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HIGHLIGHTS

• The phase diagram of transition metal carbides (TMCs) is discussed.

• The physical and chemical property of TMCs is systematically summarized.

• The potential application and controllable synthesis of TMCs is discussed.

• A summary is provided to afford the principle to further investigation.

ABSTRACT As a new member in two-dimensional materials family, 
transition metal carbides (TMCs) have many excellent properties, such as 
chemical stability, in-plane anisotropy, high conductivity and flexibility, 
and remarkable energy conversation efficiency, which predispose them 
for promising applications as transparent electrode, flexible electronics, 
broadband photodetectors and battery electrodes. However, up to now, 
their device applications are in the early stage, especially because their 
controllable synthesis is still a great challenge. This review systematically 
summarized the state-of-the-art research in this rapidly developing field 
with particular focus on structure, property, synthesis and applicability of 
TMCs. Finally, the current challenges and future perspectives are outlined 
for the application of 2D TMCs.

KEYWORDS Two-dimensional transition metal carbides; Phase 
diagram; Superconductivity; Energy conversation and storage; Large-
scale synthesis
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1 Introduction

Ultra-thin two-dimensional (2D) nanomaterials, as a new 
kind of nanomaterials, have been widely concerned for a 
long time. This is because they have a special planar struc-
ture, where the horizontal size is beyond sub-micrometer; 
however, the vertical size limits in nanometer or even atomic 
level. As early as 200 years ago, it was found that there 
were some special layered minerals in nature, which can be 
peeled off to obtain a new lamellar structure [1]. In 2004, K. 
S. Novoselov, A. K. Geim and other collaborators reported 
the fabrication of graphite single layer named graphene by 
using a special scotch micromechanical stripping [2]. The 
graphene shows many unique properties, namely extraor-
dinary carrier mobility of up to 200,000  cm2 (V s)−1, the 
large specific surface area of 2630  m2  g−1, the transmittance 
of 97.7%, the Young’s modulus of 1 TPa and the thermal 
conductivity of 3000 W (m K) −1 [3, 4]. Ultra-thin 2D nano-
materials, as a representative of graphene, exhibit unique 
physical and chemical properties because the electrons are 
confined in 2D space. These excellent properties make ultra-
thin 2D nanomaterials enter the field of vision of research-
ers, ushering in the golden age of rapid development [5–11]. 
Since the discovery of graphene, more and more ultra-thin 
2D materials have been found and synthesized, including 
hexagonal boron nitride (h-BN), carbon nitride (g-C3N4), 
transition metal chalcogenides (TMDs), transition metal 
oxides (TMOs), transition metal carbides (TMCs), layered 
double hydroxides (LDHs), metal − organic frameworks 
(MOFs), phosphorene and other elemental 2D materials 
[12–15]. These materials not only enrich the types of ultra-
thin 2D nanomaterials, but also show a variety of properties 
due to the differences in composition and structure, which 
provide sufficient impetus for the follow-up research of ultra-
thin 2D nanomaterials.

In 2011, Gogotsi and Barsoum reported the synthesis of 
MXene, as a new member of 2D transition metal carbides 
(TMCs) [16]. The general chemical formula of MXene is 
 Mn+1XnTz (n = 1, 2, 3), where M is transition metal element, 
such as Ti, Sr, V and Ta, X is C or N, and T stands for F-, 
OH- and other functional groups. So far, there are more than 
70 members of the MXenes family reported. The MXene 
materials are typically prepared by selective etching the A 
layer (also named Al layer) with a high concentration of 
hydrofluoric acid using the MAX with layered hexagonal 

structure of ternary ceramic phase as the precursor [16]. 

Due to their 2D layered structure, good conductivity, stabil-
ity, hydrophilicity and unique in-plane anisotropic structure, 
MXene materials have attracted many attentions in recent 
years. However, the fundamental properties, potential appli-
cations and even the controllably synthesis of TMCs are still 
in their early stage. Previous review progresses are mainly 
focused on the energy storage, especially on Ti-based TMCs 
(also called MXenes). The phase diagram, property and syn-
thesis strategy of TMCs including Ti-based and other transi-
tion metal-based TMCs have rarely been overviewed. The 
scope of this review is shown in Fig. 1. We will introduce 
the structure, physical and chemical properties, the potential 
applications and finally, the preparation methods of typical 
TMCs including niobium carbide, vanadium carbide, molyb-
denum carbide and titanium carbide.

2  Structure and Property of Transition Metal 
Carbides

In 1973, Levy and Boudart found that the carbon atoms in 
tungsten carbide would change the electron distribution of 
tungsten atoms resulting in the catalytic property similar 
with that of platinum and other precious metals [17]. This 
discovery led to extensive research on other early transi-
tion metal carbides, nitrides and carbonitrides. With the 
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development of layered materials since 2004, the transition 
metal carbides (TMCs) recall its hot spot due to their many 
excellent dimensionality and structure-dependent proper-
ties. TMCs are mostly interstitial alloys formed by transi-
tion metal atoms and carbon atoms. Taking Mo-based TMCs 
as the example, the β-Mo2C and η-Mo3C2 of molybdenum 
carbide are orthogonal and the arrangement of Mo atoms 
in units is slightly different from that of hexagonal close-
packed (hcp). The crystal structure can be described as that 
Mo atoms occupy the lattice site with the formation of hcp, 
while carbon atoms occupy half of the octahedral interstitial 
positions. However, the α-MoC1-x has a face-centered cubic 
close-packed (fcc) crystal structure. In addition, Ti, Nb, V 
and Ta atoms in their TMCs all form fcc crystal structure 
[18]. These carbides are composed of two nested fcc lattices, 
one contains metal atoms and the other contains carbon 
atoms, which is similar to the NaCl crystal structure. The 
bonding configuration is usually formed through the hybridi-
zation between the 2 s and 2p orbitals of carbon atoms with 
the d orbitals of transition metals. With the increase in sp 
electrons, the parent metal structure gradually transfers from 
bcc crystal structure to hcp crystal structure, and then to fcc 
crystal structure. The lattice constant and bulk modulus of 
carbides have been calculated theoretically by Murnaghan 

equation, showing that the theoretical calculated values 
are in good agreement with the experimental values [19]. 
Recently, Frey et al. adopted a new model based on density 
functional theory-PU learning model, and studied 66 kinds 
2D single transition metal atoms-based TMCs and there are 
more than 800 kinds of MAX with different phases through 
high-throughput calculation. The results predicted that about 
111 kinds of MAX and 18 kinds of TMCs could be syn-
thesized with the high possibility (Table 1) [20]. Specially, 
14 of the 18 TMCs have the formation energies lower than 
200 meV  atom−1, which is below the threshold value, and 
the stability of 4 unstable TMCs  (W4C3,  Ta2C,  W3C2 and 
 Mo4C3) can also be improved by surface functionalization 
[21]. However, due to the low chemical activity and complex 
synthesis condition of these TMCs, until now, only the nio-
bium carbide, vanadium carbide, molybdenum carbide and 
titanium carbide have get a reasonable investigated. Besides 
the existence of the TMCs, Table 2 exhibits the property of 
the typical layered materials, including the TMCs. One can 
see that the new layered TMCs have many excellent prop-
erty, which would facilitate the development of the materials 
science. In the following, we introduce mainly the structure, 
synthesis, properties and applications of these four TMCs, 
which would inspire future studies.

2.1  Niobium Carbide

Among TMCs, niobium carbide has attracted much atten-
tion due to its excellent properties, such as high melting 
point (3610 °C), excellent chemical stability, high tough-
ness, high Young’s modulus and higher hardness than other 
TMCs [22, 23]. Niobium carbide also exhibits better electri-
cal properties, where its resistivity is as low as 4.6 μΩ cm at 
room temperature and will show superconductivity at 12 K 

Table 1  18 kinds of MXenes with high synthesis possibility [20]

MXene predicted to be stable

Hf4C3 Ta4N3 Sc3C2

Nb3C2 Ta2C Ti2N
Zr2C Hf4N3 Sc2C
Ta3C2 Ti4C3 W3C2

W4C3 Hf2C Nb2N
Zr4C3 Sc4C3 Mo4C3

Table 2  Basic parameters of the typical layered materials

Materials TMCs Graphene TMDs BP h-BN

Band gap (eV) 0 (Metallic) 0 (Metallic) 1.2 ~ 1.8  (MoS2) 0.3 ~ 1.5 6.07
Conductance (S/m)  ~  106 (MXene fiber)  ~  106 / 300 /
Critical temperature of Superconductor (K) 2 ~ 10 (Nb or Mo-based TMCs) 1.7 (Twist 

bilayer gra-
phene)

12  (MoS2@130 GPa) 7.5 (@5 GPa) /

Thermal conductance  (Wm−1  K−1) 48.4  (Mo2C) 3000 52 4.3–5.5 300
Young’s modules (GPa) 14.0 (MXene) 1000 230  (MoS2) 20 ~ 100 1160
Stability in ambient No Yes Yes No Yes
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[24]. Niobium carbide has a B1 type crystal structure (as 
shown in Fig. 2), and the vacancies only appear in the carbon 
sublattice. The composition of the ordered atom-vacancy 
crystal structure is close to  NbC0.38 [25]. There are different 
solid single-phase zones in the NbC system: solid solution 
of carbon in niobium(bcc), γ-Nb2C, β-Nb2C,  NbC1-x,  Nb6C5, 
NbC and  Nb4C3-x [26, 27]. γ-Nb2C has a hexagonal structure 
and can be transformed into ordered hexagonal β-Nb2C at a 
lower temperature.  NbC1-x has a NaCl-type crystal structure 
and can be transformed into  Nb6C5 with an ordered crys-
tal structure at 1050 °C. NbC also has a NaCl-type crystal 
structure, which can be regarded as two fcc lattice structures 
interspersed with each other. The atoms in NbC have octa-
hedral coordination, and carbon atoms occupy half of the 
octahedral gap.  Nb4C3-x is very similar to the ordered  V6C5 
crystal structure, but whether there is a stable  Nb4C3-x is still 
controversial. This phase may be produced by the peritectic 
reaction between NbC and  Nb2C [27].

2.2  Vanadium Carbide

The vanadium carbide with stoichiometric composition (VC) 
cannot be obtained under equilibrium conditions. It usually 
has extensive homology disordered δ-VC1-x  (VC0.65-VC0.90) 
crystallizes with a NaCl cubic structure. Carbon atoms in 
NaCl-type vanadium carbides can only fill the octahedral 

vacancies of the metal fcc sublattice partially, that is, there 
are structural defects. Under certain conditions, their pres-
ence may lead to atomic ordering, which is caused by the 
redistribution of nonmetallic atoms and structural vacancies 
at interstitial lattice positions. Due to its high concentration 
of structural vacancies, this non-stoichiometric interstitial 
compound can be used in the field of electronic materials. It 
is found that the ordering of carbon atoms and the formation 
of structural vacancies in vanadium carbide are accompanied 
by the increase in micro-hardness and electrical conductivity 
[28]. Shacklete et al. studied the effect of ordered-disordered 
phase transition on the resistivity of vanadium carbide single 
crystal. The results show that the resistivity of vanadium 
carbide in disordered phase is significantly higher than that 
in ordered phase. There are 6 solid single-phase zones in 
the VC system: VC, α-V2C, β-V2C,  V4C3,  V6C5 and  V8C7, 
as shown in Fig. 3 [29]. Chong et al. systematically studied 
the stability, electronic structure and anisotropic mechani-
cal properties of VC binary compounds by first-principles 
calculation, demonstrating their potential applications [30].

In the crystal structure of VC, each unit cell contains 8 
atoms (4 V atoms and 4 C atoms).  V4C3 is similar to VC, 
but each cell has one C atom vacancy and 7 atoms, includ-
ing 4 V atoms and 3 C atoms. The appearance of natural 
carbon vacancy in  V8C7 makes the space group become 
 P4332, and the maximum number of atoms in a unit cell 
is 60 (32 V atoms and 28 C atoms). But the structure of 
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 V8C7 is still cubic. The lattice parameters of  V4C3,  V8C7 
and VC are 8.219, 8.315 and 8.305 Å, respectively. The 
lattice constant of  V4C3 is less than VC, which should be 
due to the doping of carbon vacancies. On the other hand, 
the formation of natural carbon vacancies will change 
the space group in the actual  V8C7 lattice, resulting in a 
slightly larger lattice constant [30]. The cohesive energy 
of VC binary phase increases in the following order: 
 V6C5 <  V8C7 < VC < α-V2C <  V4C3 < β-V2C [30]. All vana-
dium carbides exhibit metallic property because of their nar-
row band gap at Fermi level. Near the Fermi level, the shape 
of the energy density curve of all VC compounds is similar 
to that of the V-d state, indicating that the d band of V atom 
dominates the Fermi level. The chemical bond of VC binary 
compound is mainly VC covalent bond, but it also has ionic 
and metallic properties, which makes vanadium carbide have 
a high melting point, high mechanical modulus, high hard-
ness and good electrical conductivity [30]. Due to its high 
hardness, high melting point, excellent wear resistance, low 
friction coefficient and good corrosion resistance, vanadium 
carbide is often used to improve the life of mechanical com-
ponents in tribological applications [32].

2.3  Molybdenum Carbide

Molybdenum carbide has five different crystal structures: 
α-MoC1−x, α-Mo2C, β-Mo2C, γ-MoC and η-MoC [33]. For 
α-Mo2C, as shown in Fig. 4, two layers of Mo atoms are 
arranged in an AB structure, and a layer of carbon atoms is 
sandwiched in the middle, occupying octahedral center [34]. 
It is equivalent to that the Mo atoms are closely arranged in 
the hexagonal form and the carbon atoms are distributed in 
the octahedral gap with a Z-shaped structure. The lattice 
of Mo atoms is deformed because the carbon atoms devi-
ate from the center of the gap, thus forming an orthogonal 
crystal structure. For β-Mo2C, the Mo atoms are arranged in 
a strict close-packed hexagonal form, and the carbon atoms 
still occupy 50% of the octahedral gap. Thus, the distribution 
of carbon atoms has a certain randomness [35]. The α phase 
is stable at room temperature, while the β phase is stable at 
high temperature and metastable at room temperature and 
can only exist stably above 1960 °C. Recently, Liu et al. 
reported that under the irradiation of electron beams, the 
carbon atoms in  Mo2C would migrate resulting in that  Mo2C 
change from α phase to β phase [35]. As regarding to the 
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density of states of β-Mo2C and α-Mo2C [36], the total den-
sity of states is mainly composed of s, p orbitals of C and d 
orbital of Mo. Furthermore, there is no band gap near Fermi 
level indicating the metallicity of molybdenum carbide [36]. 
Molybdenum carbide has strong absorption for a large range 
of light, where the molybdenum carbide thin films have 
a uniform absorption in the range of 500–2000 nm [37]. 
Molybdenum carbide is a kind of saturated absorber. The 
absorptivity of molybdenum carbide to a certain wavelength 
decreases with the increase in light intensity. When the light 
intensity increases to a certain value, it is transparent to 
that wavelength. In this case, when molybdenum carbide is 
made into a grid with various periodic widths, and the grid 
is made into a transistor with  MoS2 channels and electrodes, 
the device has a good response rate and a high light–dark 
current ratio in the range of 400–1400 nm [38].

2.4  Titanium Carbide

Titanium carbide is a carbide with a wide homogeneity 
(from  TiC0.48 to  TiC1.00). The synthesis conditions will affect 
the ordered arrangement of vacancies in the carbon sublat-
tice, leading to the appearance of non-stoichiometric  TiCx, 
thereby resulting in the redistribution of carbon atoms and 
structural vacancies, and forming various ordered structures 
[40]. When the carbon vacancies are randomly distributed, 

the disordered TiC compound forms a cubic NaCl crystal 
structure. When the carbon vacancies are distributed in an 
orderly manner, there are two stable ordered titanium car-
bide phases, one is the cubic phase and the other is the tri-
angular phase [41]. TiC with NaCl cubic crystal structure 
(as shown in Fig. 5) is the most common phase of titanium 
carbide and has been widely studied. The results show that 
the lattice spacing of ordered cubic phase  Ti2C (space group 
Fd3m) is twice as large as that of disordered titanium carbide 
[42, 43]. The  Ti6C5 phase is a stable ordered phase, and also 
a non-stoichiometric ordered phase of all IV and V group 
transition metal carbides [40]. Khaenko et al. demonstrated 
the existence of rhombohedral  Ti8C5 [44]. Through grinding 
and polishing of titanium carbide, Dzhalabadze et al. found 
that 6H-type ordered titanium carbide with fcc lattice was 
formed on the surface [45]. In the process of the deposition 
of diamond films on titanium alloy substrate, Li et al. also 
found 6H-type titanium carbide at the interface [41].

In 2011, MXene, represented by  Ti3C2Tx, entered the field 
of vision of researchers, and the research on titanium car-
bide rose again and expanded to various fields. The struc-
tural study of titanium carbide based on  Ti3C2Tx and  Ti2CTx 
MXene is also carried out gradually (as shown in Fig. 5). 
Through the heating treatment of  Ti3C2Tx MXene, it was 
found that  Ti3C2Tx has been significantly transformed into 
cubic TiC at 1100 °C. As the temperature increases, free C 
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with permission from Ref. [39]. Copyright 2001, American Physical Society



Nano-Micro Lett.          (2021) 13:183  Page 7 of 34   183 

1 3

is lost due to the conversion of  CO2/CO, and holes appear 
in the accordion layered structure. When the heat treatment 
temperature reaches 1250 °C,  Ti3C2Tx MXene completely 
transforms into cubic TiC [44].

3  Synthesis of Transition Metal Carbides

Although TMCs exhibit many excellent properties, the 
controlling synthesis is still in its infant. There are a few 
issues that need further investigation. During the synthesis 
of TMCs, the production of surface pollutants will block 
the active sites and cavities, resulting in a suppressed elec-
trocatalytic activity. Normally, the traditional preparation 
methods of TMCs are usually based on solid–solid reac-
tion or gas–solid reaction, that is, the directly pyrolysis of 
metal carbonyl compounds or the reaction of metal/metal 
oxides with C source. However, at relatively high tem-
perature, the aggregation or overgrowth of TMCs during 
pyrolysis leads to the decrease in electrochemical reaction 
active sites and electrocatalytic activity. So far, researchers 
have been committed to enhance the electrocatalytic activ-
ity through the engineering of structures and interfaces, 
including nanostructures, doping, morphology controlling 

and the introduction of various carbon-based materials. To 
sum up, the reasonable design of the preparation process 
is essential to maximize the exposure of the active sites 
of TMCs in the process of efficient electrochemical reac-
tion [48].

Besides the particle-like TMCs utilizing in catalytic and 
energy storage fields, film is another fashion of TMCs, 
where the solid materials have tiny dimensions in one 
dimension. Because the thickness is small, the proportion of 
surface particles is large, and the continuity of the structure 
is restricted by the surface interface, the properties of the 
thin films are quite different from those of the bulk materi-
als including [49]: the decreases of melting point [32]; the 
selective projection and reflection of light [50]; the genera-
tion of surface energy level and surface magnetic anisotropy 
[51]; the varied critical temperature of superconductivity 
[52]; and the generated tunnel current in the direction of 
the thickness [53]. With the dimensionality decrease from 
three-dimensional to two-dimensional, the few-layered gra-
phene and  MoS2 display many unique properties, which are 
quite different with their bulk states, such as higher car-
rier mobility and field modulated effect [53, 54]. Due to the 
high melting point of most carbides, the TMCs materials can 
be hardly prepared by directly thermal evaporation, while 
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electron beam evaporation has been used in the preparation 
of TiC/TiB2 films [49]. Up to now, some typical methods 
have been used to prepare the TMCs.

3.1  Chemical Exfoliation

Chemical exfoliation is that it uses HF and LiF to selec-
tively etch the A layer of the parent phase MAX with three-
dimensional layered structure to realize the preparation of 
carbides, nitrides and carbonitrides, where M is transition 
metal (Cr, Ti, V, Cr, Zr, Nb, Mo, Hf or Ta), A is mostly 
IIIA or IVA group elements (Al, Si, etc.), and X is C or 
N [55]. In order to highlight the similarity between the 
product and graphene, Naguib et al. named it with MXene. 
At present, the general process of synthesizing MXene by 
chemical exfoliation mainly includes: Max precursor syn-
thesis, etching and exfoliation. The schematic diagram of 
the process of preparing MXene by chemical exfoliation is 
shown in Fig. 6 [16]. Taking  Ti3AlC2 as an example, Naguib 
et al. reported a method to remove Al layer from  Ti3AlC2 

without destroying the layered morphology. It was found 
that the exfoliated  Ti3C2 with large interlayer distance can be 
obtained by treating  Ti3AlC2 powder with 50% HF aqueous, 
and then, few-layered  Ti3C2 flakes can be prepared through 
ultrasonic treatment in methanol [16] (Fig. 7).

Many aluminum-based MAX phases are synthesized at 
a temperature above 1300 °C [60]. Most of the M-A bonds 
in the layered MAX precursor phase are metal bonds or 
covalent bonds, which rules out the possibility of produc-
ing MXenes by mechanically shearing their parent phase 
MAX. Element A can be selectively etched using elec-
trochemical reactions which take place in an acidic solu-
tion or an alkaline solution [61]. Recently, another type 
of layered solids has also been used as precursors, which 
is (MC)nAl3C2 and (MC)n(Al, Si)4C3; for example,  Al3C3 
and (Al, Si)4C4 were etched to obtain  Zr3C2Tx and  Hf3C2Tx 
[62]. However, except for  Ti3SiC2, only the Al-contain-
ing MAX phase was successfully etched to synthesize 
MXene. The experiments also show that the MAX phase 
with larger n atom and larger M atom mass often requires 
longer etching time and more corrosive solution, which 
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may be due to the large number of M valence electrons 
[63]. Etching conditions usually depend on the chemical 
structure of the parent phase. For example, if 50 wt% HF 
is used for etching  Ti2AlC and  Cr2AlC, the sample will 
complete dissolute. Although  Ti2CTx can be obtained by 
reducing the concentration of HF to 10 wt%, it still not 
works on  Cr2AlC [64].

In order to avoid or minimize the use of concentrated HF 
due to its very strong corrosive, a few other synthetic path-
ways have been proposed. One of the most widely methods 
uses a mixture of hydrochloric acid (HCl) and fluoride salts. 
Using fluorides (LiF, NaF, KF and  NH4F) and HCl solu-
tion, it was found that the  Ti3AlC2 can be effectively etched 
and exfoliated to produce layered  Ti3C2 MXene [64–67]. 
Alhabeb studied the etching effect under different molar 
ratio of HCl to LiF/HCl, and found that the MXene obtained 
by chemical exfoliation includes  Ti2CTx,  Ti3C2Tx,  V2CTx, 
etc., where  Tx is a surface atom or atomic group, such as O, 
OH and F [68]. The surface hydrophilicity, conductivity and 
other physical and chemical properties of MXene prepared 
by etching method have a great relationship with the choice 
of etchant and the process. For example, etching with HF 
will make the surface of MXene mainly contain fluoride 

functional groups, but LiF-HCl etching will make MXene 
surface with oxygen-containing functional groups [69].

Similar to titanium-based TMCs, vanadium-based 
TMCs can also been prepared through this chemical exfo-
liation [70, 71]. He et al. used the mixture of NaF and 
HCl as an etchant to chemically strip  V2AlC. The obtained 
layered  V2C MXene has a high specific surface area of 
19.3  m2  g−1 [72]. Zada et al. proposed a new chemical 
stripping method for large-scale preparation of MXene, 
which proves that the algae extract can effectively inter-
calate and strip  V2AlC, avoiding the use of traditional HF 
and other dangerous etchants, and has the advantages of 
environment friendly and low cost [50]. Up to now, the 
main method to prepare  V2C MXene is chemically etch-
ing. However, the formation energy of  V2C from  V2AlC is 
relatively high, the complete removal of Al layer in  V2AlC 
is difficult, and thus, the final  V2C MXene usually contains 
a certain amount of unreacted  V2AlC. Therefore, the con-
version efficiency of  V2AlC to  V2C needs to be improved, 
which is of great significance for the further application 
of  V2C MXene [73]. Guan reported that the purity of  V2C 
MXene can be up to 90% when using the mixed solution 
of LiF and HCl to treat  V2AlC [74]. The Zr- and Nb-based 
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TMCs have also been synthesized. Zhou synthesized two-
dimensional  Zr3C2 MXene by the similar chemical exfolia-
tion using layered  Zr3Al3C5 as parent phase MAX. It was 
found that  Zr3C2 MXene has better structural stability at 
high temperature, compared with that of  Ti3C2 MXene, 
suggesting its potential advanced application [62]. Xin 
studied the effect of surface functional groups on the work 
function of  Nbn+1Cn MXene through density functional 
theory. The results show that the terminated F and O atoms 
will increase the work function of  Nbn+1Cn MXene, while 
the OH and  OCH3 groups will decrease its work func-
tion, indicating its widely potential application in elec-
tronics [75, 76]. Pang used a new, fluorine-free, concise 
and rapid synthesis method to prepare one-dimensional 
 Nb2CTx nanowires. The synthesis process includes a two-
step etching process: the first is hydrolysis, and the sec-
ond is 3D electrode thermally assisted electrical etching. 
With strong stirring, the parent phase MAX creates gaps 
on the TiC surface and splits into small pieces, the lateral 
size of which is reduced from 10 ~ 30 to 1 ~ 5 μm. Under 
ultrasonic treatment, a shorter etching time can make the 
MAX-MXene composite produce nanowire “shred effect” 
[77].

The chemically exfoliation has also been used to syn-
thesize the multi transition metal-based TMCs. Pinto et al. 
prepared the two-dimensional bimetallic TMCs  (MoxV4-xC3 
MXene) by selectively etching Al from the  MoxV4-xAlC3 
precursor. Unlike the reported ordered bimetallic carbides 
 Mo2TiC2 MXene and  Mo2Ti2C3 MXene, the Mo and V lay-
ers in this  MoxV4-xC3 MXene exist in the form of solid solu-
tion. By changing the precursor composition, four different 
types of  MoxV4-xC3 MXene with x = 1, 1.5, 2 and 2.7 have 
been obtained [78]. However, due to the difficult synthesis 
of stable MAX precursors, many predicted TMCs MXenes 
have not been successfully synthesized. For example, MAX 
precursors for  Cr3N2,  Mo3N2,  Hf3N2 and  Cr3C2have not been 
reported. On the other hand, even some MAX phase can 
be synthesized; the chemically exfoliation also faces chal-
lenge because the as-prepared TMCs MXenes also can be 
destroyed and solved in the hydrofluoric acid aqueous. For 
example, although the MAX phase of  Cr2AlC was synthe-
sized long time before, the  Cr2C MXenes was yet well pre-
pared [79]. It was found that the samples can be dissolved 
after a few hours even the etchant concentration has been 
greatly diluted [80].

Except the etchant, the used dispersion solution is 
also important, which can affect the size and the stabil-
ity of the exfoliation flakes. It was found that the yield is 
quite low when directly stripped by ultrasound in etchant 
[81, 82]. Recently, it was reported that  Ti3C2 MXene and 
 (Mo2/3Ti1/3)3C2 MXenes can be stripped by polar organic 
molecule dimethyl sulfoxide (DMSO) [83, 84], but it has 
no obvious effect on other TMCs-based MXene. Tetrabuty-
lammonium hydroxide (TBAOH), which is commonly used 
for stripping other two-dimensional materials [85], has also 
been successful in stripping  V2C MXene and  Ti3CN MXene 
with good exfoliation and stability [86].  Nb2C MXene can 
also be stripped in isopropylamine [87].

In summary, the etchant solution and the dispersion solu-
tion play the key role in the chemical exfoliation. Although 
using the fluoride salts can somehow decrease the dangerous 
of the protocol, the yield and the size of the MXene flakes 
are still need further improve. The dispersion solution is 
another important factor, which not only affects the exfo-
liation rate, but also affects the stability of the as-prepared 
MXene, indicating that more efforts are still needed.

3.2  Chemical Vapor Deposition

Chemical vapor deposition (CVD) is another method which 
can grow film with large scale and high quality, thus has 
been widely used in industry. To grow film by CVD, the 
sources are usually supplied with the formation of gas, 
which can be easily controlled. However, recently, consid-
ering the rare and expensive gas source of transition metal, 
the traditional CVD has been modified; for example, the 
gas source of transitional metal was supplied by pre-heating 
its corresponding transition metal oxide. By this modified 
CVD method, the high crystallinity  MoS2 films have been 
grown [88, 89]. The products obtained by this method are 
very different from those obtained by chemical exfoliation, 
where the source molecular would react and deposited on 
the growth substrate. Under high temperature, the molecular 
or cluster of the samples would migrate and re-organized to 
form film with high quality, such as singe-crystal-like film 
or flakes. Therefore, its fashion is quite different from the 
sample prepared by chemical exfoliation and has yet named 
with MXene.
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In 2015, Xu et al. reported for the first time the growth 
of high-quality ultra-thin TMCs crystals  (Mo2C supercon-
ducting crystals) by CVD method using double-layer metal 
foils (copper, copper/transition metal) as substrates; By 
these methods, Xu et al. also grown TaC and WC thin 
films [90]. Firstly, the Cu/Mo foil laminate was heated to 
above 1085 °C (Cu melting point) in hydrogen, and then, 
the Cu metal would melt and form a uniform liquid Cu 
film on the Mo substrate. Methane was introduced at a 
low flow rate to form  Mo2C crystals on the surface of the 
liquid Cu. The top liquid copper layer plays an important 
role in the growth process. On the one hand, it acts as a 
catalyst to decompose methane into carbon atoms. On the 
other hand, it acts as a channel to control the diffusion of 
Mo atoms from the Mo foil to the surface of the liquid Cu. 
The results show that ultra-thin  Mo2C crystals are formed 
on the surface of Cu by the reaction of C atoms and Mo 
atoms. Once the growth is finished,  Mo2C can be further 
transferred to any target substrate by etching Cu, which is 
similar with the transferring of graphene [91]. However, it 
should be noted that the thinnest  Mo2C film is composed 
of at least six layers of  Mo2C rather than a monolayer film, 
suggesting that the growth of monolayer film needs further 
optimization [90].

Geng et al. reported an one-step directly growth of  Mo2C 
where its size can be grown as large as centimeter [92]. 
Through controlling investigation, it was found that there is 
no graphene layer formed with low methane flax. However, 
at higher methane flax, the graphene would firstly form on 
the surface of liquid Cu, and the migrated Mo atoms would 
go through the graphene layer and form the  Mo2C cluster 
on the surface of graphene. Thus, the underlayer graphene 
would work as a buffer layer during the growth and guild 
the further growth of  Mo2C crystal with its preferable mor-
phology. Furthermore, the graphene layer would also block 
the migration of Mo atoms, resulting in the thin of  Mo2C 
crystal (about 8.32 nm). If there is no graphene layer, the 
as-grown  Mo2C crystal can be as thick as 237 nm. In addi-
tion, the thickness of  Mo2C crystal can be tuned by vary-
ing the thickness of cooper layer, where the kinetics of Mo 
diffusion across the Cu layer can be modulated. The thin-
nest  Mo2C crystals with thickness of 9.5 nm corresponding 
to 20 layers were obtained [93]. With the similar method, 
Zhang et al. placed the V foil, Cu foil and W foil in order. 
At higher temperature, the Cu foil would be melted on the 
surface of W foil; however, the V foil is still solid state. By 

controlling the temperature and methane flax, the VC flakes 
can be obtained on the surface of Cu foil and its thickness is 
about 12 nm [94]. By increasing the flux of hydrogen flax, it 
was found that the morphology of VC crystal would evaluate 
from continue film to branch shape, suggesting the etch-
ing role of hydrogen. Interestingly, although the W foil was 
employed as the substrate, there was no WC crystal formed. 
As a comparison, the researchers also found that there are no 
crystal-like VC flaks but only dense VC polycrystalline film 
formed when using Cu foil/V foil as the source, due to the 
large amount of migrated V ions on the Cu surface.

Ikenoue et al. prepared the uniform  WC1-x film on the 
substrate surface by mist CVD method, where the  WCl6 
acetonitrile solution was carried into the furnace by Ar/H2 
mixture gas. When the temperature is higher than 650 °C, 
 WC1-x begins to form, and with the increase in preparation 
temperature, the element ratio of C/W is gradually close to 
1. Mechanical characterization shows that the hardness and 
Young’s modulus of  WC1-x films grown at 750 °C are 25 and 
409 GPa, respectively [97]. Atomic layer deposition has also 
been used to prepare NbC thin films by employing  NbF5 and 
 NbCl5 as the raw materials, TMA as a carbon source and 
reducing agent. The NbC film is amorphous with a thickness 
of about 60 ~ 70 nm. If the film is thicker, NbC nanocrys-
tals with a diameter of 15 nm will be formed. SQUID mag-
netometer measurements show that the 75-nm-thickness 
NbC film displays superconducting behavior where its tran-
sition temperature is about 1.8 K [52].

Carbide films with different compositions which synthe-
sized by CVD, such as Ti  (CxNy), TiC/TiN, TiC/Al2O3, TiC/
TiB2 and TiC/Al2O3/TiN multilayer films, have been devel-
oped and applied [98]. However, some problems have been 
found in the process of gas-phase synthesis: the synthesized 
carbides are usually polluted by the pollutant produced by 
the pyrolysis of carbonaceous gases. The pollutants block 
the pores, wrap the active sites on the surface of the carbides, 
which are difficult to be eliminated. In addition, most gas-
phase synthesis processes are not only tedious and complex, 
but also involve the use of expensive and toxic reagents, such 
as gaseous molybdenum precursors, which are harmful to 
organisms and the environment. Thirdly, the current reaction 
toward single-crystal TMCs film is usually carried out under 
the assistant of Cu and high temperature. Considering the 
plasma or laser treatments may help to improve the activity 
of transition metal or the carbon source, the growth tem-
perature may decrease such as growing by plasma-assisted 
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chemical deposition or laser-assisted chemical deposition. 
In addition, the development of the transition metal-based 
organic gaseous precursor may help to grow the TMCs film 
by metal–organic chemical vapor deposition, which can fur-
ther optimize the growth condition.

3.3  Temperature‑programmed Reduction

To improve the catalytic property of TMCs, one of the strat-
egies is that synthesize TMCs with high surface area. With 
the developing, some methods have gradually developed, 
including gas-phase reactions that occur using gaseous pre-
cursors of metal compounds, reactions between gaseous 
reactants and solid metal compounds, and thermal decom-
position of metal precursors. Among them, the temperature-
programmed reduction (TPR) developed by Boudart et al. 
has a broad prospect [99]. So far, almost all the work has 
been focused on the synthesis of molybdenum and tungsten 
based carbides, and few other transition metal carbides have 
been studied. However, TPR has broad research space in 
the synthesis of binary and ternary early transition metal 
carbides used in the field of catalysis, due to its easily syn-
thesis condition [100]. It was found that below 1500 K, the 
mixture of Mo and C has the four phases: Mo, β-Mo2C, 
α-MoC1-X and C, which depends on the relative content 
of the two components [101]. Through the study of Teix-
eira, the synthesis temperatures are 1170 K for both NbC 
and vanadium carbide [102–104]. However, to synthesize 
the TaC, the temperature should increase to 1220 K [105]. 
Directly carbonizing metal has also been studied, where a 
W/C (10 nm/20 nm) planar heterostructure was pre-prepared 
by magnetron sputtering. Then, the original crystallization 
of W/C heterostructure was studied in the temperature range 
of 300 to 1200 °C. It is found that the nucleation process 
of reactive synthesis of metal carbides is realized by two-
step mechanism. Firstly, the amorphous intermediate with 
spinodal structure is formed by an amorphous precursor, and 
then, nucleation of amorphous intermediate occurs [106].

Besides the transition metal was used as the source, John 
et al. demonstrated that the TMCs can also be synthesized 
by employing vanadium, niobium, tantalum, molybdenum, 
tungsten and other binary or ternary oxides as transition 
metal raw materials. During the TPR process, it seems that 
it is easier to synthesize carbides for the ternary oxides of V 
group and VI group, because either the reaction rate is faster 

or the synthesis temperature is lower [100]. Post-annealing 
treatment has also been carried out. After post-annealing at 
1500, 1600, 1700 and 1800 °C for 2 h, it was found that the 
lattice constant and average grain size of ZrC increased. The 
crystal grain orientation changed and the crystallinity of ZrC 
increased with the annealing temperature; at the same time, 
the structural defects decreased and the hardness decreased 
slightly [107]. Sun et al. have synthesized high-quality and 
high-density TaC through the high-pressure high-tempera-
ture (HPHT) sintering method. Under a pressure of 5.5 GPa, 
the pre-compressed TaC powder is heated to 1400 °C with 
a temperature increase rate of 150 °C  min−1. After holding 
for 20 min, the sample was quenched to room temperature 
at a cooling rate of 150 °C min −1. The Vickers indentation 
test shows that the TaC sample has a mechanical strength of 
20.9 ± 0.5 GPa, which is about 35% higher than the reported 
data [108].

To prepare the TMCs film by the TRP, polymer-assisted 
deposition (PAD) has been employed where the transition 
metal ion would first bind with polymer. Zou et al. prepared 
the Ti, V or Ta precursor by binding these ions with EDTA 
and PEI polymer, as shown in Fig. 8 [109]. Through anneal-
ing the spin-coated precursor, the TiC, VC and TaC films 
have been prepared. Especially, it was found that the as-
prepared TMCs film has high quality and epitaxial on the 
sapphire substrate, where its grain size and roughness are 
50 and 3.5 nm, respectively. Further studying shows that 
the hardness and Young’s modulus of TiC films are 21.27 
and 413 GPa. The TiC film shows a semiconducting behav-
ior, where its resistivity at room temperature is about 372 
μΩ cm. By the similar method, the uranium dicarbide films 
have also been epitaxially grown on yttria-stabilized zirconia 
substrate [110]. The investigation exhibits that by controlling 
the precursor and the annealing progress, it was able to pre-
pare TMCs film with high quality. Considering the low cost 
and high yield of spin-coating technology, this method can 
grow TMCs with large scale. However, controlling binding 
the transition metal ions with polymer is still a challenge, 
the binding rate needs further optimization.

3.4  Magnetic Sputtering

Magnetic sputtering is another kind method to grow 
film with large scale, which has also been utilized to 
grow TMCs films. Due to the high wear resistance, 
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conductivity, hardness and oxidation resistance, niobium 
carbide has been well studied than other TMC materials 
[23, 111–113]. By DC reactive magnetron sputtering using 
pure Nb target, the effects of deposition rate, chemical 
bonding, phase composition, microstructure and internal 
stress on the properties of the  NbCx films have been stud-
ied [23, 114]. The results show that the hexagonal  Nb2C 
phase would form when the carbon content is 32.7 at%. 
However, cubic NbC phase with a mixed orientation of 
(111) and (200) would form when the carbon content is 
higher than 32.7 at%. Thus, by tuning the carbon con-
tent, the phase can be varied between hexagonal  Nb2C and 
cubic NbC. Considering the hexagonal  Nb2C phase has 
higher hardness than that of cubic NbC phase [115, 116], 
the Nb-based TMCs film with tunable hardness can be pre-
pared by tuning the carbon content. In addition, when the 
carbon content is varied from 41.8% to 68.7%, the grain 

size would decrease monotonically from 40.6 to 3.9 nm 
[114]. Molybdenum carbide film has also been grown by 
radio frequency magnetron sputtering by using  Mo2C tar-
get, and its application in the generation of solid-state pas-
sive Q-switched pulsed lasers has been studied [117]. At 
1064 and 1342 nm, the  Mo2C films show a large nonlinear 
saturated absorption, and the modulation depth is 10.39% 
and 8.89%, respectively, suggesting a well broadband non-
linear optical application.

By magnetic sputtering, the TMC film with large scale 
can be grown facilitating its potential application; how-
ever, the technology has not well investigated. More 
efforts may input to study its crystallization and texture; 
the additional carbon sources also need to be considered 
to improve the carbon vacancy.
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4  Application of Transition Metal Carbides

4.1  Electrocatalysis and Photocatalysis

At present, precious metals such as platinum (Pt), palladium 
(Pd) and rhodium (Ru) have shown favorable activity toward 
hydrogen evolution reaction (HER). However, the applica-
tion of these precious metals is greatly hindered because of 
their low abundance and high cost. TMCs with high abun-
dance in the earth, such as  Ni3C,  Mo2C and VC, have been 
proved to be excellent catalysts for HER both theoretically 
and experimentally. Most of the previous studies on TMCs 
were conducted on low surface area materials. However, the 
key to the preparation of high efficiency catalyst lies in the 
synthesis of high surface area materials [118]. Theoretical 
calculation shows that TMCs meet the basic requirements 
of hydrogen evolution reaction (HER). In fact, TMCs (such 
as  Ti2C,  V2C and  Ti3C2) with -OH and -O on their surface 
are the basis of their metallicity, which causes charge trans-
fer and transport. In addition, oxygen atoms which on the 
surface of TMCs provide active sites for HER, because the 
interaction between O atoms and H atoms on the surface 
of TMCs promotes the removal of hydrogen [119–121]. 
The volcano curve reflects the ability of various TMCs for 
HER in Fig. 9. TMCs at the top of the volcano have the 
highest catalytic activity, such as  Ti2CO2,  W2CO2,  TiVCO2 
and  Nb2CO2. In addition, bimetallic TMCs  (M1M2CO2) 
are also potential candidates because they have moderate 
 H2 adsorption free energy catalysts for HER, thus showing 
higher activity. For these reasons, TMCs-based systems have 
become a hot spot in the design of electrocatalysts and solar-
powered photocatalysts [122].

Using the adsorption of atomic hydrogen as a probe, the 
chemical properties of the surfaces of different carbide can 
be studied. Due to the tensile strain generated on the car-
bide surface when carbon is bonded to the crystal lattice, 
the adsorption of hydrogen to the carbides surface which at 
the end of metal is stronger than that to the tightly filled pure 
metal surface. John et al. found that the adsorption of hydro-
gen atoms on the Mo terminated surface of molybdenum 
carbide is much stronger than that on the surface of pure 
metal Mo (110) [19]. Compared to the ground-state pure 
metal surface, the metal terminated surface of the carbide 
has the lower hydrogen bonding energy (HBE) values. It can 
be seen that for other carbides except VC, the adsorption 
of H on the terminated surface of TMCs is stronger than 
that on the surface of pure metal. One of the reasons for the 
strong adsorption energy of the TMCs surface may be that 
the carbide surface is in a state of tensile strain compared 
with the pure metal surface. The distance between metal 
atoms in TMCs is farther than the distance between metal 
atoms in pure metal [19].

Wan et al. have systematically analyzed the crystal struc-
ture, electronic properties, free energy, surface energy and 
crystal formation energy of  V4C3,  V8C7 and  VC3 during 
HER and OER processes by using the first-principles calcu-
lation method [123]. The results show that the vanadium car-
bide has excellent HER performance but poor OER activity. 
In particular,  V8C7 has the best HER activity in these vana-
dium carbide phases. Compared with other phases,  V8C7 
has excellent catalytic activity, which can be attributed to 
the following factors: (i) larger surface energy is easier to 
capture ionized hydrogen/oxygen; (ii) more moderate hydro-
gen adsorption energy can accelerate HER rate; (iii) lower 
crystal formation energy and easier formation of C defects 
increase the specific surface area and active center of HER, 
and provide faster charge transport for HER; (iv) larger VC 
bond length and weaker bond strength contribute to the for-
mation of suitable hydrogen absorption energy and smaller 
free energy ΔG (H*). In addition, there is a significant simi-
larity in the density of d-band states between VC/V8C7 and 
Pt on the (110) and (111) crystal planes, indicating that the 
HER mechanism of VC/V8C7 is similar to Pt [123].

Experimentally, Tian et al. found that the combination 
of vanadium carbide and  TiO2 can be used as an effective 
and stable co-catalyst for photocatalytic hydrogen evolution 
[124]. As a co-catalyst, VC can not only effectively capture 
the photogenerated electrons from  TiO2, greatly improve 
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the separation efficiency of photogenerated charges, but 
also significantly reduce its overpotential, thus enhancing 
the catalytic activity of  TiO2/VC. Besides, the vanadium car-
bide has also be hybridized with active metal nanoparticle, 
where Pt nanoparticles with an average particle size of 3 nm 
are evenly distributed on the surface of carbon and cubic 
vanadium carbide (Pt/VC-C), which can be used as an elec-
trocatalyst for oxygen reduction reaction (ORR) [125]. The 
combination of Pt nanoparticles and cubic vanadium carbide 
nanoparticles is beneficial to enhance the synergistic effect. 
Compared with the reversible hydrogen electrode (RHE), the 
mass activity of ORR on the surface of Pt/VC-C can reach 
230 mA  mg−1

Pt at 0.9 V, which is 2.4 times higher than that 
of Pt/C electrocatalyst (97 mA  mg−1

Pt). Furthermore, the 
vanadium carbide has also been demonstrated to effectively 
encapsulate on carbon-based skeleton, delivering a great 

HER activity such as a current density of 100 mA  cm−2 and 
an overpotential of 238 mV [126]. Yoon et al. successfully 
doped  V2CTx with controllable concentration of phosphorus. 
The experimental results are in good agreement with the the-
oretical calculation that the P–C bond in P-V2CTx works as 
active sites promoting the weakening of the hydrogen bond 
strength and leads to the desorption of  Hads during the HER 
process.  V2CTx with the highest P–C bond concentration 
exhibits a Tafel slope of 74 mV  dec−1 and an overpotential 
of 163 mV at 10 mA  cm−2 [127, 128].

Molybdenum carbide has been widely employed as elec-
trocatalyst to split water, as shown in Table 3. Chen et al. 
studied the formation of molybdenum carbide from ammo-
nium molybdate in inert environment. It was found that the 
coupling effect caused by the covalent bond between  Mo2C 
and carbon carrier has a unique effect on the electrochemical 

Table 3  Electrocatalytic performance of transition metal carbides

Sample Prepare method Morphology HER or OER Tafel slope (mV  dec−1) Overpotential 
at 10 mA  cm−2 
(mV)

Refs

Ti3C2 Chemical exfoliation Nanofibers HER 97  (H2SO4) 169 [7]
Ti2CTx Chemical exfoliation Nanosheets HER 100  (H2SO4) 75 [138]
W2C Microwave combustion Nanodots HER 45  (H2SO4) 71 [139]
Mo2C Microwave combustion Nanodots HER 46  (H2SO4) 77 [139]
Mo2C Precipitation and calcine Nanoporous HER 54  (H2SO4) 200 [140]
α-Mo2C Urea-glass route Nanoparticles HER 57 (KOH) 176 [141]
Mo2CTx Chemical exfoliation Nanosheets HER 189  (H2SO4) 75 [142]
Mo2TiC2Tx Chemical exfoliation Nanosheets HER 248  (H2SO4) 74 [142]
Mo2Ti2C3Tx Chemical exfoliation Nanosheets HER 275  (H2SO4) 99 [142]
TaC NCs@C Micro-cutting-fragmen-

tation
Nanocrystals HER 143  (H2SO4) 146 [143]

Ta-Hf-C Magnetron sputtering Films HER 129  (H2SO4) 198 [144]
Co3W3C TPR Nanoparticles OER 59 (KOH) 238 [145]
Ni0.7Fe0.3PS3@MXene Solid-state reaction Nanohybrid OER 36.5(KOH) 282 [146]
Ni-MoxC Thermal conversion Graphene/nanotube 

hybrid
OER 74(KOH) 328 [147]

Fe-Ni3C Carburizing treatment Nanosheets OER 62(KOH) 275 [148]
Ti3C2Tx − CoBDC Interdiffusion reaction Nanosheets OER 48.2(KOH) 410 [149]
Co3Mo3C TPR Micrometers particles HER 93 (KOH) 169 [150]
N-Ti2CTx Chemical exfoliation Nanosheets HER 67  (H2SO4) 215 [151]
Co-Mo2C Carbonization Nanosheets HER 39  (H2SO4) 48 [152]
Mo2C-C spray drying and calcina-

tion
Flake structure HER 69  (H2SO4) 110 [153]

Ti3C2Ox Chemical exfoliation 2D flakes HER 60.7  (H2SO4) 190 [154]
W2C@GL Heat treatment Nanoparticles HER 68  (H2SO4) 135 [155]
Mo-WC@NCS TPR Nanosheet HER 81 (KOH) 179 [156]
VC@NC/C TPR 3D network HER 165 (KOH) 238 [126]
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performance. First of all, the conjugation with high bond 
strength can promote the close combination of  Mo2C cata-
lyst and carbon carrier, and provide a low resistance path 
suitable for rapid electron transfer. Secondly, this binding 
hinders the aggregation of  Mo2C nanoparticles, thus pro-
moting the production of highly active sites on the sur-
face. Third, anchoring induces the transfer of charge from 
molybdenum to carbon, which further reduces the d-band 
center of molybdenum, thus reducing the hydrogen bonding 
energy of molybdenum. This, in turn, is beneficial to the 
electrochemical adsorption of  Hads, resulting in a relatively 
moderate Mo-H bond binding strength, which enhances the 
HER performance. Molybdenum itself is considered to be 
a strong hydrogen-bonded metal due to its unique d-band 
position [129, 130]. To further improve the activity and the 
amount of active sites, doping heteroatoms has been consid-
ered. After boron doping [131], the HER activity of  Mo2C 
catalyst is significantly improved, where the slope of Tafel 
downs to 78 mV  dec−1, which is much smaller than that of 
the blank control (134 mV  dec−1). In addition, the nitrogen-
doped WC nano-arrays also show excellent HER activity, 
where overpotentials were 89 and 190 mV corresponding 
to the current density of 10 and 200 mA  cm−2, respectively. 
Furthermore, the initial potential of the water splitting is 
1.4 V when employing N-WC nano-array as both the cath-
ode and anode, suggesting its high activity [132]. This is 
mainly due to the increase in the number of active sites, the 
turnover frequency increases, and the resistance to electron 
transfer decreases.

Metallic alloy effect has also been studied such as Mo-
W–C [133–135]. When the Mo/W ratio of this bimetal 
hollow sphere is adjusted to 1.26/0.74, the overpotentials 
are 106, 127, and 152 mV corresponding to use 1 M KOH, 
0.5 M  H2SO4 and 1 M phosphate buffer as the medium, 
respectively, indicating its board activity. Specially, the 
overpotential of the  Mo1.26W0.74C@C in alkaline and acid 
electrolytes is only 237 and 250 mV at the current density of 
300 mA  cm−2, which is obviously better than most reported 
electrocatalysts. Chen et  al. used a new metal–organic 
framework derivatization method to synthesize a vertically 
arranged pure phase porous bimetallic carbide with N-doped 
carbon as a matrix on a flexible carbon cloth  (Co6W6C@NC/
CC). It exhibits excellent OER activity with an overpotential 
of 286 mV at 10 mA  cm−2. At the same time, it exhibits an 
enhanced HER activity with an overpotential of 59 mV at 
10 mA  cm−2. The unique HER activity of bimetallic alloy 

based TMCs can be mainly attributed to the synergistic 
effect which not only modulated the electronic structure, 
activity of the active site, but also tuned its conductivity 
[134]. Except the Mo- and W-based TMCs, other TMCs 
have not been well studied. Kou et al. prepared the tanta-
lum carbide nanocrystals (TaC NCs@C) adhered to carbon, 
which have high refractive index (222) crystal planes. Due 
to the formation of a transition zone between the carbon 
layer and the (222) crystal planes of TaC, its stability in 
the process of preparation and electrochemical reaction is 
enhanced. TaC nanocrystals have a low overpotential of 
146 mV at 10 mA  cm−2, a large exchange current density of 
9.69 ×  10–2 mA  cm−2 and excellent cycle stability, which is 
far superior to other reported group-V metal carbide cata-
lysts [136].

Besides employing as the electrocatalysts, the TMCs have 
also been used in photocatalysts; however, it is still in infant. 
Huang et al. used tungsten carbide to degrade organic pol-
lutants by near-infrared photocatalysis. The experimental 
results are well consisted with the three-dimensional finite 
element simulation, which prove that plasmon resonance 
responding from WC nanoparticles can occur on the local 
surface of the near-infrared light, thereby showing high 
UV–Visible-NIR full-spectrum absorption and high near-
infrared triggered photocurrent response. It has near-infrared 
photocatalytic degradation performance and the catalytic 
degradation rate of methylene blue (MB) by WC nanoparti-
cles under near-infrared radiation is up to 50% [137].

4.2  Gas Catalysis and Sensing

The gas molecular conversation would greatly increase the 
utilization of production in petrochemical industry. The 
physical and chemical properties of molybdenum carbide 
with different phases have a significant difference, especially 
in the field of catalysis. It is known that the catalytic perfor-
mance of fcc-MoC1-x is different from that of hcp-Mo2C in 
ethane hydrogenation, methanol reforming to hydrogen pro-
duction, toluene hydrogenation and CO hydrogenation [81]. 
For example, the CO hydrogenation activity of cubic phase 
fcc-MoC1-x is twice as high as that of hcp-Mo2C hexagonal 
phase, while hcp-Mo2C is more active than fcc-MoC1-x in 
ethane hydrolysis. In addition, hcp-Mo2C nanoribbons with 
unsaturated Mo sites on surface have higher activity than 
fcc-Mo2C nanoribbons in the dehydrogenation of benzyl 
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alcohol. The different catalytic activities of different phases 
in molybdenum carbides may be attributed to the influence 
of surface structure [157]. Dudari et al. prepared molybde-
num carbide by Pechini method and  CH4/H2 carburizing gas 
temperature-programmed reduction method. It was found 
that the molybdenum carbide prepared by Pechini method 
mainly contains face-centered cubic  MoC1-x phase, while 
the  Mo2C phase prepared by TPR method has hexagonal 
compact packing structure. And the defect phase can be pro-
duced by changing the flow rate of Carburizing gas [157]. 
In addition, the molybdenum carbide has also been demon-
strated showing the well catalytic performance in butane 

dehydrogenation and  CO2 hydrogenation [158]. Theoretical 
investigation proves that a rectifying contact is formed at the 
interface between MoC nanoparticles and nitrogen-doped 
carbon, which can promote the adsorption and activation of 
gas molecules, thereby selectively forming formic acid (FA). 
Molybdenum carbide with different phase structure show 
different activity and stability for WGS catalytic reaction. 
The layered  Mo2CTx had better catalytic activity and sta-
bility than other molybdenum carbide structures (as shown 
in Fig. 7f), and had high selectivity for  CO2 and  H2 [159]. 
The doped molybdenum carbide samples (MoC/N5.6C) with 
significant electron enrichment obtained in the experiment 
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can be used as a stable catalyst to efficiently produce FA 
through  CO2 hydrogenation, which is superior to the existing 
non-precious metals based catalysts. In this study, a dura-
ble Schottky heterojunction catalyst with low cost and high 
performance was designed, which opened up a new way for 
the application of doped molybdenum carbide in the field of 
hydrogenation reaction, and further promoted the research 
on carbon dioxide emission reduction. Except the Mo-based 
catalysts, Pajares et al. studied the property of  VCx with 
different phases: stoichiometric VC phase and C-deficient 
 V8C7 phase. On the reverse water gas shift reaction,  V8C7 
showed higher  CO2 conversion rate, CO selectivity, lower 
apparent activation energy and good chemical stability 
[160]. Besides as catalysts in gas molecular conversion, the 
TMCs can also be employed to sense dangerous gas. Sun 
et al. prepared a composite of one-dimensional  Ti3C2Tx and 
one-dimensional  W18O49 nanorods (as shown in Fig. 10a) 
[161]. Based on the special interface effect, the composite 
exhibits high responsiveness to acetone, and has ideal selec-
tivity and long-term stability. Lee prepared layered  V2CTx 
MXene on polyimide substrate by chemical exfoliation. The 
two-dimensional  V2CTx MXene gas sensor shows ultra-low 
detection limit (2 ppm) for  H2 at room temperature, which 
is better than other two-dimensional gas sensor materials 
reported at present (as shown in Fig. 10c-e) [161]. In a word, 
in both catalysis gas conversion and sensing gas, the inter-
face of TMCs and gas molecular plays an important role 
[162], which could occupy the gas molecular and materials. 
More efforts should be focused on the interface and improve 
its occupied mechanism, thus enhancing the interaction.

4.3  Energy Storage

With the environmental crisis, developing energy storage 
such as battery and supercapacitor has been considered as 
an environment-friendly strategy. Different with black phos-
phorene, which has ultra-high diffusivity of Li along the 
zigzag direction and enhanced electrical conductivity after 
Li- intercalation [164, 165], TMCs with large specific sur-
face area, good electrical conductivity and excellent cationic 
intercalation properties have been widely used as electrode 
materials in energy storage [166].  Nb2C and  V2C show good 
reversible capacity, high cycle rate and stability, indicating 
that the rapid diffusion of Li between MXene layers has 
application prospects in the field of high power [167]. Pang 

et al. introduced a fluorine-free, simple and rapid method 
for synthesizing one-dimensional metal carbide nanowires 
based on three-dimensional  Nb2CT MXene. The method 
can synthesize one-dimensional metal carbide nanowires in 
HCl electrolyte within 4 h. It was found that MXene-based 
 Nb2CT nanowires can maintain high stability at a fairly low 
overpotential (236 mV), and as a water-based zinc-ion bat-
tery exhibiting the high power density (420 W  kg−1) after 
150 cycles [77]. V-based TMCs have better performance 
than many other TMCs and attracted much attention.  V4C3 
was used as the anode material of lithium-ion battery, dem-
onstrating that  V4C3 has high capacity, good rate perfor-
mance and cycle performance. In the case of current density 
of 0.1 A  g−1,  V4C3 can still provide a high specific capacity 
of 225 mAh  g−1 after 300 charge–discharge cycles [168, 
169]. Wang et al. prepared high purity  V2CTx by a simple 
hydrothermal assistant method using the mixed solution of 
NaF and HCl as etchant, and studied the effects of reac-
tion conditions, reaction time and reaction temperature on 
the reaction yield [137]. It was found that the reaction rate 
of this system is much faster than that of HF system, and 
the MAX phase can be etched in three days. At the same 
time, the electrochemical performance of lithium-ion bat-
tery as anode was studied, and it showed a high specific 
capacitance. When the current was 0.1 A  g−1, the capacity 
of lithium-ion battery was 233 mAh  g−1.

Through chemically etching and exfoliation, the as-
prepared  Nb2CTx nanosheets can provide a high discharge 
capacity of 354 mAh  g−1 at a current density of 0.05 A  g−1. 
In addition,  Nb2CTx has good cycle stability, where after 
800 cycles at a high current density of 1.0  Ag−1, the specific 
capacity is stable at 225 mAh  g−1, indicating that  Nb2CTx 
can be used as an anode material for LIBs [170]. Nano-NbC 
decorated N&P-codoped trichoderma spore carbon was syn-
thesized and exhibited an ultra-high rate performance (810 
 mAhg−1 at 5 C) and good cycle stability (937.9 mAh  g−1 at 
0.1 C after 500 cycles) due to the high conductivity attribut-
ing to the synergistic effect [171]. Besides, nanocrystalline 
niobium carbide (NbC) was used as an advanced interme-
diate layer material for Li–S batteries. The NbC coating 
combines the anchoring effect of polysulfide (PS) with 
the advantages of high conductivity, which can effectively 
inhibit the electrochemical reaction of sulfur and the shuttle 
of PS. The NbC coating also has excellent cycling stability, 
the capacity decay rate after 1500 cycles is only 0.037% 
 cycle−1, and it has an ultra-high rate capability of up to 5 C, 
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and the area capacity under high sulfur load is as high as 3.6 
mAh  cm−2 [172].

Compared with commercial lithium-ion batteries, 
rechargeable aluminum batteries have the advantages of 
safety, cheaper and higher energy density. Table 4 summa-
rizes the recent TMCs-based energy storage development. 
However, due to the high charge density of  Al3+ ions and 
their strong interaction with the host lattice, few  Al3+ ions 
can reversibly intercalate these cathode materials. Vahid 
et al. reported a rechargeable Al-battery based on 2D vana-
dium carbide  (V2CTx) cathode. The mechanism of charge 
storage is the reversible intercalation of  Al3+ ions between 
 V2CTx layers. The results show that the electrochemical 
performance can be significantly improved by converting 
 V2CTx particles into multilayer films. The specific capacity 
of  V2CTx electrode is more than 300  mAg−1

Pt, and it has 
higher discharge rate and higher discharge potential, which 

is one of the best cathode materials for aluminum battery 
reported at present [173].

Like the  MnO2, etc., metal oxides which have shown high 
electrochemical property resulting in high performance elec-
trochemical capacitors [174, 175], the TMCs have also been 
used as electrode in supercapacitor, which has high power 
density [176–179]. Xin et al. predicted the application in 
supercapacitors through ab initio density functional theory 
considering its quantum capacitance and work function of 
 Nbn+1CnTx. It was found that the niobium carbide with free 
functional group is suitable for positive electrode, while 
niobium carbide with functional group has better perfor-
mance as negative electrode in supercapacitor, showing its 
broad application prospects in the field of supercapacitor 
electrode materials. The theoretical quantum capacitances of 
the positive and negative electrodes are 1828.4 and 1091.1 
F  g−1, respectively [75]. Guan et al. demonstrated that the 

Table 4  Energy storage performance of transition metal carbides

Sample Prepare method Structure Application Charge density Performance Retention rate Refs

Ti3C2Tx Chemical exfoliation Nanosheets Na-ion battery 0.5 C 103 mAh  g−1 85.8% after 500 
cycles

[181]

Titanium carbide Chemical exfoliation Nanorods Li-ion battery 1 C 843 mAh  g−1 98.78% after 250 
cycles

[182]

Porous-  Ti3C2Tx Chemical exfoliation Nanosheets Li-ion battery 0.1 C 1250 mAh  g−1 N/A [183]
V2CTx Chemical exfoliation Few-layer nanosheets Al-ion battery 0.5 C 76 mAh  g−1 96.6% after 100 

cycles
[173]

Nb4C3Tx Chemical exfoliation Layered structure Li-ion battery 5 C 380 mAh  g−1 84.2% after 1000 
cycles

[184]

Co3ZnC TPR Microspheres Li-ion battery 0.5 C 908 mAh  g−1 67.0% after 300 
cycles

[185]

TiO2/  Ti3C2Tx Self-assembly 2D heterostructures Li-ion battery 0.25 C 277 mAh  g−1 75.5% after 200 
cycles

[186]

Nb2O5@Nb4C3Tx Chemical exfoliation Layered architecture Li-ion battery 0.25 C 208 mAh  g−1 94% after 400 cycles [187]
Fe3C@N–C Calcinate Frogspawn-like 

architecture
Li–S battery 0.5 C 586 mAh  g−1 99.92% after 400 

cycles
[188]

W2C NPs-CNFs TPR Nanoparticles Li–S battery 1 C 605 mAh  g−1 99.4% after 500 
cycles

[189]

TiC Biotemplate method Nanoflakes Supercapacitor 5 mV  s−1 276.1 F  g−1 94% after 1000 
cycles

[190]

Ti3C2Tx Directly annealing Nanosheets Supercapacitor 0.5 A  g−1 442 F  g−1 95.4% after 5000 
cycles

[191]

TaC/C Laser ablation Nanospheres Supercapacitor 1 A  g−1 223 F  g−1 94% after 5000 
cycles

[192]

MoS2/Ti3C2 Hydrothermal syn-
thesis

2D heterostructures Supercapacitor 1 A  g−1 386.7 F  g−1 91.1% after 20,000 
cycles

[193]

MnO2-Mo2C NFs Electrospinning Nanoflakes Supercapacitor 0.1 A  g−1 430 F  g−1 96.1% after 3000 
cycles

[194]
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specific capacitance of chemically exfoliated  V2CTx MXene 
can reach up to 164 F  g−1 and its specific capacitance reten-
tion rate can reach 90% after 10,000 cycles at 5  Ag−1 [74]. 
Wang et al. prepared  V2C layered by carbon nanotubes and 
studied its electrochemical performance as the electrode of 
Zn ion supercapacitor, which has a high capacity of 190.2 F 
 g−1 at 0.5  Ag−1 and excellent cycle stability [139]. Besides, 
the used electrolyte also significantly affects its supercapaci-
tance; the maximum specific capacitances of  V2CTx MXene 
in 1 M  H2SO4, 1 M KOH and 1 M  MgSO4 solutions are 
487, 184 and 225 F  g−1, respectively, which are the high-
est among similar micron TMCs electrodes reported [180]. 
Using seawater as the electrolyte, the supercapacitor based 
on  V2CTx MXene has a volume specific capacitance of 317.8 
F  cm−3 at 0.2 A  g−1 and its capacitance retention rate is 
8.1% after 5000 cycles [72]. The supercapacitance of bime-
tallic TMCs has also been studied. Through studying the 
influence of ratio of Mo and V in bimetallic MXene, it was 
found that  Mo2.7V1.3C3 has the highest volume capacitance 
(860 F  cm−3) and high conductivity (830 S  cm−1) at room 
temperature, suggesting that it was able to further optimize 
the performance by adjusting the element [78].

4.4  Optoelectronic Devices

The unique electronic structure and properties of TMCs, 
such as the high carrier concentration and high transmit-
tance, would lead an enhanced interaction between phonon 
and matter, resulting in high photoresponse. Comparatively, 
the Ti-based MTCs photodetectors have got more investi-
gated not only being employed as transparent electrode, but 
also being employed as reasonable materials in junction-
based photodetector. Significantly, due to the tunable work 
function by modulating its surface terminated group, the 
efficiency of junction-based photodetector could be easily 
improved. It was found that the MXene coated leaf vein net-
work has a high transmittance (about 90%) and low square 
resistance (3 Ω  sq−1). The results show that the work func-
tion of the MXene electrode can be adjusted by changing 
the terminal atoms. The MXene electrode and electrospun 
 TiO2 film were integrated to construct a translucent UV 
photodetector, which has high UV detection performance, 
excellent flexibility and stability, and can withstand 1000 
bending cycles [195, 196]. Yang et al. fabricated an InSe 
photodetector using  Ti2CTx as the electrodes, as shown in 
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Fig. 11a, b. Because the  Ti2CTx electrode produces ava-
lanche carrier multiplication effect, the photodetector has 
excellent photoelectric performance. In addition, the pattern 
of the  Ti2CTx electrode into a plasmonic grating structure 
can further enhance the light absorption, achieving a dark 
current as low as 3 nA, a responsivity as high as 1 ×  105 A 
 W−1, a high detection rate (7.3 ×  1012 Jones) and a shorter 
light response time (0.5 ms) [197].

Combining 2D  Ti3C2Tx with perovskite through top-down 
technology, it was able to design a large-scale image sen-
sor array consisting of 25 groups of 50 pixels. Due to the 
good work function matching between the  Ti3C2Tx layer and 
the perovskite active layer, it is helpful to form an effective 
interfacial charge transfer. The energy level alignment and 
resonance enhancement of the composite system can opti-
mize the near-infrared absorption of the composite system. 
The results show that the device has excellent broadband 
spectral response, a response rate of 84.77 A  W−1, a specific 
detection rate of 3.22 ×  1012 Jones, a linear dynamic range 
up to 82 dB and a near-infrared image capture capability 
[198]. Kang prepared the vertically  Ti3C2Tx/n-Si Schottky 
heterojunction (as shown in Fig. 11c, f) and demonstrated 
that it has an open-circuit voltage of 0.34 V and a short-
circuit current density of 12.9 mA  cm−2 under 100 mW  cm−2 
illumination, an  Iph/Idark ratio of about  105, a responsivity of 
26.95 mA  W−1, a response time of 0.84 ms and a recovery 
time of 1.67 ms [199].

Other TMCs-based photoelectronic effects have also 
been studied. It is found that the relaxation time of  Nb2C 
nanosheets can be tunable in the range from 37.43 fs to 
0.57 ps by optimizing its size. The layered  Nb2C nanosheets 
have promising potential applications in broadband ultra-
fast photonics and near-infrared photonic devices [200]. 
Jeon et al. demonstrated that the chemical vapor deposition 
grown  MoS2 film can be chemical converted to  Mo2C film, 
as shown in Fig. 11d, e. Using the interface characteristics 
of  MoS2 and  Mo2C, that is, effective hot carrier injection 
from  Mo2C to  MoS2, the photodetector has high sensitivity 
and spectral response performance. By adjusting the grating 
period (400 ~ 1000 nm) of  Mo2C, a broad-spectrum response 
of light (655 ~ 1200 nm) can be achieved. The results show 
that the photodetector has high responsivity (R >  103 A  W−1) 
and bright-dark current ratio (>  102) in a wide spectral range 
(405 ~ 1310 nm), which is similar with that of transition 
metal dichalcogenides [201–203].

4.5  Medical Treatment

Due to the well photoelectronic and photothermal property, 
the TMCs have also been well used in medical treatment. 
Jastrzebska et al. proved for the first time that the highly 
negative surface charge of niobium carbide can be basically 
transformed into a high positive charge by surface modifi-
cation with poly L-lysine (PLL). The conversion of surface 
charge will enable niobium carbide to obtain important bio-
logical effects, such as targeting tumors and inducing pro-
grammed cell death in G0/G1 phase, which are the most 
ideal effects for the design of tumor targeting drugs. Sig-
nificantly, the biocompatibility of PLL modified niobium 
carbide  (Nb2C and  Nb4C3) is better than that of unmodi-
fied niobium carbide [51]. Furthermore,  Nb2C modified by 
PVP has been proofed effectively eliminate mouse tumor 
xenografts in NIR-I and NIR-II bio-windows, as shown in 
Fig. 12. Two-dimensional  Nb2C nanosheets have excel-
lent photothermal conversion efficiency (36.4% for NIR-
I, 45.65% for NIR-II), and good photothermal stability. In 
addition,  Nb2C nanosheets also have unique enzyme-respon-
sive biodegradability to human myeloperoxidase [204]. 2D 
 Nb2C nanosheets have been demonstrated with excellent 
antioxidant properties and can effectively scavenge hydro-
gen peroxide, hydroxyl radicals and superoxide radicals. 
The polyvinylpyrrolidone (PVP) modifying would signifi-
cantly improve its biocompatibility, resulting in an effective 
protective effect on the hematopoietic system, testis, small 
intestine and lung of γ-ray irradiated mice, in particular, the 
hematopoietic system. Experiments show that  Nb2C-PVP 
can be effectively eliminated by the liver and kidneys in mice 
after 14 days [205].

V2C, as a photothermal agent with excellent photothermal 
conversion efficiency, has a great application prospects in 
the field of photothermal therapy. Zada et al. reported a new 
exfoliation method, that is, the parent phase MAX is interca-
lated and delaminated by algae extract, and  V2C nanowires 
with complete structure and high NIR absorption capacity 
are obtained. Through characterization, the photothermal 
conversion efficiency of the prepared  V2C nanosheets is 
as high as 48% [50]. Lin et al. used HF as an etchant to 
synthesize two-dimensional  Ta4C3 by chemical exfoliation, 
and explored its application in the photothermal ablation 
of tumors in vivo. It was proved that the soybean phospho-
lipid-modified  Ta4C3 has good biocompatibility, excellent 
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performance of photothermal conversion (efficiency η of 
44.7%) and in vitro/in vivo photothermal ablation of tumors 
[206]. The ionizing radiation generated by radiation accident 
will has a serious impact on exposed individuals. In addi-
tion, by functionalizing with  MnOx, the  Ta4C3 is expected 
to be widely used in the field of tumor synergistic therapy 
based on its photothermal conversion performance, tumor 
microenvironment (TME)-responsive  T1-weighted MR 
imaging capability and as the desirable contrast agents for 
PA imaging [35].

4.6  Superconductor

Due to the high carrier concentration and strong cor-
relation system, the TMCs have been proved as a new 
superconductor member obtaining great attention. Using 
CVD-grown  Mo2C as the model, Xu et al. demonstrated 
that the superconducting properties are consistent with 
the Berezinskii–Kosterlitz–Thouless behavior, and the 
superconducting properties depend on the crystal thick-
ness, as shown in Fig. 13. Significantly, 2D  Mo2C crystals 
also show strong magnetic anisotropy [90]. Furthermore, 

the graphene/2D α-Mo2C structure has a superconducting 
transition phase diagram with multiple voltage steps in 
the transition zone, which is expected to be widely used in 
the field of highly transparent Josephson junction devices 
[95]. In addition, the influence of grain boundaries on the 
electron transport and superconductivity properties of 2D 
 Mo2C were explored. In the normal state, with the increase 
in grain boundary inclination angle, the critical current 
decreases by 1 to 2 orders of magnitude during the transi-
tion from superconducting state to resistive state. In the 
superconducting state, crossing the grain boundary will 
lead to the critical current to decrease significantly [207]. 
Jin et al. prepared double-layer  Mo2Ga2C by vacuum hot 
pressing. It was found that the RT thermal conductivity 
of  Mo2Ga2C is 14.8 ± 1.0 W (m K)−1, the RT resistivity is 
0.525 ± 0.052 μΩ m, and the Lorenz number is 2.22 ×  10−8 
WΩ  K−2. Importantly,  Mo2Ga2C has superconductivity, 
and the superconducting transition temperature is 5.1 K 
[208]. Porrati used Nb(NMe2)3(N-t-Bu) as the precursor 
to prepare two-dimensional nanowires and self-support-
ing three-dimensional nanowires through focused elec-
tron beam-induced deposition (FEBID) and focused ion 
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beam-induced deposition (FIBID). Electrical transmission 
measurements show that FEBID nanowires are insulated, 
FIBID two-dimensional nanowires have superconductivity 
at  Tc≈5 K, and the critical superconducting temperature 
of self-supporting FIBID three-dimensional nanowires 
reaches  Tc≈11 K. The results show that FIBID-NbC has 
broad application prospects in the preparation of super-
conducting nanowire single-photon detectors and quan-
tum information processing, suggesting that the property 
is dependent on its dimensionality [209, 210].

4.7  Other Potential Applications

Similar with other 2D materials, such as graphene, phos-
phorene and transition metal dichalcogenides (e.g.,  MoS2 
and  WS2), which has shown great potential for thermal man-
agement and thermoelectric energy generation [212, 213], 
the thermal and thermoelectric properties of the TMCs, 

especially the MXene  (Ti3C2Tx), have been studied. Due 
to its high electrical conductivity, TMCs have been usu-
ally composited in thermoelectric materials-based matrix. 
It was reported that compositing MXene  (Ti3C2Tx) into 
(Bi,Sb)2Te3 matrix can simultaneously improve power fac-
tor and reduce thermal conductivity. Under a temperature 
gradient of 237 K, the thermoelectric conversion efficiency 
reached a record of 7.8% [214]. Hong et al. reported the 
sub-nano ion channel based on 2D-TMCs, which can convert 
external temperature changes into electrical signals through 
the preferential diffusion of cations under a thermal gra-
dient. Based on the photothermal conversion of MXenes, 
the  Ti3C2Tx ion channel can capture the diffusion potential 
across the nanochannel under the axial temperature gradient 
of the light drive and exhibit the photothermoelectric ionic 
response of 1 mV  K–1 [215].

Recently, TMCs have also been used to fabricate nano-
filtration membranes due to its uniform nanopores. The 
TMCs-based nanofiltration membranes show extraordinary 
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molecular separation performance. Kim et al. reported a 
slot-die coating method to prepare large-area  Ti3C2Tx 
MXene. The  Ti3C2Tx membrane exhibits excellent nano-
filtration performance, which deliver a water permeability 
of 190 LMH/bar and a molecular weight cutoff rate of 
269 Da [216]. Stable interlayer space is the key factor to 
improve ion selectivity. Wang et al. proposed a strategy to 
stabilize  Ti3C2Tx layered structure through alginate hydro-
gel pillars. The membrane has good permeation cutoff and 
screening performance for valence cations. Moreover, its 
excellent  H+/Fe2+ selectivity makes this membrane prom-
ising as an ion-exchange membrane. Recently, the  Ti3C2Tx 
stabilized by the alginate hydrogel pillars with the same 
d-spacing has 100%  Na2SO4 rejection and high water per-
meability [217]. Xu et al. developed a new way to use 
MXene nanosheets to overcome the trade-off limitation of 
membrane permeability and salt selectivity. The thin-film 
composite nanofiltration membranes have a permeability 
of 45.7 L m −2 h −1 bar −1, and a  Na2SO4 removal rate of 
96% [218].

Due to its high electrical conductivity and high light 
adsorption, TMCs have also been used in electromagnetic 
shielding. Rajavel et al. prepared a flexible few-layer  Ti3C2Tx 
film. At a thickness of 6 μm, the X-band conductivity is 
about 3669 ± 33 S  m−1, and the electromagnetic interference 
shielding efficiency is 31.97 dB. It has also been demon-
strated that through controlling the inherent defects, it was 
able to adjust the electromagnetic shielding performance 
of few-layer  Ti3C2Tx [219]. Aïssa et al. prepared a two-
dimensional  Ti3C2Tx MXene/GNPs composite film using 
electrohydrodynamic atomization deposition technique. The 
 Ti3C2Tx MXene/GNP film with the thickness of 1.75 mm 
shows excellent electromagnetic shielding performance, 
with an electromagnetic interference absorbance of about 
64 dB [220]. Further optimizing the fabrication of TMCs 
and designing the device could improve its performance.

Hydrogen energy is one of the most promising clean 
energy sources. However, the current hydrogen storage mate-
rials still not very well satisfy the industrial requirement. 
Due to the higher surface activity and larger surface area, 
recently, the hydrogen storage performance of the incom-
plete etched  Ti2CTx MXene film has been investigated, and 
the hydrogen storage mechanism has been discussed [221]. 
It was found that the  Ti2CTx film has excellent hydrogen 
storage efficiency, where 8.8 wt% hydrogen is completely 
absorbed at room temperature under the environment of 

60 bar  H2. The small interlayer distance of  Ti2CTx MXene 
and the F functional group brought by etching are the key 
to its hydrogen storage, which will induce weak chemical 
adsorption assisted by nano-effects. Noh et al. used a two-
step method to synthesize palladium nanoparticle-decorated 
multilayer  Ti3C2Tx MXene (Pd-Ti3C2Tx) [222]. It was found 
that Pd-Ti3C2Tx exhibits typical hydrogen storage capacity 
at room temperature and 77 K. Zhu et al. self-assembled Ni 
nanoparticles on  Ti3C2 MXene obtained by etching and then 
composited with  MgH2 by ball milling. The  MgH2 + Ni@
Ti-MX composite material can absorb 5.4 wt%  H2 at 125 ℃ 
for 25 s, and release 5.2 wt%  H2 at 250 ℃ for 15 min [223]. 
Although the TMCs materials already exhibit the potential 
application in the hydrogen storage, further study including 
the correlation between the materials structure and its per-
formance is still unclear and more efforts still need.

5  Conclusions and Perspectives

This article reviews the progress in the structure, proper-
ties, applications and synthesis methods of transition metal 
carbides represented by niobium carbide, vanadium car-
bide, molybdenum carbide and titanium carbide. Firstly, 
the different phase structures of four typical transition 
metal carbides are introduced. Different TMCs have the 
basic phase of NaCl-type cubic phase, and all group IV 
and V TCMs have  M6C5 phase. Under different synthe-
sis processes, carbon atoms and vacancies are rearranged 
to varying degrees, resulting in a variety of stable phase 
structures of transition metal carbides. Because the exist-
ence of different phase compositions gives transition 
metal carbides rich and diverse properties, they have been 
researched and developed in different fields. Based on 
their outstanding electronic, mechanical, magnetic, elec-
trochemical, optical properties and atomic-level thickness, 
TMCs films have been applied in the fields of catalysis, 
energy storage, optoelectronics, biomedicine and super-
conductivity. The hydrogen adsorption on the surface of 
transition metal end carbides is significantly enhanced, 
which makes it good catalyst for electrocatalytic and pho-
tocatalytic hydrogen evolution. Due to the large specific 
surface area, good conductivity and excellent cation inter-
calation performance, TMCs have potential application in 
LIBs anode materials. Due to the rectifying electric shock 
with Schottky barrier height and internal electric field, 
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and higher responsivity and quantum efficiency than Au, 
 Ti3C2Tx photodetector has better dynamic range and detec-
tion rate. The surface charge of  Nb2C and  Nb4C3 is trans-
formed into high positive charge by surface modification, 
which has important biological effect on tumor targeting. 
TMC films such as α-Mo2C and NbC have superconduct-
ing properties, and the critical superconducting tempera-
ture can be further increased by changing the synthesis 
process and adjusting the surface functional groups.

At present, the main ways to synthesize TMCs films include 
chemical exfoliation, chemical vapor deposition, temperature-
programmed reduction and magnetic sputtering. In recent 
years, MXenes prepared by chemical exfoliation have been 
developed rapidly, and its layer structure similar to accordion 
has brought a wealth of applications. The TMCs synthesized 
by chemical vapor deposition have high purity and are easy to 
be uniformly doped. Temperature-programmed reduction pro-
vides a way for the synthesis of carbides with high synthesis 
temperature. Magnetic sputtering synthetic carbide film has 
the characteristics of high film formation rate, low substrate 
temperature and good film adhesion.

Although TMCs films have shown great potential in dif-
ferent fields, there are still some challenges in future appli-
cations. First of all, the current synthesis methods of TMC 
films still face some limitations. For example, it is difficult 
to synthesize the parent phase MAX of MXene, and many 
MXenes have not been successfully prepared by chemical 
exfoliation because of the inability to synthesize the stable 
MAX phase. Chemical vapor deposition has limitations in 
the preparation of large-size carbide films. Therefore, new 
methods for synthesizing TMCs have yet to be explored. 
Secondly, the theoretical mechanism of some characteris-
tics of TMC films in the application field is still unclear. 
For example, in the field of energy storage, the ion dynam-
ics and charge storage mechanism between carbide films 
are unclear. Thirdly, the improvement of electrochemical, 
mechanical and thermal stability of TMCs remains a topic 
of future research. It is worth mentioning that the research 
fields of TMCs films are full of opportunities and challenges, 
and there is still great application potential to be tapped in 
different fields. In the foreseeable future, transition metal 
carbide materials will play an increasingly important role 
in solving various global challenges.
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