## **Supporting Information for**

# Oxygen-Deficient β-MnO<sub>2</sub>@Graphene Oxide Cathode for High-Rate and Long-

# Life Aqueous Zinc Ion Batteries

Shouxiang Ding<sup>1</sup>, Mingzheng Zhang<sup>1</sup>, Runzhi Qin<sup>1</sup>, Jianjun Fang<sup>1</sup>, Hengyu Ren<sup>1</sup>, Haocong Yi<sup>1</sup>, Lele Liu<sup>1</sup>, Wenguang Zhao<sup>1</sup>, Yang Li<sup>1</sup>, Lu Yao<sup>1</sup>, Shunning Li<sup>1, \*</sup>, Qinghe Zhao<sup>1, \*</sup>, Feng Pan<sup>1, \*</sup>

<sup>1</sup>School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China

\*Corresponding authors. E-mail: <u>lisn@pku.edu.cn</u> (Shunning Li); <u>zhaoqh@pku.edu.cn</u> (Qinghe Zhao); <u>panfeng@pkusz.edu.cn</u> (Feng Pan)

# **S1 DFT Calculation Methods**

Valence electron configurations for elemental constituents were as follows:  $C-2s^22p^2$ ,  $O-2s^22p^4$  and  $Mn-3d^64s^1$ . The cutoff energy of 500 eV was chosen to optimize the geometry of all structural configurations and calculate the corresponding electronic structures. In the process of electronic and geometric optimizations, energies and residual forces were converged to  $10^{-5}$  eV and 0.02 eV Å<sup>-1</sup>, respectively. In the PBEsol+U(+J) calculations, the values of U=2.8eV and J=1.2eV were adopted from the previous work [S1]. The PBEsol + U(+J) scheme predicted a gap of 0.25 eV, which agrees well with the experimental result of 0.27 eV [S2]. Following the work of Kresse et al. [S3], we applied a collinear antiferromagnetic ordering for Mn ions in all our calculations.

To investigate the electronic structures in the presence of V<sub>0</sub>, we constructed a  $2 \times 2 \times 2$  supercell of  $\beta$ -MnO<sub>2</sub>. A  $8 \times 8 \times 11$  mesh of *k*-point grid determined by Monkhorst-Pack [S4] method was employed. According to the Wulff's construction of the equilibrium morphology calculated by Thomas and Khomotso [S5], the (110), (100), (101) and (001) surfaces of  $\beta$ -MnO<sub>2</sub> were selected to determine the difference in adsorption configurations and energies between graphene and graphene oxide. The lattice parameters of the  $\beta$ -MnO<sub>2</sub> slab were fixed to bulk values, while the structure of the adsorbed graphene was slightly stretched or compressed to attain a commensurate supercell. Tables S4 and S5 summarize the lattice mismatch for the corresponding configurations.



## S2 Diffusion Kinetics Calculation based on GITT Curves

Scheme S1 Schematic illustration for calculation of diffusion kinetics based on GITT curves

The solid diffusion coefficient of layered MnO<sub>2</sub> cathodes is conducted by Galvanostatic Intermittent Titration Technique (GITT) and calculated based on Eq. (S1),

$$\mathsf{D} = \frac{4L^2}{\pi\tau} \left(\frac{\Delta E_s}{\Delta E_t}\right)^2 \tag{S1}$$

where  $\Delta E_s$  (V) is the steady state potential change by the current pulse, and  $\Delta E_t$  (V) expresses the

potential change during the constant current pulse after eliminating the iR drop. L is ion diffusion length (cm), for compact electrode, it is equal to the electrode thickness.  $\tau$  is Relaxation time.

## **S3** Supplementary Figures and Tables



Fig. S1 SEM morphologies of  $\beta$ -MnO<sub>2</sub> and  $\beta$ -MnO<sub>2</sub>@GO



Fig. S2 TEM/ HRTEM images and EDS-mapping results of  $\beta\text{-}MnO_2$ 



Fig. S3 EPR spectra of  $\beta$ -MnO<sub>2</sub> and  $\beta$ -MnO<sub>2</sub>@GO



Fig. S4 XPS spectra of Mn 3s spectra of  $\beta$ -MnO<sub>2</sub>@GO and  $\beta$ -MnO<sub>2</sub>



Fig. S5 Comparison of rate and cycling performances of  $\beta$ -MnO<sub>2</sub>@GO electrodes in electrolytes with different Mn<sup>2+</sup> concentrations. ZSO represents the ZnSO<sub>4</sub>, and MSO represents the MnSO<sub>4</sub>

| Materials                                            | Rate performance                                                                                                                                                                   | References                                             |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
|                                                      | 322.6 mAh g <sup>-1</sup> at 0.1C, 94.6 mAh g <sup>-1</sup> at                                                                                                                     |                                                        |  |
| β-MnO <sub>2</sub> @GO                               | 10C, and with no capacity fading in 2000                                                                                                                                           | This work                                              |  |
|                                                      | cycles at 4C.<br>220 m Ab $c^{-1}$ at 0.1 A $c^{-1}$ 0.1 m Ab $c^{-1}$ at                                                                                                          |                                                        |  |
| yolk-shell MnO <sub>2</sub> @C                       | 2.59 mAng at 0.1 A g , 91 mAng at 2.0 A $g^{-1}$ , 93% capacity retention in 1000                                                                                                  | <i>ChemElectroChem</i> , 2020, 7:<br>1166–1171         |  |
| MnO <sub>2</sub> /acid-treated CNT<br>Nanocomposites | 197 mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup> , 87 mAh g <sup>-1</sup> at 5.0<br>A g <sup>-1</sup> , with 90% capacity retention in 500<br>cycles at 5 A g <sup>-1</sup>        | <i>Electrochimica Acta</i> , 2014, 133: 254–261        |  |
| β-MnO <sub>2</sub> @C hybrids                        | 130 mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup> , 40 mAh g <sup>-1</sup> at 2.0<br>A g <sup>-1</sup> , and with no capacity fading in 250<br>cycles at 0.2 A g <sup>-1</sup>      | Journal of Alloys and<br>Compounds, 2020, 827: 154273  |  |
| MnO <sub>x</sub> /PPy                                | 408 mAh g <sup>-1</sup> at 1C, 67 mAh g <sup>-1</sup> at 10C,<br>and with 70% capacity retention in 2500<br>cycles at 5C                                                           | ACS Appl. Mater. Interfaces,<br>2020, 12, 8: 9347–9354 |  |
| polyfurfural/MnO <sub>2</sub>                        | 500 mAh g <sup>-1</sup> at 0.05 A g <sup>-1</sup> , 95 mAh g <sup>-1</sup> at<br>0.5 A g <sup>-1</sup> , and with 90% capacity retention<br>in 160 cycles at 0.2 A g <sup>-1</sup> | ACS Appl. Mater. Interfaces, 2020, 12, 32: 36072–36081 |  |
| β-MnO <sub>2</sub>                                   | 300 mAh g <sup>-1</sup> at 0.3 A g <sup>-1</sup> , 170 mAh g <sup>-1</sup> at<br>0.9 A g <sup>-1</sup> , and with 35% capacity retention<br>in 200 cycles at 0.2 A g <sup>-1</sup> | ACS Appl. Mater. Interfaces,<br>2020, 12: 12834–12846  |  |
| $\alpha$ -MnO <sub>2</sub>                           | 215 mAh g <sup>-1</sup> at 0.5C, 126 mAh g <sup>-1</sup> at 10C,<br>and and with 68% capacity retention in<br>100 cycles at 6C                                                     | Angew. Chem. Int. Ed. 2012, 51:<br>933–935             |  |
| $\alpha$ -MnO <sub>2</sub> nanorod                   | 353 mAh g <sup>-1</sup> at 0.016 A g <sup>-1</sup> , 43 mAh g <sup>-1</sup> at 1.333 A g <sup>-1</sup> , and with 60% capacity retention in 1000 cycles at 83 mA g <sup>-1</sup>   | Journal of Power Sources, 2015,<br>288: 320-327        |  |

Table S1 Rate performances of manganese oxides in previous reports

|                                                  | 205 mAh g <sup>-1</sup> at 0.25 A g <sup>-1</sup> , 21 mAh g <sup>-1</sup> at | Low and of Fragment Chamister        |  |
|--------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|--|
| β-MnO <sub>2</sub>                               | $2.0 \text{ A g}^{-1}$ , and with 50% capacity retention                      | Journal of Energy Chemistry          |  |
|                                                  | in 1000 cycles at $0.2 \text{ Ag}^{-1}$                                       | 2021, 30. 303-375                    |  |
|                                                  | 260 mAh g <sup>-1</sup> at 0.1 A g <sup>-1</sup> , 130 mAh g <sup>-1</sup> at |                                      |  |
| $\alpha$ -MnO <sub>2</sub>                       | $2.0 \text{ A g}^{-1}$ , and with 50% capacity retention                      | Small, 2020, 1905842                 |  |
|                                                  | in 300 cycles at 0.5 A g <sup>-1</sup>                                        |                                      |  |
|                                                  | 130 mAh g <sup>-1</sup> at 0.05 A g <sup>-1</sup> , 78 mAh g <sup>-1</sup> at | Lower al of Engrand Storage 2020     |  |
| K <sub>x</sub> Mn <sub>8-x</sub> O <sub>16</sub> | $0.2 \text{ Ag}^{-1}$ , and with 90% capacity retention                       | 27 101120                            |  |
|                                                  | in 300 cycles at 0.1 A g <sup>-1</sup>                                        | 27, 101139                           |  |
|                                                  | $250 \text{ mAh g}^{-1}$ at 0.5C, 80 mAh g $^{-1}$ at 5C,                     | I Phys Cham C 2010 122               |  |
| Ce-doped MnO <sub>2</sub>                        | and and with 60% capacity retention in                                        | <i>J. 1 hys. Chem.</i> C, 2019, 123, |  |
|                                                  | 100 cycles at 5C                                                              | 22753-22741                          |  |
|                                                  |                                                                               |                                      |  |



Fig. S6 GCD curves of the  $\beta$ -MnO<sub>2</sub> electrode at different rate currents



Fig. S7 Electrode surface morphology of the  $\beta$ -MnO<sub>2</sub>@GO electrodes at different charge/discharge states

As shown in **Fig. S7**, upon discharging, a large number of flake-like products appear, which belong to the zinc sulfate hydroxide hydrate (ZSH, Zn4(OH) $_6$ ·ZnSO4·xH2O, JCPDS #44-0673 and 39-0688). This can be ascribed to the H<sup>+</sup> insertion into MnO<sub>2</sub> forming MnOOH and  $\beta$ -H<sub>x</sub>MnO<sub>2</sub>, thus leaving OH<sup>-</sup> in the electrolyte that interact with ZnSO4 and H<sub>2</sub>O to conform the ZSH attached on the surface of electrodes. The difference in ZSH by-products may be attributed to the loss of structural water during drying procedure. It is clearly observed from the SEM images that the ZSH phase appears on the surface of electrodes at discharge and displays a flake-like morphology. The reversible formation and elimination of ZSH during electrochemical reaction suggests that H<sup>+</sup> can insert and extract reversibly.



Fig. S8 Detailed analyses of the diffraction patterns in regions I to III of  $\beta$ -MnO<sub>2</sub>@GO at discharged state in Figure 3e to 3g



Fig. S9 XPS analyses of Mn 3s spectra of β-MnO<sub>2</sub>@GO at different charge/discharge states



Fig. S10 Structural evolution of  $\beta$ -MnO<sub>2</sub> during the process of cycling. (a) Electrochemical profile of  $\beta$ -MnO<sub>2</sub> cathode at 0.1 C. (b) Ex suit XRD patterns at selected points at different states



Fig. S11 SEM morphologies of  $\beta$ -MnO<sub>2</sub> cathodes during the process of cycling at varied states



Fig. S12 TEM/HRTEM analyses of  $\beta$ -MnO<sub>2</sub> at the discharged state



Fig. S5 GCD curves of  $\beta$ -MnO<sub>2</sub>@GO after 100 cycles at current of 1C

**Table S2** ICP results of  $\beta$ -MnO<sub>2</sub>@GO at the 100th cycle

| Sample  | CC/Zn | CC/Mn | Zn/Mn |
|---------|-------|-------|-------|
| 100-cha | 1.75  | 8.22  | 0.179 |
| 100-dis | 0.87  | 3.87  | 0.193 |

Table S3 Contributions of proton and Zn<sup>2+</sup> ions on electrode capacity delivery after long-term cycle

| Sample                 | Capacity                   | $\Delta Zn/Mn$ | e     | $\Delta H/Mn$ |
|------------------------|----------------------------|----------------|-------|---------------|
| β-MnO <sub>2</sub> @GO | 244.42 mAh g <sup>-1</sup> | 0.014          | 0.793 | 0.765         |



Fig. S14 HRTEM morphologies, diffraction patterns and EDS-mapping distributions of

 $\beta$ -MnO<sub>2</sub>@GO after 100 cycles (at the charged state), which indicates a formation of nanocrystalline Zn<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub> spinel phase



Fig. S15 HRTEM morphologies, diffraction patterns and EDS-mapping distributions of  $\beta$ -MnO<sub>2</sub>@GO after 100 cycles (at the discharged state), which indicates a formation of nanocrystalline Zn<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub> spinel phase

| hkl | A <sub>hkl</sub> | n <sub>hkl</sub> | n <sub>gr</sub> | $Mismatch = (n_{gr} \times A_{gr} - n_{hkl} \times A_{hkl})/(n_g \times A_{gr}), \%$ |
|-----|------------------|------------------|-----------------|--------------------------------------------------------------------------------------|
| 110 | 2.867            | 3                | 2               | -0.85                                                                                |
| 100 | 4.368            | 1                | 1               | -2.42                                                                                |
| 101 | 4.368            | 1                | 1               | -2.42                                                                                |
| 001 | 4.368            | 1                | 1               | -2.42                                                                                |

Table S5 Lattice mismatch between  $\beta\text{-}MnO_2$  and GO in direction B of the supercell

| hkl | $\mathbf{B}_{hkl}$ | $n_{hkl}$ | n <sub>gr</sub> | $Mismatch = (N_{gr} \times B_{gr} - N_{hkl} \times B_{hkl})/(N_g \times B_{gr}), \%$ |
|-----|--------------------|-----------|-----------------|--------------------------------------------------------------------------------------|
| 110 | 6.177              | 2         | 5               | -0.63                                                                                |
| 100 | 2.867              | 6         | 7               | 0.09                                                                                 |
| 101 | 5.225              | 1         | 2               | -6.40                                                                                |
| 001 | 4.368              | 4         | 7               | -1.65                                                                                |



**Fig. S16** DFT evaluation of the van der Waals interaction between graphene and  $\beta$ -MnO<sub>2</sub> (110), (101), (100) and (001) terraces with surface V<sub>0</sub>. *Ea* represents the adsorption energy



Fig. S17 EDS-mapping results showing the uniform distribution of Zn, O, and Mn elements in active material of  $\beta$ -MnO<sub>2</sub> electrode at 200 cycles at 1C



Fig. S18 EDS-mapping results showing the uniform distribution of Zn, O, and Mn elements in active material of  $\beta$ -MnO<sub>2</sub>@GO electrode at 200 cycles at 1C

## **Supplementary References**

- [S1] E. Cockayne, L. Li, First-principles DFT+U studies of the atomic, electronic, and magnetic structure of α-MnO<sub>2</sub> (cryptomelane). Chem. Phys. Lett. **554**, 53-58 (2012). https://doi.org/10.1016/j.cplett.2012.06.061
- [S2] A. Islam, R. Islam, K. Khan, Studies on the thermoelectric effect in semiconducting MnO<sub>2</sub> thin films. J. Mater. Sci. Mater. Electron. 16(4), 203-207 (2005). <u>https://doi.org/10.1007/s10854-</u>

005-0766-1

- [S3] C. Franchini, R. Podloucky, J. Paier, M. Marsman, G. Kresse, Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations. Phys. Rev. B 75(19), 195128(2007). <u>https://doi.org/10.1103/PhysRevB.75.195128</u>
- [S4] D. Chadi, Special points for Brillouin-zone integrations. Phys. Rev. B 16(4), 1746-1747 (1977). <u>https://doi.org/10.1103/PhysRevB.16.1746</u>
- [S5] T. Mellan, K. Maenetja, P. Ngoepe, S. Woodley, C. Catlow, R. Grau-Crespo, Lithium and oxygen adsorption at the β-MnO<sub>2</sub> (110) surface. J. Mater. Chem. A 1(47), 14879-14887 (2013). <u>https://doi.org/ 10.1039/c3ta13559d</u>