissolution 
of  K0.6Ni1.2Fe(CN)6 in the electrolyte caused significant 
decay process at the beginning of the cycle and then stabi-
lization. By adding a small amount of  Ni2+ to the electro-
lyte, not only the capacity is recovered but also the cycling 

stability is improved. The principle of this method can be 
attributed to two points: Firstly, in the process of discharge, 
 Ni2+ in the electrolyte is inserted into PBAs to improve 
the structural stability of PBAs; secondly, electrolyte with 
a certain concentration of  Ni2+ can inhibit the dissolution 
of high-spin Ni atom. Obviously, this simple method of 
improving PBAs cycling performance by changing electro-
lyte composition deserves more attention. For CuFe-PBAs, 
Yamada et al. reported the reversible insertion of  Mg2+ in 
 K0.1Cu[Fe(CN)6]0.7·3.6H2O [123]. Impressively, through 
ex situ Mössbauer spectroscopy, they reveal that both  Fe3+/
Fe2+ and  CuII/CuI experience solid-state redox when  Mg2+ 
inserts into  K0.1Cu[Fe(CN)6]0.7·3.6H2O. About the PBAs in 
aqueous full  Mg2+ batteries, Xia and co-workers recently 
used  Na1.4Ni1.3Fe(CN)6·5H2O cathode and polyimide anode 
to construct a full battery [124]. Figure 10a, b shows the 
electrochemical redox mechanism (insertion and extraction) 
of polyimide with  Li+,  Na+ and  Mg2+. For this battery, it 
exhibits a high output voltage of 1.5 V and an excellent cycle 
life that can retain about 60% of its initial capacity after 5000 
cycles, which is currently the best cycling performance of 
aqueous  Mg2+ battery. Obviously, it has a strong guiding 
value for the future study for the PBAs used in aqueous full 
 Mg2+ batteries.

2.2.2  PBAs for Aqueous Zn2+ Batteries

About the PBAs in aqueous  Zn2+ batteries, Liu et al. proved 
that  K2Zn3[Fe(CN)6]2 is more suitable to be used in aqueous 
 Zn2+ batteries than aqueous  Na+ and  K+ batteries because 
 K2Zn3[Fe(CN)6]2 has better structural stability in aqueous 
 Zn2+ electrolyte [22]. Besides,  K2Zn3[Fe(CN)6]2-based full 
battery was successfully assembled the Zn anode, achieving 
a high output voltage of 1.7 V and an energy density of 100 
Wh  kg−1. Later, they explored the effect of  Zn3[Fe(CN)6]2 
with different morphologies for  Zn2+ insertion [17]. Fig-
ure  10c shows the coordination environments for Zn 
and Fe atoms in two different crystal systems (cubic and 
rhombohedral), and corresponding SEM images of three 
 Zn3[Fe(CN)6]2 with different morphologies are shown 
in Fig. 10d. And the experiment results show that, com-
pared with truncated octahedral and octahedral particles, 
cube octahedral particles have more advantages in rate and 
cycling performance because the cube octahedral structure 
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Fig. 10  a Electrochemical redox mechanism (insertion and extraction) of polyimide with  Li+ and  Na+. b Electrochemical redox mechanism 
(insertion and extraction) of polyimide with  Mg2+. Reproduced with permission from Ref. [124]. Copyright 2017, American Chemical Society. c 
Coordination environments for Zn and Fe atoms in cubic structure (left) and rhombohedral structure (right) of  Zn3[Fe(CN)6]2. d SEM and TEM 
images of cuboctahedron, truncated octahedral and octahedral  Zn3[Fe(CN)6]2. Reproduced with permission from Ref. [17]. Copyright 2015, 
Nature publishing Group. e Crystal structure of KCuFe(CN)6 nanocube. Reproduced with permission from Ref. [125]. Copyright 2015, Elsevier. 
f SEM images of CuZnHCF (93:7). Reproduced with permission from Ref. [129]. Copyright 2019, Elsevier. g Schematic illustration for the 
fabrication of the cable-type Zn/CoFe(CN)6 battery. h An electronic hygrometer powered by a cable-type battery. i A textile wristband integrated 
with two cable batteries connected in series as power accessory for different color LEDs. Reproduced with permission from Ref. [77]. Copyright 
2019, Wiley–VCH
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surface orientations is more beneficial to  Zn2+ diffusion and 
 Zn3[Fe(CN)6]2 structure stability.

About the CuFe-PBAs in aqueous  Zn2+ battery, Wang 
and co-workers demonstrated for the first time that  Zn2+ 
can reversibly insert/extract into/from KCuFe(CN)6 nano-
cube (Fig. 10e) in 1 M  ZnSO4 electrolyte [125]. However, 
its cycling stability is poor with 77% capacity retention 
after 20 cycles. For comparison, Mantia and co-workers 
reported that KCuFe(CN)6  (K0.71Cu[Fe(CN)6]0.72·3.7H2O) 
can provide 90% of theoretical capacity with a capacity 
retention of 96.3% after 100 cycles at 1 C in a dilute 
electrolyte of 20 mM  ZnSO4 solution [126]. According 
to the conventional view, the aging performance may 
be attributed to the destruction of crystal structure of 
PBAs upon  Zn2+ insertion/extraction. However, Mantia 
and co-workers failed to find Cu and Fe elements in the 
electrolyte through ICP-MS analysis [127]. For this phe-
nomenon, Lim and co-workers claimed that the inserted 
 Zn2+ not only existed in the interstitial lattice vacancy 
but also appeared in the pre-occupied lattice site during 
the cycling process [128]. Zn atoms in the crystal struc-
ture will replace Cu atoms, leading to the formation of 
Cu(CN)2 and CuZn(CN)4. Since Cu(CN)2 and CuZn(CN)4 
do not have redox couple, they cannot provide capac-
ity. Thus, this irreversible phase transition leads to the 
capacity fading. In particular, the lower the concentra-
tion of  Zn2+ in the solution, the more difficult this irre-
versible phase transition is to occur, which explains why 
KCuFe(CN)6 has better performance in 20 mM  ZnSO4 
electrolyte compared with 1 M  ZnSO4 electrolyte. In 
order to overcome this irreversible phase change, Man-
tia fabricated a series of copper zinc hexacyanoferrates 
(CuZnHCF) mixtures with different Cu/Zn ratios [129]. 
It is found that the irreversible phase transition can be 
effectively avoided for CuZnHCF with Cu/Zn ratio of 
93:7 (SEM image shown in Fig. 10f) and the capacity 
fading problem can be solved to a large extent. Compared 
with the CuHCF without Zn element, it exhibits better 
capacity retention of 85.5% after 1000 cycles in 20 mM 
 ZnSO4 solution. Obviously, this method provides a new 
direction for optimizing PBAs in aqueous multivalent-
ion batteries. About the application of double-atom redox 
PBAs in aqueous  Zn2+ batteries, Zhi and co-workers syn-
thesized KCoFe(CN)6 and used it as cathode of aqueous 
 Zn2+ batteries [77]. With two redox sites, this battery 
exhibits a high capacity of 173.4 mAh  g−1 at current 

density of 0.3 A  g−1. Impressively, they adopt a sol–gel 
transition strategy constructing a solid-state cable-type 
battery, and Fig. 10g schematically illustrates its configu-
ration. Figure 10h, i shows the practical application of the 
solid-state cable-type battery in two different electronic 
devices, electronic hygrometer and LEDs, respectively. 
Obviously, combined with the lower electrode potential of 
zinc anode, the cable-type battery based on double-atom 
redox PBAs exhibits a huge potential in flexible energy 
storage that provides a new direction for the practical 
application of aqueous battery based on PBAs.

2.2.3  PBAs for Aqueous Ca2+ Batteries

Since hydrated  Ca2+ binds fewer water molecules on the 
surface [130], the investigations of aqueous  Ca2+ batter-
ies have great development potential. About the PBAs 
used in aqueous  Ca2+ batteries, Yao and co-workers syn-
thesized  K0.02Cu[Fe(CN)6]0.66⋅3.7H2O as cathode material 
for  Ca2+ storage [131]. Due to the low crystal structure 
strain (1.1%), the  K0.02Cu[Fe(CN)6]0.66⋅3.7H2O exhibits an 
excellent long cycle performance that can retain 88% of its 
initial capacity at 5 C after 2000 cycles. In addition, the 
 K0.02Cu[Fe(CN)6]0.66⋅3.7H2O also exhibits excellent rate 
performance in aqueous  Ca2+ batteries. Its capacity can be 
retained to 65% when the current density increases from 
0.2 C to 20 C, while that of in aqueous  Mg2+ battery can 
only be maintained to 33%. This difference in rate perfor-
mance can be summarized in two points: First,  Ca2+ with 
a smaller charge density will encounter less resistance 
when it is inserted/extracted into/from the PBAs. Second, 
hydrated  Ca2+ binds fewer water molecules on the surface, 
speeding up the transport of  Ca2+in PBAs. Similarly, the 
 K0.02Cu[Fe(CN)6]0.64·9H2O also demonstrated same excel-
lent  Ca2+ storage performance in aqueous  Ca2+ battery, 
which can retain 94% of its initial capacity at 5 C after 1000 
cycles [132].

About the electrochemical performance of PBAs in 
aqueous  Ca2+ battery, the concentration of electrolyte also 
has influence. Jeong and co-workers studied the electro-
chemical properties of CuFe(CN)6 in the different con-
centrations of electrolyte and found that in 1.0 mol  dm−3 
Ca(NO3)2, the CuFe(CN)6 delivers a 60 mAh  g−1 initial 
capacity and retains 50% at 10 C after 1000 cycles [133]. 
But in 8.4   dm−3 Ca(NO3)2, it exhibits a better storage 
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performance that can deliver a 70 mAh  g−1 initial capac-
ity and retains 95% at 10 C after 1000 cycles because the 
hydration number of  Ca2+ in the high-concentration elec-
trolyte was smaller. Therefore, it is a simple and effective 
method to improve the electrochemical performance of 
PBAs in aqueous  Ca2+ batteries by changing the electro-
lyte concentration, which is worthy to be applied in future 
studies on aqueous  Ca2+ batteries.

2.2.4  PBAs for Aqueous Al3+ Batteries

For the insertion of  Al3+ in CuFe-PBAs, Cui et  al. use 
 K0.03Cu[Fe(CN)6]0.65·2.6H2O as host material to revers-
ibly store  Al3+ [76]. Figure 11a presents the lattice struc-
ture with all occupied atoms and possible insertion sites 
for hosting ions in this  K0.03Cu[Fe(CN)6]0.65·2.6H2O. Fur-
thermore, they confirmed the shielding effect of crystal 

Fig. 11  a Structure of  K0.03Cu[Fe(CN)6]0.65·2.6H2O and corresponding insertion sites for trivalent ions. Reproduced with permission from 
Ref. [76]. Copyright 2015, Wiley–VCH. b SEM and TEM images of as-prepared KCu[Fe(CN)6]·8H2O powders. c Typical CV curve of 
KCu[Fe(CN)6]·8H2O in  Al2(SO4)3 solution and the schematic positions of  Al3+ in the framework. Reproduced with permission from Ref. [10]. 
Copyright 2015, The Royal Society of Chemistry. d TEM image of  K2CoFe(CN)6. Reproduced with permission from Ref. [135]. Copyright 
2020, Elsevier. e Working process of aqueous CuFe(CN)6/TiO2 battery for  Al3+ storage. Reproduced with permission from Ref. [134]. Copyright 
2018, Springer. f Crystal structure of  K2CoFe(CN)6. Reproduced with permission from Ref. [135]. Copyright 2020, Elsevier
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water and hydration shell of  Al3+ on electrostatic repulsion 
between  Al3+ and  K0.03Cu[Fe(CN)6]0.65·2.6H2O, which 
lays a foundation for the insertion of  Al3+ in PBAs. Later, 
Gao et al. used  Al2(SO4)3 solution as aqueous electrolyte to 
explore the  Al3+ reversible insertion characteristic in nano-
sized KCu[Fe(CN)6]·8H2O (Fig. 11b) [10]. As reported in 
Fig. 11c, typical redox couples in CV curve are well indexed 
to the schematic insertion/extraction positions of  Al3+ in 
PBAs framework. For  Al3+ uptake, KCu[Fe(CN)6]·8H2O can 
release a discharge capacity of 46.9 mAh  g−1 at 400 mA  g−1 
with retention of 54.9% after 1000 cycles. In addition to 
reducing electrostatic repulsion, PBAs with small particle 
size can also improve the migration rate of  Al3+ by reduc-
ing the diffusion distance. This is proved by Wills and Pang 
et al. via the investigation on CuFe(CN)6 (Fig. 11e) and 
 K2CoFe(CN)6 (Fig. 11d, f), respectively, and got well per-
formance [134, 135]. Although these two kinds of PBAs 
have wonderful  Al3+ insertion ability, the reason of capac-
ity fading is not clear. Later, Wu and co-workers reported 
the working mechanism in PBAs-based  Al3+ batteries [136]. 
They clarified that the reversible insertion/extraction of  Al3+ 
in  K0.02Ni1.45[Fe(CN)6]·2.6H2O is related to a single-phase 
reaction without producing polycrystalline structure. In addi-
tion, they also found that the capacity fading is not mainly 
caused by the collapse of PBAs structure, but the transfer of 
Ni in  K0.02Ni1.45[Fe(CN)6]·2.6H2O to Al foil anode, resulting 
in interface instability between anode and electrolyte. Obvi-
ously, this study provides a new idea for us to solve capacity 
fading problem of PBAs upon multivalent ions uptake.

2.2.5  PBAs for Other Aqueous Multivalent Metal‑Ion 
Batteries

Besides these above multivalent metal ions, the insertion 
performance of  Ba2+,  Sr2+,  Fe2+,  Co2+,  Ni2+,  Cu2+,  Pb2+, 
 Y3+,  La3+,  Ce3+,  Nd3+ and  Sm3+ in PBAs also has been 
explored. For  Ba2+ and  Sr2+, Cui and co-workers explored 
their insertion performance in NiFe(CN)6 [75]. When 
NiFe(CN)6 inserting  Sr2+, it exhibits an initial capacity of 40 
mAh  g−1 and retains 64% at 5 C after 2000 cycles. Because 
 Ba2+ has smaller hydrated ionic radius, the insertion per-
formance of NiFe(CN)6 in aqueous  Ba2+ battery is better. It 
exhibits a 42 mAh  g−1 initial capacity and retains 93% at 5 C 
after 2000 cycles. About these two ions as host ion in PBAs, 
the studies are few. Thus, future studies can put into these 

aspects. Later, Cui et al. continue to explore the insertion 
performance of  Co2+,  Ni2+,  Cu2+,  Pb2+,  Y3+,  La3+,  Ce3+, 
 Nd3+ and  Sm3+ in  K0.03Cu[Fe(CN)6]0.65·2.6H2O [76]. They 
find that  K0.03Cu[Fe(CN)6]0.65·2.6H2O has a serious decay 
process when inserting  Co2+,  Ni2+ and  Cu2+ resulting in 
poor cycling performance. The main reason for this phenom-
enon is that partial replacement of these ions with the high-
spin transition metal atom in  K0.03Cu[Fe(CN)6]0.65·2.6H2O 
results in irreversible phase transition. Therefore, the main 
problem for the insertion of these ions into PBAs is to 
resolve this irreversible phase transition. It should be noted 
that the insertion and extraction of  Fe2+ in FeFe-PB do not 
produce this irreversible structural phase change. In 2019, Ji 
et al. used Fe[Fe(CN)6]0.73∙□0.27∙3.6H2O as cathode, Fe as 
anode and  FeSO4 solution as electrolyte to build a full cell 
[137]. For this cell, it exhibits an excellent cycle stability 
that can retain 88% of its initial capacity at 1 C after 1000 
cycles.

In addition to these common metal ions, Cui et  al. 
found that some lanthanide metal ions can also be 
reversibly inserted/extracted in/from PBAs such as 
 La3+,  Ce3+,  Nd3+ and  Sm3+. For these ions inserted into 
 K0.03Cu[Fe(CN)6]0.65·2.6H2O, they all show similar vol-
tammogram, which means that they have the same inser-
tion sites in  K0.03Cu[Fe(CN)6]0.65·2.6H2O. Impressively, 
they both can deliver a capacity of approximately 60 mAh 
 g−1 at 0.2 C. Although these lanthanide metal ions can be 
reversibly inserted/extracted in/from PBAs, they are rarely 
studied due to their low natural reserves and high cost. It is 
worth noting that the insertion of  Pb2+ and  Y3+ possesses 
the fastest ion migration kinetics and most reversible elec-
trochemistry among these uncommon divalent and trivalent 
metal ions, respectively [76]. For the insertion of  Pb2+ in 
 K0.03Cu[Fe(CN)6]0.65·2.6H2O, it exhibits an initial capacity 
of 55 mAh  g−1 and retains 73% at 5 C after 2000 cycles. 
When the  K0.03Cu[Fe(CN)6]0.65·2.6H2O inserting  Y3+, it 
exhibits an initial capacity of 40 mAh  g−1 and retains 87% 
at 5 C after 2000 cycles. Obviously, the insertion of these 
two ions in PBAs possesses great exploration value and is 
waiting to be studied.

2.3  Relationship between Performance and Structure

From the above introduction, it can be clearly found that for 
PBAs, their electrochemical performance (redox potential, 



 Nano-Micro Lett.          (2021) 13:166   166  Page 20 of 36

https://doi.org/10.1007/s40820-021-00700-9© The authors

Table 1  Electrochemical performance of representative PBAs in various aqueous batteries

Sample Electrolyte Redox potential 
(V)

Rate capability 
(mAh  g−1)

Reversible capac-
ity (mAh  g−1)

Cycling stability Refs.

Na1.29Fe[Fe(CN)6]0.91□0.09 0.5 M  Na2SO4 0.35/1.34 40 at 5 A  g−1 107 at 500 mA  g−1 100%@0.5Ag−1 
after1100 cycles

[60]

Cu0.56Ni0.44Fe(CN)6 1.0 M  NaNO3 0.78 N.A 53 at 0.8 C 100%@8 C after 
2000 cycles

[61]

Na2VOx[Fe(CN)6] 3.0 M  NaNO3 0.59/0.96 54 at 38.7 C 91 at 110 mA  g−1 61%@1.2 C after 
250 cycles

[69]

K0.6Ni1.2Fe(CN)6∙3.6H2O 1.0 M  NaNO3 0.6 39 at 41.7 C 59 at 0.83 C 91%@8.3 C after 
5000 cycles

[43]

K0.9Cu1.3Fe(CN)6 1.0 M  NaNO3 0.78 20 at 41.7 C 58 at 0.83 C 80%@8.3 C after 
500 cycles

[74]

K0.6Ni1.2Fe(CN)6 1.0 M  NaNO3 0.58 40 at 41.7 C 57 at 0.83 C 91%@8.3 C after 
500 cycles

[74]

Na1.94Ni1.03Fe(CN)6·4.8H2O 1.0 M  Na2SO4 0.62 61 at 10 C 65 at 1 C 88%@5 C after 
500 cycles

[94]

Na1.4Cu1.3Fe(CN)6·8H2O 1.0 M  Na2SO4 0.8 38 at 100 C 58 at 5 C 94%@5 C after 
500 cycles

[98]

Zn3[Fe(CN)6]2 1.0 M  NaClO4/
PEG-400

1.12 34 at 20 C 66 at 1 C 92%@5 C after 
200 cycles

[100]

Na1-xFe1+(x/3)[Fe(CN)6]·yH2O 1.0 M  Na2SO4 N.A 25 at 10 C 65 at 0.2 C 80%@1 C after 
200 cycles

[102]

Na1.33Fe[Fe(CN)6]0.82 1.0 M  Na2SO4 0.32/1.31 102 at 20 C 125 at 2 C 80%@10 C after 
500 cycles

[104]

Na1.85Co[Fe(CN)6]0.99·2.5H2O 1.0 M  Na2SO4 0.62/1.12 60 at 20 C 130 at 1 C 90%@5 C after 
800 cycles

[105]

Na1.24Mn[Fe(CN)6]0.81∙1.28H2O 10 M  NaClO4 0.81/1.4 98 at 5.0 mA  cm−2 116 at 120 mA  g−1 72%@2.0 
 mAcm−2 after-
100cycls

[107]

K0.9Cu1.3Fe(CN)6 1.0 M  LiNO3 0.6 38 at 41.7 C 55 at 0.83 C 38%@8.3 C after 
500 cycles

[74]

K0.6Ni1.2Fe(CN)6 1.0 M  LiNO3 0.38 35 at 41.7 C 58 at 0.83 C 40%@8.3 C after 
500 cycles

[74]

K0.08Ni0.75Zn0.70Fe(CN)6 0.1 M 
 Li2SO4/0.4 M 
 K2SO4

0.82 N.A 60 at 1 C 63%@1 C after 50 
cycles

[108]

K0.04Cu1.47Fe(CN)6 0.1 M 
 Li2SO4/0.4 M 
 K2SO4

0.9 51 at 60 C 59 at 1 C 80%@1.5 C after 
100 cycles

[109]

K0.04Cu1.47Fe(CN)6 0.25 M 
 Li2SO4/0.25 M 
 Na2SO4

0.8 46 at 60 C 60 at 1 C N.A [109]

Fe4[Fe(CN)6]3 0.1 M 
 LiClO4/0.4 M 
 NaClO4

0.44/1.44 90 at 10 C 125 at 1 C N.A [110]

K0.71Cu[Fe(CN)6]0.72∙3.7H2O 1.0 M  KNO3 0.94 40 at 83 C 59 at 0.83 C 94.6%@17 C after 
10,000 cycles

[42]

K0.6Ni1.2Fe(CN)6∙3.6H2O 1.0 M  KNO3 0.7 39 at 41.7 C 58 at 0.83 C 95%@8.3 C after 
5000 cycles

[43]

K2NiFe(CN)6·1.2H2O 1.0 M  KNO3 0.61 42 at 500 C 77 at 5 C 98%@30 C after 
5000 cycles

[80]

K0.9Cu1.3Fe(CN)6 1.0 M  KNO3 0.9 50 at 41.7 C 59 at 0.83 C 99%@8.3 C after 
5000 cycles

[74]

K0.6Ni1.2Fe(CN)6 1.0 M  KNO3 0.7 39 at 41.7 C 57 at 0.83 C 100%@8.3 C after 
5000 cycles

[74]
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Table 1  (continued)

Sample Electrolyte Redox potential 
(V)

Rate capability 
(mAh  g−1)

Reversible capac-
ity (mAh  g−1)

Cycling stability Refs.

K2FeII[FeII(CN)]6·2H2O 0.5 M  K2SO4 0.5/1.14 88 at 21.4 C 118 at 1.4 C 96%@3.6 C after 
500 cycles

[7]

Cu[Fe(CN)6]0.63∙□0.37∙3.4H2O 2.0 M  H2SO4 0.45/0.8 49 at 4000 C 95 at 1 C 60%@500 C after 
730,000 cycles

[81]

Ni[Fe(CN)6]0.60∙□0.40∙4.5H2O 1.0 M  H2SO4 0.77 39 at 4000 C 65 at 1.5 C 73%@10 C after 
1000 cycles

[115]

K0.9Cu1.3Fe(CN)6 0.5 M  (NH4)2SO4 1.05 45 at 41.7 C 60 at 0.83 C 91%@8.3 C after 
500 cycles

[74]

K0.6Ni1.2Fe(CN)6 0.5 M  (NH4)2SO4 0.8 21 at 41.7 C 50 at 0.83 C 88%@8.3 C after 
500 cycles

[74]

(NH4)1.47Ni[Fe(CN)6]0.88 1.0 M  (NH4)2SO4 0.85 22 at 30 C 60 at 2.5 C 74%@5 C after 
2000 cycles

[79]

K0.72Cu[Fe(CN)6]0.78·3.7H2O 1.0 M  (NH4)2SO4 0.97 48.5 at 2.4 A  g−1 58.8 at 0.3 A  g−1 78.4%@1.8 A  g−1 
after 1000 cycles

[116]

Fe[Fe(CN)6]0.88·□0.12·2.8H2O 0.5 M  (NH4)2SO4 0.5/0.7 48 at 8.8 C 90 at 1.1 C 88%@2.2 C after 
450 cycles

[117]

NaFeIIIFeII(CN)6 1.0 M  (NH4)2SO4 0.47/0.83 48 at2 A  g−1 62 at 0.25 A  g−1 100%@2 A  g−1 
after 50,000 
cycles

[118]

K0.6Ni1.2Fe(CN)6 1.0 M Mg(NO3)2 0.4 47 at 0.2 C 31 at 10 C 65%@5 C after 
2000 cycles

[75]

K0.1Cu[Fe(CN)6]0.7·3.6H2O 1.0 M Mg(NO3)2 0.82 37 at 1 A  g−1 50 at 0.1 A  g−1 N.A [123]
Na1.4Ni1.3Fe(CN)6·5H2O 1.0 M  MgSO4 0.72 39 at 10 A  g−1 65 at 0.1 A  g−1 94.8%@1 A  g−1 

after 2000 cycles
[124]

K2Zn3[Fe(CN)6]2 1.0 M  ZnSO4 1.12 32.3 at 20 C 65.4 at 1 C 81%@5 C after 
100 cycles

[22]

K0.07Zn[Fe(CN)6]0.69 3.0 M  ZnSO4 1.1 60.5 at 3 A  g−1 69.1 at 0.06 A  g−1 93%@0.3 A  g−1 
after 100 cycles

[17]

K0.08Zn[Fe(CN)6]0.67 3.0 M  ZnSO4 1.1 50.3 at 3 A  g−1 67.3 at 0.06 A  g−1 86.6%@0.3 A  g−1 
after 100 cycles

[17]

K0.07Zn[Fe(CN)6]0.68 3.0 M  ZnSO4 1.1 36 at 3 A  g−1 66 at 0.06 A  g−1 72%@0.3 A  g−1 
after 100 cycles

[17]

KCuFe(CN)6 1.0 M  ZnSO4 0.94 N.A 56 at 0.02 A  g−1 77%@0.02 A  g−1 
after 20 cycles

[125]

K1+2yCu1-yVy[Fe(CN)6]z 20 mM  ZnSO4 0.84 49 at 10 C 58 at 1 C 78%@10C after 
1000 cycles

[127]

CuZnHCF (Cu/Zn = 93:7) 20 mM  ZnSO4 0.9 N.A 50 at 1 C 98.12%@1 C after 
500 cycles

[129]

CoFe(CN)6 4.0 M Zn(OTf)2 0.55/0.89 173.4 at 6 A  g−1 173.4 at 0.3 A  g−1 100%@3 A  g−1 
after 2200 cycles

[77]

K0.02Cu[Fe(CN)6]0.66⋅3.7H2O 2.5 M Ca(NO3)2 0.96 37 at 20 C 58 at 0.2 C 88%@5 C after 
2000 cycles

[131]

K0.02Cu[Fe(CN)6]0.64·9H2O 2.5 M Ca(NO3)2 0.84 51 at 5 C 60 at 1 C 94%@5 C after 
1000 cycles

[132]

CuFe(CN)6 8.4 M Ca(NO3)2 0.82 61 at 10 C 66 at 0.2 C 88.6%@10 C after 
5000 cycles

[133]

K0.03Cu[Fe(CN)6]0.65·2.6H2O 1.0 M Al(NO3)3 0.7 43 at 10 C 62 at 0.2 C N.A [76]
KCu[Fe(CN)6]·8H2O 0.5 M Al(SO4)3 0.83 46.9 at 0.4 A  g−1 62.9 at 0.05 A  g−1 54.9%@0.4 A  g−1 

after 1000 cycles
[10]

K2CoFe(CN)6 1.0 M Al(NO3)3 0.75/0.95 18 at 1 A  g−1 50 at 0.1 A  g−1 76%@0.1 A  g−1 
after 1600 cycles

[135]
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capacity, cycling stability and rate performance) is closely 
related to its structure (metal atom in high-spin state, defect, 
particle size, morphology, etc.) and these electrochemical 
performances of various PBAs in aqueous battery are sum-
marized in Table 1. From Table 1, it can be concluded that 
different types of metal in high-spin state lead to different 
redox potential and voltage platforms for PBAs. When Fe, 
Co and Mn are in high-spin state, this type of PBAs has two 
voltage platforms because both these metals and Fe in low 

spin have electrochemical activity. Conversely, when Ni, Cu 
and Zn are in high-spin state, this type of PBAs has only 
one voltage platform because the Ni, Cu and Zn are elec-
trochemically inert. It is worth noting that Cu is sometimes 
electrochemically active in some acidic electrolytes and 
produces voltage platform. Meanwhile, in terms of redox 
potential, FeFe-PB, CoFe-PBAs and MnFe-PBAs are gener-
ally higher than NiFe-PBAs, CuFe-PBAs and ZnFe-PBAs. 
Although the redox potential of different PBAs is different 

Table 1  (continued)

Sample Electrolyte Redox potential 
(V)

Rate capability 
(mAh  g−1)

Reversible capac-
ity (mAh  g−1)

Cycling stability Refs.

K0.02Ni1.45[Fe(CN)6]·2.6H2O 0.5 M Al(SO4)3 0.78 N.A 47 at 0.02 A  g−1 53%@0.02 A  g−1 
after 500 cycles

[136]

K0.6Ni1.2Fe(CN)6 0.1 M Ba(NO3)2 0.5 30 at 10 C 50 at 0.2 C 85%@5 C after 
2000 cycles

[75]

K0.6Ni1.2Fe(CN)6 1.0 M Sr(NO3)2 0.45 38 at 10 C 51 at 0.2 C 79%@5 C after 
2000 cycles

[75]

K0.03Cu[Fe(CN)6]0.65·2.6H2O 1.0 M Ni(NO3)2 0.82 24 at 0.2 C 57 at 0.2 C 50%@5 C after 
2000 cycles

[76]

K0.03Cu[Fe(CN)6]0.65·2.6H2O 1.0 M Cu(NO3)2 1.15 23 at 0.2 C 60 at 0.2 C 92%@5 C after 
2000 cycles

[76]

K0.03Cu[Fe(CN)6]0.65·2.6H2O 1.0 M Pb(NO3)2 1 58 at 0.2 C 68 at 0.2 C 73%@5 C after 
2000 cycles

[76]

K0.03Cu[Fe(CN)6]0.65·2.6H2O 1.0 M Y(NO3)3 0.9 60 at 0.2 C 70 at 0.2 C 95%@5 C after 
2000 cycles

[76]

Fe[Fe(CN)6]0.73∙□0.27∙3.6H2O 0.5 M  FeSO4 N.A 30 at 40 C 58 at 2 C 80%@10 C after 
1000 cycles

[137]

Fig. 12  Voltage working window of PBAs for various aqueous batteries
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in aqueous batteries, most of them are within the decomposi-
tion voltage of water (Fig. 12). A small part of PBAs whose 
charging potential exceeds the oxygen evolution potential 
can be still used as electrode in aqueous battery by increas-
ing electrolyte concentration or adjusting pH to inhibit the 
evolution of oxygen.

In addition to the redox potential, the metal atom in high-
spin state also has great influence on capacity and cycling 
stability. In order to more intuitively express the capacity 
and cyclic stability of different PBAs in aqueous battery, we 
summarize them in Fig. 13. Obviously, compared with NiFe-
PBAs, CuFe-PBAs and ZnFe-PBAs, FeFe-PB, CoFe-PBAs 
and MnFe-PBAs can provide more capacity because both 
metals in high- and low-spin state can occur redox reaction. 
But in terms of cyclic stability, NiFe-PBAs, CuFe-PBAs and 
ZnFe-PBAs are superior. In addition, defects in the PBAs 
structure will lead to the reduction of active sites in PBAs, 
resulting in the decrease of capacity. At the same time, the 
existence of defects leads to the increase of crystal water 

in PBAs and thus reduces the cyclic stability. Therefore, 
Fig. 14 shows that the same-type PBAs have different crystal 
water content, resulting in different capacities and cycling 
performance. For the rate performance, high structural sta-
bility is beneficial to the rapid insertion and extraction of 
ions under high current density. Therefore, Table 1 shows 
that the capacity loss of NiFe-PBAs, CuFe-PBAs and ZnFe-
PBAs is less when the current density increases. In addition, 
the morphology and particle size of PBAs crystals also have 
a great influence on the rate performance. Generally, PBAs 
with more uniform morphology and smaller particle size 
have better rate performance because they have more suf-
ficient contact with the electrolyte and thus are more con-
ducive to rapid ion transport.

Through these relationships between PBAs performance 
and structure, we can more intuitively select the appropri-
ate PBAs in each aqueous battery. As the capacity provided 
by NiFe-PBAs, CuFe-PBAs and ZnFe-PBAs in aqueous 
monovalent metal-ion batteries is limited, after improving 

Fig. 13  Cycling performance of different PBAs in various aqueous batteries
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the structural stability of FeFe-PB, CoFe-PBAs and MnFe-
PBAs, they are more suitable for application in aqueous 

monovalent metal-ion batteries. For aqueous  H+ batteries, 
the high structural stability NiFe-PBAs are a better choice, 

Fig. 14  a Principle of  Na2Ni[Fe(CN)6]/Na2Fe[Fe(CN)6] rocking-chair desalination battery. b SEM image of  Na2Ni[Fe(CN)6] particles. c SEM 
image of  Na2Fe[Fe(CN)6] particles. d Galvanostatic cycling performance of the  Na2Ni[Fe(CN)6]/Na2Fe[Fe(CN)6] cell in seawater. Reproduced 
with permission from Ref. [144]. Copyright 2017, American Chemical Society. e Schematic of zinc/ferricyanide hybrid desalination flow bat-
tery operation during discharge (desalination) and charge (salination). Reproduced with permission from Ref. [145]. Copyright 2018, American 
Chemical Society. f Scheme showing the operation of the  Cu3[Fe(CN)6]2·nH2O/Bi desalination battery. Reproduced with permission from Ref. 
[78]. Copyright 2019, American Chemical Society
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because the rapid transfer of  H+ requires high structural sta-
bility for host materials. In aqueous  NH4

+ batteries, due to 
the excellent structural compatibility of  NH4

+ and FeFe-PB, 
the application of FeFe-PB has more prominent. For aqueous 
multivalent-ion batteries, NiFe-PBAs and CuFe-PBAs with 
higher structural stability are more suitable because of the 
large hydration ion radius of multivalent ions. Impressively, 
due to the excellent performance of CoFe-PBAs in aqueous 
 Al3+ batteries and  Zn2+ batteries recently, it is also worth 
trying in other aqueous multivalent-ion batteries.

3  PBAs in Desalination Batteries

To solve the shortage of freshwater source, various physical 
and electrochemical desalination ways have been studied in 
the past decades [138–140]. Among physical desalination 
method, the reverse osmosis, also known as ultrafiltration, 
is the most representative. The reverse osmosis method is 
to separate freshwater from seawater by using a semi-per-
meable membrane which allows only solvent but not solute 
to permeate. The desalination process can be divided into 
two steps. The first step is to use a semi-permeable mem-
brane to separate seawater and freshwater on both sides of 
the membrane, and then, the freshwater moves to the sea-
water side under the action of osmotic pressure. The sec-
ond step is to use applied pressure to reverse osmosis the 
freshwater in the seawater side into the freshwater. Obvi-
ously, this physical desalination method has two major dis-
advantages: the use of high-pressure equipment and regular 
cleaning and replacement of semi-permeable membrane. In 
contrast, for electrochemical desalination, such as desalina-
tion battery, the desalination is done by the impurity ions 
hosted in the electrodes, so it does not require an external 
device. Even in some desalination batteries, semi-perme-
able membranes may not be used. It is worth noting that 
the semi-permeable membrane used in desalination bat-
tery can be mainly divided into anion exchange membrane 
(AEM) and cation exchange membrane (CEM). AEM is 
mainly composed of ion exchange resin and basic active 
group, and CEM is mainly composed of ion exchange 
resin and acid active group. Obviously, avoiding the use 
of semi-permeable membranes will greatly reduce the cost 
of desalination. Of course, because desalination battery 
needs to work under the condition of applied voltage, its 

energy consumption is higher than reverse osmosis. But in 
terms of simple equipment and environmentally friendly, 
desalination battery still has great potential. For desalina-
tion battery, it consists of cation and anion storage elec-
trodes which remove salt ions from the water through a 
reversible electrochemical reaction. At present, the elec-
trode materials commonly used in desalination batteries 
include metal oxide, polyanion polymer, PBAs, etc. Com-
pared with other electrode materials, PBAs mainly have the 
following advantages as a desalination battery electrode 
material. Firstly, due to its large ion channel and inser-
tion site, the PBAs can provide higher desalination rate 
and requires less energy consumption. Secondly, PBAs as 
desalination battery electrode will greatly reduce the cost 
due to the simple synthesis method of PBAs. Thirdly, PBAs 
have better compatibility with multivalent ions in seawater 
because the crystal water in PBAs structure has a certain 
shielding effect on the electrostatic repulsion of multivalent 
ions. In addition to these advantages, PBAs also have a 
structural disadvantage that needs to be noted. Since most 
seawater is alkaline, this will reduce the stability of PBAs 
in seawater and thus affect the desalination performance. 
However, such structural advantage can be well controlled 
by controlling PBAs vacancies and crystallinity, so the 
PBAs-based desalination batteries have received a large 
number of concerns in recent years.

In desalination battery, the mass transfer resistance of ions 
in water inevitably leads to the degradation of battery perfor-
mance, especially when the water concentration is very low. 
Different from high-concentration electrolytes that are usu-
ally defined as concentration higher than 0.1 M, the brackish 
water (about 500–2000 mg of solute per liter of solution) 
possesses a small number of accessible ions in the interface 
of electrode and electrolyte. Therefore, the mass transfer rate 
of ions in this kind of desalination batteries is slow, and the 
desalination process can only be guaranteed under the low 
current density, which is usually about 10 A  m−2 [141, 142]. 
In order to introduce the applications of PBAs in desalina-
tion batteries more comprehensively, herein the desalina-
tion batteries are divided into two groups: the desalination 
batteries for highly concentrated brine and the desalination 
batteries for brackish water. The recent advances of PBAs in 
these two desalination batteries are discussed, respectively, 
in the following sections.
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3.1  PBAs for Highly Concentrated Brine Desalination

For traditional desalination battery like Ag/Na0.5MnO2 bat-
tery,  Na+ and  Cl− are captured in electrode materials through 
a complex four-step charge and discharge progress and the 
removal rate of  Na+ can reach 25% [143]. During the process 
of discharging (step 1),  Na+ and  Cl− are inserted into the 
host material by insertion reaction. The deionized water is 
then exchanged with the water to be treated (step 2). After 
the above steps, the battery in step 2 is charged so that the 
ions inserted in discharge reaction can be extracted from the 
host material (step 3). Then, exchanging the concentrated 
water with the water to be treated, and the battery continues 
to perform the discharging process (step 4). Obviously, this 
desalination process is complex. In order to simplify the 
desalination process and promote the removal rate of  Na+, 
Yoon and co-workers used PBAs to design a simpler and 
more efficient desalination battery [144]. Figure 14a rep-
resents the schematic diagram of PBAs-based desalination 
battery. The electrode materials used in this desalination 
battery are highly crystalline  Na2Ni[Fe(CN)6] (NaNiHCF) 
and  Na2Fe[Fe(CN)6] (NaFeHCF) for better cation capture. 
The morphology of NaNiHCF and NaFeHCF is revealed 
in Fig. 14b, c, respectively. In this desalination battery, the 
water to be treated is divided into two parts by AEM. In 
fact, the motion of ions during the progress of charging and 
discharging shows that the desalination battery works in the 
same way as aqueous rocking-chair battery. Impressively, 
the use of AEM creates a charge difference between two 
different solutions of desalination battery, which leads to 
the concentration and dilution of solutions during charging 
and discharging without the need to replace the treated water 
during desalination process, thus simplifying the desalina-
tion process. It is noteworthy that NaNiHCF/NaFeHCF full 
cell demonstrates a good galvanostatic cycling performance 
with an initial specific capacity about 56 mAh  g−1 at 0.1 A 
 m−2 (Fig. 14d). Meanwhile, this desalination battery pos-
sesses an excellent  Na+ removal efficiency up to 40%. For 
further improving the desalination performance and promot-
ing its practical application, shortly afterward, Rivest and his 
co-workers presented a hybrid desalination flow battery that 
consists of a zinc anode and a PBA cathode [145]. Impres-
sively, this battery possesses a high operation cell voltage 
of 1.25 V, showing high round-trip efficiency and electrical 

storage capacity. Figure 14e represents the schematic dia-
gram of hybrid desalination flow battery. Different from 
above reports of PBAs in desalination batteries, the cathode 
of this battery is mixed PBAs in liquid form,  K4Fe(CN)6/
K3Fe(CN)6.  Na+ removal depends on the reaction between 
 K4Fe(CN)6/K3Fe(CN)6. Since the liquid-form PBAs possess 
larger surface, it is more favorable for hosting ions. Thus, 
impressive salt removal efficiency can be achieved at 85% 
that is at least two times higher than most desalination bat-
teries reported till now.

As is well known, the membranes play an important role 
in existing desalination technologies. For reverse osmosis, 
it requires a semi-permeable membrane for only transport-
ing water molecules but blocking other ions to ensure that 
the desalination process takes place [146–148]. For conven-
tional desalination batteries, they also need membranes to 
simplify the desalination steps or improve the performance. 
Actually, the use of membrane is associated with membrane 
fouling and replacement cost. Thus, eliminating the need for 
membrane in highly concentration brine desalination batter-
ies can greatly reduce the cost of desalinations and realize 
large-scale application of desalination batteries. Since the 
principle of desalination battery is performed by specific 
electrode reaction (such as  Na+ insertion in cathode and 
 Cl− insertion in anode), it possesses the potential to avoid 
using semi-permeable membrane. Soon after, membrane-
free  Na3Ti2(PO4)3/Bi desalination battery was put forward 
[149]. Since  Cl− removal from BiOCl requires a lower 
overpotential in acidic conditions than in neutral solutions, 
the anode reaction is more suitable to perform in acidic 
conditions. But under acidic conditions, the self-discharge 
phenomenon of  Na3Ti2(PO4)3 is serious and it will lead to 
the spontaneous oxidation of  Na3Ti2(PO4)3, so it is not con-
ducive to the desalination process of  Na3Ti2(PO4)3 [150]. 
Thus, a membrane is still needed to separate the cathode and 
anode to allow them to work under different acidic condi-
tions. As is well known, CuFe-PBA was demonstrated with 
excellent cyclability for charge and discharge reactions in 
acidic media. Therefore, replacing  Na3Ti2(PO4)3 with CuFe-
PBA can achieve membrane-free desalination battery. On 
the basis of this view, Choi and co-workers constructed a 
novel desalination battery that uses  Cu3[Fe(CN)6]2·nH2O as 
cathode and Bi as anode to enable membrane-free desalina-
tion, and Fig. 14f represents the schematic diagram of this 
rocking-chair desalination battery [78]. This work further 



Nano-Micro Lett.          (2021) 13:166  Page 27 of 36   166 

1 3

promotes the application of PBAs in membrane-free desali-
nation batteries.

3.2  PBAs for Brackish Water Desalination

In past studies, researchers have tried various ways to solve 
the problem of large mass transfer resistance of ions when 
PBAs-based desalination batteries were used in brackish 
water. One of the easiest is to control particle size of PBAs 
[151–157]. Co-precipitation method is a widely accepted 
route to prepare PBAs. The reaction rate can be slowed down 

by coordination agents to get less defective PBAs with small 
size. Based on this view, Smith and co-workers prepared 
small-sized  Na2NiFe(CN)6 via co-precipitation [158]. Since 
Na-rich NiFe-PBA does not require a pre-solinization pro-
cess, they investigated a NaNiFe(CN)6/Na2NiFe(CN)6 bat-
tery to treat brackish water as represented in Fig. 15a. Fig-
ure 15b shows the salt adsorption capacity of NaNiFe(CN)6. 
For this desalination battery, it only exhibits a 3% sodium 
removal rate, because the system simply uses granularity 
control. Although this desalination battery is capable of 
treating brackish water, its desalination capacity is too poor 
to meet practical requirements. Later, Logan and co-workers 

Fig. 15  a Schematic of NaNiFe(CN)6/Na2NiFe(CN)6 desalination battery operation during discharge (desalination) and charge (salination). b 
Salt adsorption capacity of NaNiFe(CN)6. Reproduced with permission from Ref. [158]. Copyright 2017, Elsevier. c Schematic of multi-channel 
NaNiFe(CN)6/Ag desalination battery operation during discharge (desalination) and charge (salination). Reproduced with permission from Ref. 
[161]. Copyright 2019, American Chemical Society
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investigated a NaCu[Fe(CN)6]/NaCu[Fe(CN)6] symmetrical 
cell to optimize the desalination performance in brackish 
water [159]. For this desalination battery, it needs to operate 
at a low current density due to the influence of mass-transfer 
limitation between electrode and electrolyte. To increase 
desalination capability, different numbers of ion exchange 
membranes are added between electrodes to form a hybrid 
system. Thus, the removal rate of sodium ions is increased 
to 25%, which demonstrates the feasibility of this system 
in brackish water. Although these above two desalination 
batteries are capable of handling brackish water, the fun-
damental solution is to solve the problem of mass transfer 
resistance in electrolytes [160]. Then, Yoon and co-workers 
proposed a multi-channel desalination battery (MC-DB) to 
solve this problem [161]. Figure 15c exhibits the operation 
process based on NaNiFe(CN)6/Ag desalination battery. 
Compared with conventional desalination battery with only 
one feed channel, the MC-DB has two side feed channels 
and one middle feed channel. The two side feed channels 
are used for introducing a highly concentrated solution to 
electrode and one middle feed channel for water desalina-
tion. The most innovative part of the battery is that it can 
adjust the concentration of water around the PBA cathode 
and Ag anode to reduce the ion migration resistance. Impres-
sively, the MC–DB system shows a desalination capacity of 
approximately 53 mg  g−1. Particularly, the maximum salt 
removal rate can reach up to 0.0576 mg  g−1  s−1 when it treats 
10 mM NaCl solution. Therefore, the future application of 
PBAs-based desalination battery for treating brackish water 
can be further explored with this battery as a model.

Table 2 summarizes the performance metrics of recently 
advanced PBAs as desalination battery electrode. As we can 

see, NaNiHCF/NaFeHCF desalination battery possesses 
excellent cycle performance with 100 reversible cycles. For 
desalination capability, the Zn/K3[Fe(CN)6] cell has the 
highest specific capacity with 81 and 820 mAh  g−1 (approxi-
mately 86% salt removal) based on the mass of cathode and 
anode, respectively. Therefore, PBAs-based desalination 
batteries inherit the potential to be explored. However, only 
few PBAs can be used in desalination batteries due to poor 
structural stability of PBAs, such as ZnFe-PBA and MnFe-
PBA. Thus, future research can be focused on improving the 
stability of PBAs to promote more applications of PBAs in 
desalination batteries. More importantly, we should recog-
nize that this electrochemical desalination technology is a 
bit too simple for large-scale application. Therefore, in the 
future exploration of electrochemical seawater desalination, 
we can develop a hybrid technology that can combine multi-
ple desalination systems to achieve better results.

4  Conclusions and Outlook

In this review, the recent progress of PBAs as electrode for 
aqueous monovalent-ion and multivalent-ion batteries is 
discussed. Meanwhile, the application of PBAs in aqueous 
desalination batteries is also introduced. PBAs have received 
a lot of attention for electrode materials in aqueous batter-
ies due to their 3D rigid framework and facile synthesis. 
Among various host ions,  Na+ with small hydrated ionic 
radius and large energy density makes it more suitable for 
inserting in PBAs lattice. Although  Li+ is a superstar in 
non-aqueous batteries, it is unsuitable to be hosted in PBAs 
in aqueous electrolyte due to its large hydration radius, 
causing structural damage upon inserting/extracting into/

Table 2  Summary of performance metrics of typical desalination batteries

System Specific capac-
ity (mAh  g−1)

Cell voltage (V) Salinity (ppt) Salt 
removal 
(%)

SEC (Wh  mol−1 NaCl) Cycles Refs.

Ag/Na0.5MnO2 249 (anode)
35 (cathode)

0.30 35 25% 1.9 1 [143]

NaNiFe(CN)6/Na2NiFe(CN)6 59 0 1.2 3% 4.2–16.7 50 [158]
Na2Ni[Fe(CN)6]/Na2Fe[Fe(CN)6] 27.5 0.25–0.45 29 40% 1.8 100 [144]
NaCu[Fe(CN)6]/NaCu[Fe(CN)6] 57 0 2.9 25% 4.1 50 [159]
BiOCl/NaTi2(PO4)3 384 (anode)

63 (cathode)
0.55–0.75 35 20% 31.8  (Na+)

95.5  (Cl−)
50 [149]

Zn/K3[Fe(CN)6] 820 (anode)
81.4 (cathode)

1.25 35–100 86% 4.1–8.6 7 [145]
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from PBAs. However, co-insertion of  Li+ with other metal 
ions possesses great research significance due to synergis-
tic effect. For  K+, PBAs show excellent rate performance 
because of the small hydrated ionic radius of  K+ among 
monovalent ions. In addition, the application of PBAs in 
aqueous non-metallic ion battery also exhibits excellent 
performance. In aqueous  H+ batteries and  NH4

+ batteries, 
PBAs exhibit excellent rate performance and cycling stabil-
ity, respectively, due to the special transport mechanism of 
 H+ in aqueous electrolyte and the good structural compat-
ibility among  NH4

+ and PBAs. As for the application of 
PBAs in aqueous multivalent ions battery, the vacancies of 
PBAs can be used as insertion site to contain large volume 
of hydrated multivalent ions, and crystal water in PBAs also 
has a certain shielding effect on the electrostatic repulsion 
of multivalent ions in PBAs structure. Therefore, the appli-
cation of PBAs in aqueous multivalent-ion battery also has 
application potential. Although PBAs have a good perfor-
mance in the application of aqueous monovalent battery, it 
still has great room for improvement in capacity delivery, 
cycle stability, rate performance, etc. Future research can 
be considered in the following aspects. (1) The control of 
vacancies and interstitial water: Although co-precipitation, 
the most widely used preparation method of PBAs, is simple 
and efficient in operation, the faster crystallization rate will 
bring more vacancies and interstitial water. The presence 
of defects and interstitial water will lead to the reduction of 
redox sites in PBAs and the stability of PBAs structure, thus 
resulting in the reduction of capacity and the degradation 
of cycling performance. Therefore, during the preparation 
of PBAs, the reaction rate can be reduced by adding chelat-
ing agents or adopting multi-step crystallization to improve 
the crystallinity of PBAs. (2) The suppression of structural 
change: Generally, PBAs display a transition between one 
or two crystal types during the insertion and extraction of 
host ion. Due to the large insertion sites and ion channels 
of PBAs, such a degree of phase transition will not have a 
great impact on the structural stability for PBAs. However, 
for some PBAs such as MnFe-PBAs, the asymmetric dis-
tribution of electrons in the d orbitals of  Mn3+ will lead 
to the generation of John–Teller distortion, resulting in the 
phase transformation between three crystal types. This type 
of structural change has a great impact on the stability of 
PBAs structure, thus reducing its cyclic stability. In general, 
this distortion can be well controlled by Mn being partially 
replaced by Fe to reduce Mn density in PBAs. Therefore, the 

influence of such multiple-phase reactions on the structural 
stability of PBAs can be well solved by metal substitution. 
(3) The enhancement of electronic conductivity: In fact, 
PBAs as electrode material are poorly conductive. There-
fore, it can be combined with various carbon materials or 
conductive polymers to improve its electronic conductivity. 
However, these conductive additive agents and binders do 
not provide capacity in the electrochemical reaction, thus 
reducing the energy density of PBAs. Actually, improving 
the conductivity of PBAs on the premise of ensuring the 
energy density can be solved by directly depositing PBAs 
onto carbon materials, which are also acted as current col-
lector. This method not only avoids the use of binder and 
conductive agent, but also achieves the mixing of PBAs and 
conductive current collector, which has great development 
potential in improving the conductivity and energy density 
of the electrode. (iv) The optimization of electrolyte: As 
shown in Fig. 13, the charging voltage of some PBAs has 
reached the theoretical decomposition voltage of water. 
Therefore, for the application of PBAs in aqueous batter-
ies, it is very important to widen the electrochemical sta-
bility window of electrolyte. At present, the simplest and 
most effective method is to increase the solute content in 
the electrolyte and enhance the interaction between anions/
cations and water molecules to reduce the content of free 
water molecules, so as to widen the electrochemical stability 
window of electrolyte. In addition, as shown in Eq. 3, under 
alkaline conditions, the dissolution of PBAs will be acceler-
ated, especially the dissolution of PBAs containing Co, V, 
etc., which will produce toxic components in the electrolyte. 
Therefore, acidic electrolyte should be selected in general 
to improve the stability of PBAs and avoid the generation of 
toxic components.

For the application of PBAs in aqueous multivalent-ion 
battery, besides the four points discussed above, there is 
another aspect that needs special attention. Although the 
crystal water in PBAs has a certain shielding effect on the 
electrostatic interaction between multivalent ions and PBAs, 
the presence of crystal water has negative impact on the 
structural stability and capacity delivery of PBAs. There-
fore, it becomes important to explore the balance between 
the content of crystal water and the cycling life of PBAs. 
In addition, most of the current researches on the reaction 
mechanism of aqueous battery are based on ex situ charac-
terization methods. Therefore, it is also important to use a 
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variety of in situ characterization methods to explore the 
insertion/extraction mechanism of host ions.

As desalination battery is a special kind of aqueous bat-
tery, the development of PBAs in conventional aqueous 
battery also promotes its application in desalination bat-
tery. Among various PBAs, Zn/K3[Fe(CN)6] shows the best 
performance, which widens the way for the future research 
of PBAs in desalination battery. Moreover, PBAs-based 
multi-channel desalination battery also shows excellent salt 
removal efficiency in brackish water through special struc-
tural design, which provides a clear direction for desalina-
tion battery in brackish water in future. In general, PBAs as a 
desalination battery electrode have the following advantages: 
(i) For PBAs, they have large ion channels and well electro-
chemical reversibility, which enable PBAs-based desalina-
tion battery to achieve better desalination performance with 
simplified desalination steps. (ii) PBAs have good chemical 
stability under acidic conditions, which enables it to form 
a practical desalination battery with traditional  Cl− storage 
electrode and realize the membrane-free. (iii) Except for 
large ion channel, PBAs also have small particle size, which 
makes it suitable to purify brackish water in desalination 
battery. For the future application of PBAs in desalination 
batteries, the simplification of desalination steps and the 
development of membrane-free desalination batteries are 
the promising directions. Furthermore, in order to get bet-
ter desalination performance, it is suggested to take the fol-
lowing methods: (i) preparing high-crystallinity, low-defect 
and small-sized PBAs, (ii) exploring PBAs with new struc-
ture, such as MnMn-PBA, CoCo-PBA and CrCr-PBA and 
their derivatives, and (iii) combining PBAs-based desalina-
tion battery with other systems to form hybrid desalination 
system.
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