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Supplementary Tables and Figures 

 

Fig. S1 TEM image of MCS-12-900 

 

Fig. S2 TEM image of MCS-22-900 
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Fig. S3 Atomic content and relative percent of nitrogen from MCS-7-900 

 

Fig. S4 a High-resolution C 1s spectrum of MCS-7-900. b High-resolution O 1s 

spectrum of MCS-7-900 

 

Fig. S5 a, c N2 adsorption-desorption isotherms and pore size distribution of MCS-12-

900. b, d N2 adsorption-desorption isotherms and pore size distribution of MCS-22-

900 
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Fig. S6 Comparison of rate performances of MCS-7-750, MCS-7-900 and MCS-7-

1050 at various current densities 

 

Fig. S7 Comparison of cycling performances of MCS-7-750, MCS-7-900 and MCS-

7-1050 at 100 mA g-1 

 

Fig. S8 Comparison of Long cycling performances of MCS-7-750, MCS-7-900 and 

MCS-7-1050 at 1000 mA g-1 
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Fig. S9 Comparison of Long cycling performances of MCS-7-750, MCS-7-900 and 

MCS-7-1050 at 2000 mA g-1 

 

Fig. S10 CV curves of a MCS-7-750 and b MCS-7-1050 at 0.1 mV s-1 

 

Fig. S11 CV curves of a MCS-12-900 and b MCS-22-900 at 0.1 mV s-1 
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Fig. S12 Charge-discharge profiles of the MCS-7-900 electrode after pre-potassiation 

at the current density of 50 mA g-1 

 

Fig. S13 Long cycling performance of MCS-7-900, MCS-12-900 and MCS-22-900 at 

5000 mA g-1 

 

Fig. S14 A red LED light with the working voltage range of 1.8 V-2.0 V driven by 

one half cell with MCS-7-900 electrode and K metal as counter electrode 
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Table S1 Comparison of MCS-7-900 and other developed anodes about rate 

performance and cycling performance 

Materials Rate performance Cycling performance Refs. 

MCS-7-900 137.8 mAh g-1 at 2000 mA g-1  
169.6 mAh g-1 after 1000 

cycles at 2000 mA g-1  

This 

work 

CoP@CNFC 30.8 mAh g-1 at 2000 mA g-1 
56.7 mAh g-1 after 2500 

cycles at 180 mA g-1 
[S1] 

PI-700-P28 133 mAh g-1 at 2000 mA g-1 
119.5 mAh g-1 after 500 

cycles at 500 mA g-1 
[S2] 

NSC 102.5 mAh g-1 at 2000 mA g-1 
105.2 mAh g-1 after 600 

cycles at 2000 mA g-1 
[S3] 

RHC-1100 62.72 mAh g-1 at 1000 mA g-1 
103.77 mAh g-1 after 500 

cycles at 500 mA g-1 
[S4] 

Co-NC 80.2 mAh g-1 at 2000 mA g-1 
78.5 mAh g-1 after 1000 

cycles at 1000 mA g-1 
[S5] 

SC-700 124.7 mAh g-1 at 2000 mA g-1 
≈85 mAh g-1 after 300 cycles 

at 500 mA g-1 
[S6] 

N-PC 135 mAh g-1 at 1000 mA g-1 
≈111 mAh g-1 after 100 

cycles at 1000 mA g-1 
[S7] 

MEG-3 88 mAh g-1 at 1500 mA g-1 
152 mAh g-1 after 200 cycles 

at 100 mA g-1 
[S8] 

N, S-C/SnS2 

nanosheet 
104.5 mAh g-1 at 2000 mA g-1 

105.8 mAh g-1 after 200 

cycles at 2000 mA g-1 
[S9] 

SC-2 65.8 mAh g-1 at 1000 mA g-1 
80.8 mAh g-1 after 2000 

cycles at 500 mA g-1 
[S10] 

 

 

Fig. S15 CV curves at various scan rates of a MCS-7-750 and b MCS-7-1050 
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Fig. S16 CV curves at various scan rates of a MCS-12-900 and b MCS-22-900 

 

Fig. S17 Relationship between i(V)/v0.5 vs. v0.5 
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Fig. S18 a-h Capacitive charge-storage contributions under various scan rates 

 

Fig. S19 Equivalent circuit model. RS presents the equivalent series resistance; Zw 

presents the Warburg diffusion element; CPE1 presents capacitor elements from 

double layer and active material; Rleak is the leakage resistance associated with the 

electrode reaction in the bulk; CPE2 is capacitor elements from double layer and 

active material. 

 

Fig. S20 Rct values based on the ex-situ EIS plots of the discharge process and charge 

process in the sixth cycle 
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Fig. S21 Schematic diagram of parameter determination based on one step of 

galvanostatic intermittent titration at 1.72 V vs K+/K 

 

Fig. S22 a Diffusion coefficients of the MCS-7-900 electrode calculated from the 

GITT curves during discharging process. b Diffusion coefficients of the MCS-7-900 

electrode calculated from the GITT curves during charging process 

 

Fig. S23 Ex-situ XRD of three status, namely pristine, discharge to 0.01 V and charge 

to 3.0 V 
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Fig. S24 Theoretical simulations of K-adsorption in the pristine carbon structure. Top 

and side view of a single K atom adsorbed in the pristine carbon structure (a, b). Top 

and side view of Electron density differences of K absorbed in the pristine carbon 

structure (c, d). Not that, C, N and K atoms are presented by brown, silver and purple 

balls, respectively. Increased and decreased electron densities are presented by yellow 

and blue regions, respectively 

 

Fig. S25 Charge-discharge profile of PTCDA cathode at 50 mA g-1 
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Fig. S26 a CV curve of MCS-7-900//PTCDA at 0.1 mv s-1. b The CV curves of MCS-

7-900//PTCDA at various current densities. 

Table S2 Comparison of the as-obtained full cell and other reported full cells about rate 

performance and cycling performance 

Anode material Cathode material 
Rate 

performance 

Cycling 

performance 
Refs. 

MCS-7-900 PTCDA 
85.4 mAh g-1 at 

1000 mA g-1 

62.7 mAh g-1 

after 200 cycles 

at 1000 mA g-1 

This work 

Soft carbon K0.7Fe0.5Mn0.5O2 
48 mAh g-1 at 

100 mA g-1 

≈36 mAh g-1 

after 250 cycles 

at 100 mA g-1 

[S11] 

Soft carbon PI@G - 

≈51 mAh g-1 

after 80 cycles 

at 50 mA g-1 

[S12] 

Soft carbon P2-K0.44Ni0.22Mn0.78O2 
61.3 mAh g-1 at 

500 mA g-1 

≈62 mAh g-1 

after 200 cycles 

at 50 mA g-1 

[S13] 

Hard carbon s-KCO 
36 mAh g-1 at 

320 mA g-1 

≈56.8 mAh g-1 

after 100 cycles 

at 30 mA g-1 

[S14] 

Graphite K0.6CoO2 - 

≈27 mAh g-1 

after 5 cycles at 

3 mA g-1 

[S15] 

HC/CB K0.3MnO2 - 

46 mAh g-1 after 

100 cycles at 32 

mA g-1 

[S16] 

Graphite KNHCF 
16.4 mAh g-1 at 

200 mA g-1 

37.8 mAh g-1 

after 100 cycles 

at 10 mA g-1 

[S17] 

Graphite P3–K0.5MnO2 HSMS 
8.2 mAh g-1 at 

300 mA g-1 

40.2 mAh g-1 

after 50 cycles 

at 10 mA g-1 

[S18] 
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V2O3−x@rGO KVO@rGO 
40.7 mAh g-1 at 

200 mA g-1 

38.6 mAh g-1 

after 250 cycles 

at 100 mA g-1 

[S19] 

MoS2@rGO K2Fe[Fe(CN)6] - 

50 mAh g-1 after 

50 cycles at 50 

mA g-1 

[S20] 

KMO/CNT-30 KMO/CNT-30 - 

47.3 mAh g-1 

after 100 cycles 

at 100 mA g-1 

[S21] 
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