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Green and Near‑Infrared Dual‑Mode Afterglow 
of Carbon Dots and Their Applications 
for Confidential Information Readout
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Hengwei Lin2 *

HIGHLIGHTS

• A facile method was developed to achieve visible light (green) and near infrared dual-mode afterglow emissions from carbon dots 
(CDs)-based materials at ambient conditions for the first time.

• We proposed a promising method in advanced information security applications through a special manner of readout.

• The as-developed method was confirmed to be applicable to many kinds of CDs for achieving or enhancing their afterglow performances.

ABSTRACT Near-infrared (NIR), particularly NIR-containing dual-/multi-
mode afterglow, is very attractive in many fields of application, but it is still 
a great challenge to achieve such property of materials. Herein, we report 
a facile method to prepare green and NIR dual-mode afterglow of carbon 
dots (CDs) through in situ embedding o-CDs (being prepared from o-phe-
nylenediamine) into cyanuric acid (CA) matrix (named o-CDs@CA). Further 
studies reveal that the green and NIR afterglows of o-CDs@CA originate 
from thermal activated delayed fluorescence (TADF) and room temperature 
phosphorescence (RTP) of o-CDs, respectively. In addition, the formation of 
covalent bonds between o-CDs and CA, and the presence of multiple fixation 
and rigid effects to the triplet states of o-CDs are confirmed to be critical for 
activating the observed dual-mode afterglow. Due to the shorter lifetime and 
insensitiveness to human vision of the NIR RTP of o-CDs@CA, it is com-
pletely covered by the green TADF during directly observing. The NIR RTP 
signal, however, can be readily captured if an optical filter (cut-off wavelength 
of 600 nm) being used. By utilizing these unique features, the applications of 
o-CDs@CA in anti-counterfeiting and information encryption have been demonstrated with great confidentiality. Finally, the as-developed 
method was confirmed to be applicable to many other kinds of CDs for achieving or enhancing their afterglow performances.
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1 Introduction

Information encryption and anti-counterfeiting are highly 
significant in military, civilian and economic fields [1]. In 
the past decades, printing encrypted information and anti-
fake labels using stimuli-responsive luminescent materials 
have been employed as one of the most popular security 
technics [2]. In this method, luminescence signal would be 
changed under a specific external stimulus, preventing the 
encrypted information or security labels to be stolen, mim-
icked and/or forged [3, 4]. However, similar luminescence 
changes are becoming easier and easier to be imitated with 
the development of materials science, which do not meet 
the requirements for protecting high-level confidential 
information any longer [1–4]. Therefore, it is desirable 
to exploit novel encryption and anti-counterfeiting tech-
niques with higher security [5–7].

Afterglow including room temperature phosphorescence 
(RTP), thermal activated delayed fluorescence (TADF), 
and long persistent luminescence (LPL) materials have 
been taken to apply in information security fields recently 
due to their specific features [8, 9]. Although the encryp-
tion performance could be somewhat improved, the single-
mode visible-light-based afterglow is still lack of enough 
confidentiality. Considering the invisibility/insensitivity 
of near-infrared (NIR) light to human vision [10, 11], we 
conceive that it could be an ideal encryption strategy to 
conceal the NIR afterglow coded information by visible 
light afterglows. Unfortunately, materials with such prop-
erties are very difficult to be prepared and have rarely been 
reported to date [12].

As a new type of luminescent nanocarbon materials, 
carbon dots (CDs) have attracted much attention and been 
widely applied in biotechnology, anti-counterfeiting, 
optoelectronic device, and photocatalysis areas in recent 
years due to possessing numerous superior features such as 
excellent photostability, chemical stability, biocompatibil-
ity, and cost-effective preparation [13–20]. More impres-
sively, afterglow phenomena of CDs had also been discov-
ered either through embedding them in certain matrices 
(e.g., poly(vinyl alcohol) (PVA), inorganic salts, urea/
biuret, zeolites, and silica) [21, 22], or preparing special-
structured CDs by proper carbon precursors and reaction 
conditions [23, 24]. In both of the above cases, hydrogen 
bonding interactions between the emissive units of CDs 

and matrices/CDs’ frameworks usually play a critical role 
to stabilize the excited triplet states and so as to activate 
their afterglows [21, 22, 25, 26]. Although afterglow emis-
sion wavelengths from CDs-based materials have been 
successfully regulated from green to red region [27–31], 
NIR afterglow from CDs has not yet been reported so 
far, not to mention the NIR-containing dual-/multi-mode 
afterglows.

Recalled from our previous study that covalent bonds 
could be employed as an option to fix and rigidify triplet 
state species [32]. In comparison with hydrogen bonds, the 
stronger covalent bonding fixation is beneficial for extend-
ing occurrence of afterglow from solid state to dispersion 
state, and meanwhile for achieving RTP and TADF dual-
mode afterglows by appropriately decreasing the energy gap 
between the singlet state  (S1) and triplet state  (T1) (ΔEST) 
of CDs [32]. Besides, multiple fixation of triplet states by 
covalent bonds, hydrogen bonds and physical confinements 
(e.g., rigid network and nanoscale spaces of matrices) had 
been confirmed enabling more effectively activating after-
glow emissions of CDs [33–35]. Inspired by these results, 
we suppose that NIR-containing dual-mode afterglow emis-
sion from CDs could be obtained by taking proper CDs (with 
potential NIR afterglow property) and a high-efficient man-
ner to fix them.

To validate our hypothesis, CDs that being prepared from 
o-phenylenediamine (i.e., o-CDs) were selected as emit-
ters because they could emit NIR phosphorescence (Phos) 
(although very weak) at low temperature (77 K). Signifi-
cantly, we developed a very efficient strategy to fix CDs via 
in situ embedding them into cyanuric acid (CA) matrix. By 
using such an approach, composite of o-CDs and CA (named 
o-CDs@CA) can be easily prepared. Interestingly, the 
o-CDs@CA powder exhibits intense NIR RTP (wavelength 
of maximum at ~ 690 nm) and relatively weak green TADF 
(wavelength of maximum at ~ 550 nm) dual-mode room 
temperature afterglows under the excitation of UV light 
(e.g., 365 nm). To the best of our knowledge, this is the first 
example to achieve NIR (or NIR-containing) afterglow from 
CDs-based materials at ambient conditions. Further stud-
ies revealed that the formation of covalent bonds between 
o-CDs and CA appropriately decreased the energy gap ΔEST 
of o-CDs, of which facilitating both intersystem crossing 
(ISC) and reversed intersystem crossing (RISC) processes 
and thus being beneficial for simultaneously producing RTP 



Nano-Micro Lett.          (2021) 13:198  Page 3 of 15   198 

1 3

and TADF. Meanwhile, the triplet states of o-CDs in CA 
matrix are fixed and rigidified by multiple roles including 
covalent bonds, hydrogen bonds and physical confinements, 
so as afterglow emission could be activated by effectively 
restraining the non-radiation decays of their triplet species. 
Due to the shorter lifetime and insensitiveness to human 
vision of the NIR RTP of o-CDs@CA, it is completely cov-
ered by the green TADF during directly observing. However, 
the NIR RTP signal can be readily captured if an optical 
filter (cut-off wavelength (λCut-off) of 600 nm) being used. By 
utilizing these unique features, o-CDs@CA could be applied 
in advanced anti-counterfeiting and information encryption 
fields with excellent confidentiality. Finally, the as-devel-
oped method was confirmed to be applicable to many other 
kinds of CDs for achieving or enhancing their afterglow 
performances.

2  Experimental Section

2.1  Materials

Reagent grade of o-phenylenediamine (oPD), L-aspartic acid 
(AA) and folic acid (FA) were bought from Aladdin Chemicals 
Co. Ltd (Shanghai, China). Citric acid, ethanolamine, ethan-
ediamine (EDA), polyvinyl alcohol (PVA), methylene chlo-
ride, ethanol, phosphoric acid and urea were purchased from 
Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). 
Pure cyanuric acid (pCA) was purchased from J&K Chemical 
Reagent Co. Ltd (Beijing, China). All chemicals were used as 
received without further purification unless otherwise speci-
fied. Deionized (DI) water was used throughout this study.

2.2  Synthesis of o‑CDs

o-CDs were prepared according to our previous work [36]. In 
brief, oPD (1.5 g) was dissolved in 150 mL of ethanol, and 
then this solution was transferred into Teflon-lined autoclaves. 
After heating at 180 ºC in oven for 12 h and cooling down 
to room temperature naturally, bright yellow suspension was 
obtained. The crude product followed purification with a silica 
column chromatography using mixtures of methylene chloride 
and methanol as eluents. After removing solvents and further 
drying under vacuum, the purified o-CDs could be obtained 
as yellow powder.

2.3  Synthesis of Experimental Cyanuric Acid (eCA)

Typically, 10 g urea was dissolved in 20 mL of DI water, and 
the formed transparent solution was transferred into a beaker 
and heated in a domestic oven for 8–10 min (750 W). The pro-
duced crude product was crushed and purified by dispersing 
it in boiling water (100 mL) and centrifuged at 5000 rpm for 
5 min to remove the insoluble components. The pure prod-
uct was gradually separated out when the solution was cooled 
down to room temperature and finally dried in a vacuum oven 
(60 ºC for 12 h).

2.4  Preparation of o‑CDs@CA

To prepare the composite materials with different loading 
amounts of o-CDs (0.5, 1.25, 5, 10, 25, and 50 mg) were 
added into 20 mL of urea solution (0.5 g  mL−1) to form a 
transparent solution. Subsequently, the mixed solution was 
transferred into a beaker and heated in a domestic oven for 
8–10 min (750 W) until the water completely evaporated. 
The formed block composites were purified by grinding into 
powder, dispersed by boiled water (100 mL) and centrifuged 
at 5000 rpm for 5 min to remove the insoluble impurities. 
Finally, the o-CDs@CA were gradually separated out when 
the solution was cooled to room temperature and then dried 
in a vacuum oven (60 ºC for 12 h).

2.5  Preparation of o‑CDs#CA

o-CDs#CA were prepared by co-crystallization method [37]. 
In brief, 400 uL of o-CDs (5 mg  mL−1 in ethanol) were 
added into a clear and transparent solution (5 mL of boiled 
water) of pCA (0.5 g). The mixed solution allowed to cool 
down to room temperature, and the crystals were gradually 
separated out within 6 h. The obtained o-CDs#CA crystals 
were washed with DI water (20 mL) and then subjected to 
freeze drying.

2.6  Preparation of URTP‑CDs

URTP-CDs were prepared according to the previous work 
[24]. In brief, 4.0 mL of ethanolamine was firstly dis-
solved in 16 mL DI water, and then 8.0 mL of phosphoric 
acid was added into the ethanolamine aqueous solution 
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drop by drop with stirring. The formed transparent mix-
ture solution was transferred into a beaker and heated in 
a domestic oven for 5 min (750 W). Upon cooling, the 
mixture solidified into a dark brown gel-like solid that 
can be dissolved by the addition of 40 mL DI water. After 
being neutralized by sodium carbonate, aqueous solution 
of the crude product was centrifuged (10,000 rpm  min−1 
for 20 min) and filtered through 0.22 μm membrane filter 
to remove large or agglomerated particles. The super-
natant was collected and subjected to dialysis (MWCO: 
1000  Da) for a week. Finally, the URTP CDs were 
obtained by freeze drying.

2.7  Preparation of AA‑CDs

AA-CDs were prepared according to the previous work 
[29]. Typically, 2.0 mL of ammonia solution was added 
in 8 mL DI water, and then 1500 mg of L-aspartic acid 
(AA) was slowly added into this solution with stirring, and 
the precursor was completely dissolved by ultrasonic treat-
ment for 15 min. The as-formed homogeneous and trans-
parent solution was transferred into a beaker and heated 
in a domestic microwave oven about 2  min (750  W). 
After cooling to room temperature, the crude yellow gel-
like solid was obtained, and completely dissolved by the 
addition of sodium carbonate solution. For purifying the 
CDs, the above aqueous solution was firstly centrifuged 
(10,000 rpm  min−1 for 20 min) and filtered through 0.22 μm 
membrane filter to remove large or agglomerated particles, 
and then the supernatant was collected and subjected to 
dialysis (MWCO: 1000 Da) for 3 days. Finally, the purified 
AA-CDs powder can be obtained by freeze drying.

2.8  Preparation of FA‑CDs

FA-CDs were prepared according to the previous work 
[38]. Briefly, folic acid (FA) (1.0 g) was dissolved DI water 
(100 mL). After stirring for mixing, the solution was trans-
ferred to a poly(tetrafluoroethylene) (Teflon)-lined auto-
clave (75 mL) and heated at 260 °C for 2 h. After the reac-
tion, the reactor was cooled to room temperature naturally. 
The obtained dark brown solution was centrifuged under 
10,000 rpm  min−1 for 20 min to remove large or agglom-
erated particles. Finally, FA-CDs were obtained via freeze 
drying.

2.9  Preparation of C‑CDs

C-CDs were prepared according to the previous work [39]. 
In brief, 2.0 g of citric acid was dissolved in 10 mL DI water, 
and then the solution was heated in a conventional microwave 
oven for 7 min (750 W). After cooled to room temperature 
naturally, the cluster-like product was re-dissolved in 10 mL 
DI water and centrifuged (10,000 rpm  min−1) for 10 min, 
and the supernatant was dialyzed (1000 Da) against water for 
24 h. Finally, C-CDs were obtained through freeze drying.

2.9.1  Preparation of CE‑CDs

CE-CDs were prepared according to the previous work [40]. 
In brief, 1.0 g of citric acid and 1.6 mL of EDA were dissolved 
in 30 mL DI water, and then the solution was transferred into 
a poly(tetrafluoroethylene) lined autoclave under the heat 
treatment of 200 ºC for 5 h. The obtained orange solution 
was centrifuged (10,000 rpm  min−1) for 10 min, and then the 
supernatant was dialyzed (1000 Da) against water for 24 h. 
Finally, CE-CDs were obtained through freeze drying.

2.9.2  Calculation of the ΔEST

The ΔEST of materials are calculated according to Eq. 1 
based on their fluorescence (FL) and phosphorescence 
(Phos) emission spectra:

where ΔEST is the energy gap between the singlet and triplet 
exited states, λPhos and λFL are the wavelengths maxima of 
Phos and FL emissions, respectively.

2.9.3  Equipment and Characterization

Transmission electron microscopy (TEM) observations 
were performed on a Tecnai F20 microscope. X-ray photo-
electron spectroscopy (XPS) spectra were carried out with 
ESCALAB 250Xi (Thermo Scientific). Scanning electron 
microscopy (SEM) was performed on a JEOL FESEM 
6700F microscope with a primary electron energy of 3 kV. 
X-ray powder diffraction (XRD) patterns were recorded on 
a Rigaku D/max-2000 X-ray powder diffractometer (Japan) 
using Cu Kα (1.5406  Å) radiation. Fourier transform 

(1)ΔEST =
1240

�FL

−
1240

�Phos
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infrared (FT-IR) spectra were obtained on a Nicolet 6700 
FT-IR spectrometer. Photoluminescence (PL), afterglow 
emission and excitation spectra were measured on a Hitachi 
F-4600 spectrophotometer at ambient conditions. For the 
temperature-dependent experiment, the sample was placed 
in a high temperature fluorescence attachment (Orient KOJI, 
TAP-02) with temperatures controlled between 298.15 and 
523.15 K. UV–Vis absorption spectra were recorded on a 
PERSEE T10CS UV–Vis spectrophotometer. PL and after-
glow lifetimes were measured using Fluorolog 3–11 (HOR-
IBA Jobin Yvon). PL quantum yields (QYs) were measured 
on a QE-2100 quantum efficiency measurement system 
(Japan Otsuka Electronics). Photographs of PL and after-
glow were taken using a Canon camera (EOS 550) under 
excitation by a hand-hold UV or LED lamps.

3  Results and Discussion

3.1  Preparation of o‑CDs@CA

Since the aqueous dispersion of o-CDs emits weak NIR Phos 
(wavelength of maximum at ca. 690 nm) at low tempera-
ture (77 K) under 365 nm ultraviolet (UV) light irradiation 
(Fig. S1), they are selected as emitters to fabricate NIR-
containing dual-/multi-mode afterglow materials. Note that 
no afterglow emission could be detected at room temperature 
through embedding o-CDs into matrices that often being 
used to obtain RTP of CDs (e.g., polyvinyl alcohol (PVA), 
Fig. S2), indicating that only hydrogen bonding fixation is 
not sufficient to activate RTP of o-CDs. Herein, we devel-
oped a very effective strategy to fix CDs into cyanuric acid 
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(CA) matrix via microwave-assisted heating of the mixture 
of CDs and urea, in which urea acting as the precursor to 
in situ produce the host matrix (i.e., CA). Using such an 
approach, composite of o-CDs and CA (i.e., o-CDs@CA) 
was easily prepared (Fig. 1a, also see the detailed synthe-
sis procedure in Method section). In order to obtain an 
optimal photoluminescence (PL) performance, different 
ratios of o-CDs and urea for preparing o-CDs@CA were 
screened. As shown in Table S1, sample from the ratio of 
0.1% (i.e., o-CDs to urea by weight) exhibits the best PL 
performance, which is thus used as the optimal formula to 
prepare o-CDs@CA and the corresponding product is taken 
to discuss in this study. As expected, the o-CDs@CA pow-
der displays intense green PL emission upon 365 nm UV 
light irradiation (Fig. 1b), which is well consistent with that 
of the dispersion of free o-CDs (inset of Fig. S3). Signifi-
cantly, a bright green afterglow was observed from o-CDs@
CA powder after ceasing the UV excitation. The afterglow 
lasted for a few seconds and could be easily recognized by 
the naked eye under ambient conditions (Fig. 1b, without 
filter), even in the form of aqueous dispersion (Fig. S4). 
More interestingly, a NIR afterglow could be observed if an 
optical filter (cut-off wavelength (λCut-off) = 600 nm) being 
used (Fig. 1b, with filter).

3.2  Structure of o‑CDs@CA

To verify the successfully embedding o-CDs into CA 
matrix, morphologies and phase structures of o-CDs 
and o-CDs@CA were characterized using TEM, SEM 
and XRD. As shown in Fig. S5, o-CDs are found to be 
monodispersed spherical nanoparticles with diameters 
of about 2–3 nm. The high resolution TEM (HR-TEM) 
image (insert of Fig. S5) and XRD analysis (Fig. 2a) indi-
cate that o-CDs are mostly amorphous carbon or poly-
mer-like structure with partially crystallized. Moreover, 
similar XRD patterns are observed from o-CDs@CA, pure 
CA (pCA, purchased from the commercial source) and 
experimental CA (eCA, prepared from urea by microwave 
method, see details in the section of Method) (Fig. 2a), 
indicating that fine CA crystals have been produced from 
urea via the microwave-assisted heating process either in 
the absence or presence of o-CDs. It is worthy to note that 
the intensities of some X-ray diffraction peaks of o-CDs@
CA are found to be stronger than that of CA (Fig. 2a), 
probably attributing to the embedding of o-CDs into CA 

crystal would slightly affect the stacking of CA molecules 
and crystallization orientation. To further confirm success-
ful embedding of o-CDs into CA, TEM and HR-TEM of 
o-CDs@CA were investigated. Although o-CDs are hardly 
observed from the TEM image (Fig. S6a), clear lattice 
fringes that corresponding to o-CDs can be found from 
their HR-TEM image (Fig. S6b), demonstrating that o-CDs 
have been successfully embedded into CA matrix. Note 
that the similarity of the XRD patterns and SEM images 
of o-CDs@CA and pCA (Figs. 2a andS7) indicate that the 
structure of CA can be mostly preserved even with o-CDs 
being embedded (probably due to the very low contents 
of o-CDs in CA).

In order to clarify the existence form of o-CDs in CA 
matrix, FT-IR and XPS measurements of o-CDs, CA 
and o-CDs@CA were carried out and systemically ana-
lyzed. It should be pointed out that CA is mainly stable 
as s-triazine-2,4,6-trione form in solid state while partly 
converts to s-triazine-2,4,6-triol form in aqueous solution 
(Figs. 1a and S8) [41, 42]. As a result, the characteristic 
peak observed at about 1720  cm−1 in the FT-IR spectra 
of o-CDs@CA, eCA and pCA should correspond to the 
stretching vibration of ketone carbonyl of CA (Fig. 2b). 
From comparing the FT-IR spectra of o-CDs@CA, eCA 
and free o-CDs, the increase in absorption at 1450  cm−1 
and emerging absorption peak at about 1660   cm−1 are 
observed in o-CDs@CA spectrum, which are attributed to 
the stretching vibration of C-N bonds and C = O bonds of 
amides, respectively. These alterations imply that chemi-
cal reactions might have occurred during the microwave-
assisted in situ embedding o-CDs into CA matrix with 
the formation of C-N covalent bonds between o-CDs and 
CA. Furthermore, the composition analysis based on XPS 
surveys indicated that the o-CDs@CA, o-CDs and CA are 
mainly consisted of the same elements (i.e., carbon, nitro-
gen, and oxygen) (Figs. 2c, S9 and Table S2). The increase 
in carbon contents in o-CDs@CA supports the successful 
embedding of o-CDs into CA. Moreover, the deconvoluted 
XPS spectra of C 1s, N 1s, and O 1s of o-CDs@CA and 
free CA were also performed and compared (Figs. 2d-f, S9 
and Table S3). For o-CDs@CA, the C 1s spectrum can be 
deconvoluted into three binding energies at 284.6, 285.8, 
and 289.4 eV, corresponding to the C–C/C = C, C–N, and 
N–C = N bonds, respectively (Fig. 2d); the N1s XPS spec-
trum can be fitted with three binding energies at 399.4, 
400.35, and 401.5 eV, which are attributed to the N-(C)3, 
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C = N–C, and N–H bonds, respectively (Fig. 2e); and the O 
1s XPS spectrum containing two components that can be 
assigned to C = O (531.6 eV) and C–OH (532.5 eV) bonds 
(Fig. 2f). The corresponding fitting results of these decon-
voluted XPS spectra are summarized to provide relatively 
quantitative alterations of the chemical groups from CA to 
o-CDs@CA (Table S3). From which one can see obvious 
increases of C–C/C = C and C-N bonds components from 
CA to o-CDs@CA based on the C 1s fittings; significant 
decrease in N–H bonds and emergence of N-(C)3 bonds 
from CA to o-CDs@CA based on the N 1s fittings. These 
results clearly demonstrate the formation of C-N covalent 
bonds during in situ embedding o-CDs into CA matrix.

3.3  Photophysical Properties of o‑CDs@CA

Subsequently, photophysical properties of o-CDs@CA are 
fully investigated. As shown in Fig. 3a, the o-CDs@CA 
powder shows a strong absorption peak at 280 nm, a broad 
absorption band covering from ca. 300 to 500 nm, and PL 

emission at wavelength of maximum (λmax) 550 nm under 
the excitation of 365 nm. All these spectral data are similar 
to that of the dispersion of free o-CDs (Fig. S3), indicating 
that the PL emission of o-CDs@CA should be arisen from 
o-CDs. Significantly, the afterglow spectrum (Phos mode) 
of o-CDs@CA powder shows a dominating emission at 
wavelength of maximum 690 nm under the excitation of 
365 nm (Fig. 3a, red line). To the best of our knowledge, 
this is the first report about the NIR afterglow of CDs-based 
materials. Note that this afterglow spectrum also contains 
a weak emission at shorter wavelength region from about 
450 to 620 nm with the λmax at ca. 550 nm. To demonstrate 
the inconsistence between afterglow color (green) and spec-
trum (dominating emission at λmax = 690 nm) of o-CDs@
CA powder, an afterglow spectrum with longer delay time 
(e.g., 50 ms) was measured, of which displaying stronger 
emission at 550 nm than 690 nm (Fig. 3b). Therefore, the 
longer afterglow lifetime at 550 nm and the insensitiveness 
of NIR emission to the human vision at 690 nm are believed 
to be responsible for the green afterglow of this material 
during directly observing (Fig. 1b, without filter). Certainly, 
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the NIR afterglow at 690 nm (dark red) could be observed 
if an optical filter (λCut-off = 600 nm) being used (Fig. 1b, 
with filter).

Based on the apparent similarities of the steady-state PL and 
short wavelength afterglow emission (from ca. 450 to 620 nm), 
and PL excitation spectrum at 550 nm and afterglow excita-
tion spectrum at 690 nm (Fig. 3a), the two afterglow emission 

bands could be tentatively attributed to TADF (λmax = 550 nm) 
and RTP (λmax = 690 nm) of o-CDs@CA [35, 43]. To further 
confirm such an assumption, their temperature-dependent 
afterglow emission properties were investigated. As shown in 
Fig. 3c, it is observed a gradual enhancement of the afterglow 
intensity at 550 nm but decreases at 690 nm with the tempera-
tures increasing from 298.15 to 523.15 K, demonstrating the 
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nature of TADF and RTP at 550 and 690 nm, respectively [32, 
34]. As shown in the afterglow decay spectra of o-CDs@CA, 
the RTP and TADF exhibit bi- and tri-exponential function 
decay processes, respectively, under the excitation of 365 nm 
(Fig. 3d-e and Table S4). According to Eq. 2 [38, 44]:

the average lifetimes were calculated to be 220.74 ms for 
550 nm of TADF and 13.29 ms for 690 nm of NIR RTP 
(under the excitation of 365 nm), which are in good argee-
ment with the afterglow spectrum that measured by longer 
delay time (Fig. 3b). In general, a smaller ΔEST benefits the 
efficient intersystem crossing (ISC) process to promote Phos, 
but a too small ΔEST value (e.g., < 0.2 eV) would induce a 
very effective reversed ISC (RISC) process to populate a 
dominating TADF [44–47]. Therefore, tailoring energy gap 
ΔEST value to a suitable range is critical for simultaneously 
producing both Phos and TADF. The RISC determines the 
lifetime of TADF, so its decay rate constant (kRISC) can be 
used to estimate the ΔEST of a material according to Eq. 3:

where A is a constant, kB stands for the Boltzmann’s con-
stant and T is the absolute temperature in Kelvin [48, 49]. 
On the basis of the temperature-dependent afterglow decay 
spectra of o-CDs@CA powder (Fig. S10 and Table S5), 
the decay rates can be plotted as a function of temperature 
and fitted based on the Eq. 3 (Fig. 3f and Table S6). Thus, 
the energy gap ΔEST of o-CDs@CA was calculated to be 
0.481 eV, which is closely consistent with the estimated 
value of 0.478 eV from PL and Phos spectra measurements 
(Fig. S11). In contrast, the energy gap ΔEST of free o-CDs 
was determined to be 0.594 eV based on their low tem-
perature PL and Phos spectra (Fig. S1), and it is evidently 
larger than that of the o-CDs@CA. Note that o-CDs only 
show very weak Phos emission at low temperature (77 K), 
which might attribute to their larger ΔEST and no effective 
ISC occurring. Consequently, the decrease in the energy gap 
ΔEST from o-CDs to o-CDs@CA should play a critical role 
to activate the dual-mode room temperature afterglow of 
o-CDs@CA (i.e., green TADF and NIR RTP).

3.4  Dual‑mode Afterglow Mechanism of o‑CDs@CA

According to our previous study, formation of covalent bonds 
between CDs and matrices could induce a decrease in energy 
gap ΔEST, being confirmed to be responsible for the dual-mode 
of afterglow emissions of the corresponding composites [32]. 

(2)�avg =

∑

�
i
�
2
i

/

∑

�
i
�
i

(3)kRISC = A ⋅ exp
(

−ΔE
ST

/

k
B
T
)

To experimentally confirm such an inference to be applica-
ble to o-CDs@CA, another kind of composite of o-CDs and 
CA via co-crystallization (named o-CDs#CA, see details in 
the Experimental Section) was prepared and investigated. As 
shown in the Figs. S12-S14, the FT-IR and XPS spectra of 
this composite show no obvious differences in comparison 
with that of pCA, indicating that o-CDs are embedded and 
immobilized by CA matrix via non-covalent interactions 
(e.g., hydrogen bonds and physical confinements) [37]. Not 
surprisingly, no afterglow was observed from o-CDs#CA (Fig. 
S15), suggesting that hydrogen bonds between CA and o-CDs 
and physical confinements of CA to o-CDs are not sufficient 
to activate room temperature afterglow of o-CDs. In con-
trast, o-CDs@CA prepared from microwave-assisted in situ 
embedding o-CDs into CA matrix introduced covalent bonds 
between o-CDs and CA, offering an extra and more effective 
fixation and rigidification effects to the triplet states of o-CDs 
except for hydrogen bonds and physical confinements. Thus, 
the formation of covalent bonds between o-CDs and CA is 
believed to be critical for the dual-mode afterglows of o-CDs@
CA. It is worth noting that although o-CDs@CA in solid state 
and dispersion state exhibit similar dual-mode afterglow emis-
sions, both the TADF and NIR-RTP performances (lifetime 
and intensity) distinctly decreased in dispersion state (Fig. 
S4), indicating that hydrogen bonds and physical confinement 
effects should also provide some contributions to better fix 
and rigidify the triplet states of o-CDs in CA matrix. Finally, 
effects of molecular oxygen to the afterglow of o-CDs@CA 
are investigated. As shown in Fig. S16, the afterglow intensi-
ties were found to be nearly identical for o-CDs@CA powder 
under air and argon atmospheres, but about 25% higher under 
nitrogen than that of air-saturated condition for their aqueous 
dispersion. These findings demonstrate that the CA crystal 
could play a role to protect the excited states of o-CDs@CA 
from quenching by oxygen.

Based on the above discussion, mechanisms for activating 
the afterglow of o-CD@CA composite are proposed as fol-
lows. During microwave-assisted heating the mixture of urea 
and o-CDs, urea is gradually converting to CA and meanwhile 
embedding o-CDs through deamination and/or dehydration 
reactions (such processes resulting in the formation of C-N 
bonds and/or N-(C)3 structures). The formation of covalent 
bonds not only decreased the energy gap ΔEST from 0.594 eV 
of free o-CDs to 0.481 eV of o-CDs@CA, but also played 
a key role to stabilize the triplet states of o-CDs. Note that 
although the ΔEST of o-CDs decreased by formation covalent 



 Nano-Micro Lett.          (2021) 13:198   198  Page 10 of 15

https://doi.org/10.1007/s40820-021-00718-z© The authors

bonds with CA, it is still significantly larger than ideal values 
for efficiently producing TADF (i.e., < 0.2 eV) [45, 47]. Thus, 
the afterglow emission spectrum of o-CDs@CA exhibits a 
predominant NIR RTP and a relatively weak TADF (Fig. 3a, 
red line).

3.5  Applications of the Dual‑mode Afterglow 
from o‑CDs@CA

Interestingly, although the green TADF emission of 
o-CDs@CA is relatively weaker than their NIR RTP, the 
NIR RTP is found to completely covered by the green 
TADF during directly observing (Fig. 1b, without filter). 
This phenomenon could be attributed to the shorter life-
time of the NIR RTP and the insensitive/invisible feature 
of NIR light to human vision. As a result, the o-CDs@CA 
powder only displays a green afterglow either observed by 
the naked eye or acquired images by a camera. However, 
the NIR RTP emission can be readily observed if an opti-
cal filter (λCut-off = 600 nm) being used (Fig. 1b, with filter). 
Inspired by these unique afterglow properties and high sta-
bility (Figs. S17 and S18), o-CDs@CA are believed to be 
very attractive in information security fields. To demon-
strate such potentials, anti-counterfeiting and information 
encryption applications of this material were preliminary 
investigated. As shown in Fig. 4a, background of a sub-
strate is firstly pre-dyed using o-CDs, and then the secu-
rity pattern, a rose for example, is printed using two com-
ponents: o-CDs@CA for the flower and the C-CDs@CA 
(C-CDs being prepared from citric acid and embedded into 
CA matrix using the same procedure as that of o-CDs@
CA, see experimental section in Method for details) for the 
leaves and stems. Note that this pattern can be fabricated/
printed onto filter paper and many other substrates through 
a simple silk-screen printing technique by prior dispersing 
the composites in commercial ink. Under the PL mode, the 
whole background displays a green emission under the irra-
diation of 365 nm UV lamp (Fig. 4b-I), making the printed 
pattern difficult to be recognized by the naked eye. To the 
afterglow mode, a long-lived green emission is observed 
from the whole printed rose that lasting for several seconds 
after ceasing the UV lamp ((Fig. 4b-II, and S19). Impor-
tantly, only the flower part that printed using o-CDs@CA 
is observed with an optical filter (λCut-off = 600 nm) being 

used under the afterglow mode (dark red, arising from the 
NIR RTP of o-CDs@CA, Fig. 4b-III). Moreover, high-
level information encryption could also be realized using 
the similar strategy, i.e., the concealed information being 
able to recognize only under the afterglow mode with using 
an optical filter (λCut-off = 600 nm) (Fig. 4c). Therefore, the 
o-CDs@CA composite coded information could be well 
concealed by visible light emission whether under PL mode 
or afterglow mode, making the security patterns very dif-
ficult to be forged and mimicked. These results clearly 
demonstrate a great potential of o-CDs@CA in advanced 
security applications through a special manner for informa-
tion readout.

3.6  Universality of the Method for Preparing CDs@CA 
Afterglow Materials

Finally, universality of the as-developed in situ embed-
ding and fixing method for activating room temperature 
afterglow of CDs was examined. To perform this, a variety 
of CDs (e.g., URTP-CDs, AA-CDs, FA-CDs, C-CDs and 
CE-CDs, see the details of their synthesis in the section 
of Method) are selected and treated as that of for o-CDs@
CA. As expected, all these CDs-based composites exhibit 
distinct afterglow at ambient conditions under 365 nm 
UV light irradiation, no matter in solid state (Fig. 5) or 
dispersion state (Fig. S20). Notably, although the free 
URTP-CDs and AA-CDs show RTP property [24, 29], 
their afterglow lifetimes become obviously longer after 
embedding in CA matrix. In addition, the afterglow per-
formances of all these CDs-based composites are found 
to be improved in comparison with the corresponding 
composites prepared by other methods, e.g., prolonging 
afterglow lifetimes and/or extending the occurrence of 
afterglow from only solid state to aqueous dispersion state 
(Figs. S20 and S21 and Table S7). The universality of this 
method might be ascribed to containing abundant –OH 
and/or –NH2 functional groups on these CDs (Fig. S22), 
offering possible reaction sites to form covalent bonds 
with CA during its production process. The formation of 
covalent bonds between CDs and CA is considered to be 
critical for observation their afterglow even in aqueous 
dispersions [32, 50]. Overall, the strategy developed in 
this study is applicable to many other kinds of CDs, which 
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provides not only a better choice to fix CDs for activating 
their room temperature afterglow, but also a method to 
achieve afterglow in aqueous media.

4  Conclusions

In summary, a facile method is developed to achieve green 
TADF and NIR RTP dual-mode afterglow emissions 
from the composite of o-CDs and CA (i.e., o-CDs@CA). 
Through in-depth discussion, we reveal that the formation 
of covalent bonds between o-CDs and CA plays critical 

roles for activating the dual-mode afterglows, which not 
only appropriately decreased the energy gap △EST of 
o-CDs to facilitate both ISC and RISC processes, but also 
effectively fixed and rigidified the triplet states of o-CDs. 
Besides, hydrogen bonds between o-CDs and CA and physi-
cal confinements of the CA matrix to o-CDs would also 
contribute some effects to better stabilize the triplet spe-
cies of o-CDs. Due to the shorter lifetime of NIR RTP of 
o-CDs@CA and the invisibility/insensitivity of NIR light 
to human vision, the NIR RTP is completely covered by the 
green TADF during directly observing. The hidden NIR 
emission, however, can be readily captured if an optical 
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filter (λCut-off = 600 nm) being applied. By utilizing these 
unique features, o-CDs@CA are demonstrated to be excel-
lent confidentiality in anti-counterfeiting and information 
encryption applications. Finally, universality of the as-
developed method is confirmed to be applicable to many 
other kinds of CDs for achieving or enhancing their after-
glow performance. Since the as-developed method could 
extend the occurrence of afterglow of CDs to aqueous 
media, this would be significant in biologically relevant 
applications, and such work is now undergoing in our lab.
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