Supporting Information for

Mediating the Local Oxygen-Bridge Interactions of

Oxysalt/Perovskite Interface for Defect Passivation of Perovskite

Photovoltaics

Ze Qing Lin^{1, #}, Hui Jun Lian^{1, #}, Bing Ge¹, Ziren Zhou¹, Haiyang Yuan^{1, *}, Yu Hou, Shuang Yang^{1, *}, Hua Gui Yang¹

¹Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China

#Ze Qing Lin and Hui Jun Lian contributed equally to this work.

*Corresponding authors. E-mail: <u>hyyuan@ecust.edu.cn</u> (Haiyang Yuan), <u>syang@ecust.edu.cn</u> (Shuang Yang)

Supplementary Tables and Figures

The (001) surface of CsPbI₂Br is one of the thermodynamically most stable surfaces [S1], thus which is selected in our calculations. Considering the complexity and different terminal properties of CsPbI₂Br surface, we investigated the possibilities of different terminated CsPbI₂Br (001), i.e., PbIBr termination and CsI termination, by building the seven layers of CsPbI₂Br (001) supercell with 20 Å vacuum region (Fig. S1). The surface energies (γ) of all slab were calculated as the formula [S2]:

 $\gamma = (E \operatorname{surf} - N * E \operatorname{bulk} + \sum n i * \mu i)/2A$

where E_{surf} , E_{bulk} are the energies of PbIBr or CsI-terminated CsPbI₂Br (001) surface, bulk CsPbI₂Br, respectively. *N* is the number of sufficient bulk CsPbI₂Br units, μi is the chemical potential, and *A* is the area of the CsPbI₂Br (001). The more negative γ means the better stability of the surface. The calculated results show that γ of the PbIBr-terminated CsPbI₂Br (001) is more negative than that of CsI-terminated one (-0.43 eV *versus* -0.34 eV). This means that PbIBr-terminal CsPbI₂Br (001) is more stable and easier to be exposed during preparation, which could be the main exposed termination of CsPbI₂Br (001). Hence, in our calculations, the PbIBr-terminal CsPbI₂Br (001) was selected as our model.

Fig. S1 Optimized CsPbI₂Br (001) supercell models with (**a**) CsI-terminated and (**b**) PbIBr-terminated

Fig. S2 Atomic structure of optimized CsPbI2Br (001) surface with oxyacid anions with different central atoms

Fig. S3 Projected crystal orbital Hamilton population (pCOHP) between Pb and O atom in different oxyacid anions. The values of ICOHP calculated by the energy integral below Femi level indicated the interaction between silicate and Pb site is the strongest

Fig. S4 Charge density difference of oxysalt/CsPbI₂Br interface: (**a**) SiO_3^{2-} , (**b**) PO_4^{3-} , (**c**) SO_4^{2-} , (**d**) CO_3^{2-} and (**e**) NO^{3-}

Fig. S5 FTIR spectra of sodium silicate powders without and with perovskite components. The asymmetric stretch (v_{as}) peaks of silicate are highlighted by dotted lines

Fig. S6 Cross-sectional SEM of a typical CsPbI₂Br perovskite solar cell. The device structure adopted in this work is indium tin oxide (ITO) glass/tin (IV) oxide (SnO₂)/CsPbI₂Br/poly(3-hexylthiophene-2,5-diyl) (P3HT)/Ag

Fig. S7 PCE distributions of CsPbI2Br solar cells without and with oxysalt passivation

For each kind of device, the solid transverse lines in the boxes are the average PCEs, analysed from 20 devices, and the error bars show the highest and lowest PCE values.

Fig. S8 PCE distributions of CsPbI₂Br solar cells without and with different passivation materials

Fig. S9 (a) Na 1s and (b) Si 2p XPS spectra of SnO₂ and silicate-SnO₂ films

Fig. S10 XRD patterns of sodium silicate, SnO_2 and silicate- SnO_2 powders. SnO_2 and silicate- SnO_2 powders were scratched from the as-casted films. The concentration of sodium silicate in precursor solution was 0.1 M

Fig. S11 SEM images of SnO_2 films with and without silicate. Both films exhibit uniform morphology with full coverage of the ITO glass substrate

Nano-Micro Letters

Fig. S12 Transmission spectra of SnO_2 films without and with silicate. The optical transmittance of both samples is similar in the UV and visible region.

Fig. S13 AFM images of (**a**) SnO₂ and (**b**) silicate-SnO₂ films with an area of $5 \times 5 \mu m^2$. RMS represents root-mean-square roughness of the film

Fig. S14 Dark *J-V* characteristics of ITO/SnO2/Ag and ITO/silicate-SnO₂/Ag. Both films were spin-coated for 6 cycles to increase the film thickness.

Fig. S15 XRD patterns of CsPbI₂Br films deposited on SnO₂ films without and with silicate. The structure of CsPbI₂Br films deposited on both SnO₂ films can be indexed as cubic perovskite structure with preferred [100] orientation.

Fig. S16 SEM images of perovskites films deposited on SnO₂ films without and with silicate. Both CsPbI₂Br films have compact morphology with similar grain size

Fig. S17 UPS spectra of the SnO_2 film with a varied concentration of silicate salts. The dotted lines indicate the secondary electron cutoff position and the valance band onset of the films obtained by linear extrapolating the binding energy edge to the baseline.

Fig. S18 EQE spectra and integrated short-circuit current density of the control and silicate passivated devices

Fig. S19 Statistics of PCE distribution for control and silicate passivated PSC devices. For each type of device, the average PCE values are obtained from 20 individual cells.

Fig. S20 SCLC measurements of electron-only perovskite devices **a** without and **b** with silicate passivation. The device structure is ITO/SnO₂/CsPbI₂Br/PCBM/Ag. The measurements were carried out under dark conditions at room temperature.

Fig. S21 Operational stability measurement of control and silicate passivated CsPbI₂Br devices under continuous one-sun illumination (100 mW·cm⁻²) in N₂-filled glovebox.

Fig. S22 Thermal stability measurement of control device and silicate passivated devices heated to 85 °C in N₂-filled glovebox

Fig. S23 Long-term stability measurements of unencapsulated PSCs in dry ambient air. The relative humidity for the stability test is $\sim 15 \pm 3\%$.

Fig. S24 J–V characteristics of the FAPbI₃ solar cells with and without silicate passivation measured under AM 1.5G irradiation. The device configuration is ITO/SnO₂/FAPbI₃/Spiro-OMeTAD/Ag. Devices were measured under simulated AM 1.5G irradiation at the reverse scan.

Fig. S25 J–V characteristics of the MAPbI3 solar cells with and without silicate passivation measured under AM 1.5G irradiation. The device configuration is FTO/NiOx/MAPbI3/PCBM/BCP/Ag. Devices were measured under simulated AM 1.5G irradiation at the reverse scan.

Samples	<i>A1/(A1+A2)</i> (%)	τ ₁ (ns)	A2/(A1+A2) (%)	^τ ₂ (ns)
Control	51%	4.02	49%	15.65
Nitrate	44%	4.22	56%	20.22
Sulfate	42%	4.45	58%	26.71
Carbonate	42%	4.71	58%	30.09
Phosphate	41%	5.57	59%	30.54
Silicate	38%	5.90	62%	31.99

Table S1 Carrier lifetimes of CsPbI2Br films without and with oxysalt passivation obtained by fitting TRPL spectra

Table S2 Photovoltaic parameters of typical CsPbI2Br solar cells with different
oxysalt passivation

Devices	Jsc (mA/cm ²)	Voc (V)	FF	РСЕ
Control	15.14	1.16	0.70	12.35%
Nitrate	15.41	1.19	0.74	13.61%
Sulfate	15.51	1.23	0.78	14.80%
Carbonate	15.67	1.25	0.76	14.99%
Phosphate	15.76	1.29	0.76	15.41%
Silicate	15.83	1.33	0.80	16.84%

Devices were measured under simulated AM 1.5G irradiation at the reverse scan

Concentration	J _{SC} (mA cm ⁻²)	Voc (V)	FF	PCE (%)
w/o	15.14	1.16	0.70	12.35%
0.012 M	15.36	1.24	0.75	14.33%
0.025 M	15.71	1.30	0.78	15.97%
0.05 M	15.83	1.33	0.80	16.84%
0.1 M	14.22	1.28	0.76	13.83%

 Table S3 Photovoltaic parameters of typical CsPbI2Br solar cells with different concentrations of silicate in SnO2 layers

Devices were measured under simulated AM 1.5G irradiation at the reverse scan.

Jsc (mA cm ⁻²)	Voc (V)	FF	PCE (%)	Reference
15.86	1.36	0.80	17.26	This work
15.78	1.34	0.81	17.03	Nat. Commun. 2020, 11, 4237
16.34	1.334	0.801	17.46	Matter 2021, 4, 1
14.25	1.41	0.77	15.53	J. Am. Chem. Soc. 2020, 142, 9725
16.95	1.18	0.80	16.15	Nano Lett. 2019, 19, 5176.
16.82	1.15	0.75	14.69	Joule 2019, 3, 2485.
15.45	1.21	0.79	14.85	Nano Lett. 2019, 19, 6213.
15.86	1.32	0.75	15.50	ACS Energy Lett. 2019, 4, 2491.
14.00	1.28	0.78	14.00	Nat. Commun. 2019, 10, 4686.
15.30	1.30	0.81	16.20	Adv. Mater. 2019, 31, e1901152.

 Table S4 Comparison of the photovoltaic parameters of recently reported

 CsPbI2Brsolar cells

Supplementary References

- [S1] J. He, J. Liu, Y. Hou, Y. Wang, S. Yang et al., Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nat. Commun. 11, 4237 (2020). <u>https://doi.org/10.1038/s41467-020-18015-5</u>
- [S2] S. Tan, T. Huang, I. Yavuz, R. Wang, M. H. Weber et al., Surface reconstruction of halide perovskites during post-treatment. J. Am. Chem. Soc. 143, 6781-6786 (2021). <u>https://doi.org/10.1021/jacs.1c00757</u>