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Supplementary Figures 

 

Fig. S1 Cross-plane and in-plane thermal conductivities of PCCs. Spider web-like 

structure and concentric ring structure are parallel to the in-plane direction. 
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Fig. S2 POM images of 0.5 wt% a pure GO suspension and b GO suspension with 

0.135 M KOH 
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Fig. S3 X-Ray Diffraction (XRD) analysis of GO and freeze-dried rGO hydrogel 

(aerogel) 

As shown in Fig. S3, obvious differences can be observed from XRD results between 

GO and freeze-dried hydrogel (aerogel). After hydrothermal reaction of GO, the XRD 

peak of GO at ~10° disappeared, which demonstrated that GO was partially reduced 

during hydrothermal reaction [S1]. 

 

Fig. S4 Schematic diagram of unidirectional freeze casting for GO hydrogel. Schematic 

diagram of a unidirectional freeze casting device, b GO hydrogel was placed on a 

precooled metal block, and c frozen GO hydrogel 
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Fig. S5 SEM images of a GS, b, c sw-GS and d sw-GS/PW 
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Fig. S6 Thermal diffusivity (at 25 °C) of different PCCs at different filler loading 
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Fig. S7 Schematic diagram of commercial lithium-ion batteries used in thermal 

management application. Left: battery without wrap; Right: battery with wrap 

Finite Element Model  

The heat transfer processes of the three PCCs (RD/PW, GS/PW and sw-GS/PW 

composites) with different filler structures were modeled in Fenics (FEM) [S2]. A 

simplified model was employed to analyze the temperature and heat flux magnitude 

distribution of the three PCCs during heating. The heat sources and heat sinks were 

applied on the left and right surfaces of PCCs, respectively. The periodic boundary 

conditions were applied on the other surfaces. According to the previous test results and 

reported results, the κ of graphene oxide sheets and paraffin wax were 350 W/m·K and 

0.19 W/m·K, respectively. The filler (skeleton) content of three PCCs was ~10 vol%. 

In addition, as shown in Fig. S8, the transverse thermal conductivity values of the PCCs 

based on the model clearly followed the tendency of sw-GS/PW > GS/PW > RD/PW, 

which is different from experimental results (sw-GS/PW > RD/PW > GS/PW). This 

could result from the filler (sw-GS powder) retaining some of the interconnected 

structure of sw-GS in the RD/PW composites. However, in the FEM simulation model, 

randomly dispersed GO sheets were simulated as the fillers within the RD/PW 

composites. 
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Fig. S8 Simulated thermal conductivities of the PCCs based on the simulation model. 

The filler (skeleton) content is ~10 vol%. 
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