Supporting Information for

Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout

Yuci Wang¹, Kai Jiang^{2, 3, *}, Jiaren Du², Licheng Zheng², Yike Li^{1, *}, Zhongjun Li¹, Hengwei Lin^{2, *}

¹College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

² International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

³ Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China

*Corresponding authors. E-mail: jiangkai@nimte.ac.cn (Kai Jiang); liyike@zzu.edu.cn (Yike Li); linghengwei@jiangnan.edu.cn (Hengwei Lin)

Supplementary Figures and Tables

Fig. S1 Low temperature (77 K) fluorescence (black line) and phosphorescence (red line) emission spectra of o-CDs dispersed in ethanol

Fig. S2 Photographs of o-CDs-PVA film under daylight, with the irradiation of 365 nm UV lamp and after the lamp was switched off under ambient conditions

Fig. S3 UV-Vis absorption, FL emission and excitation spectra of the o-CDs dispersion in ethanol (inset: FL emission image of the o-CDs ethanol dispersion under 365 nm excitation)

Fig. S4 Photographs of the afterglow emission of o-CDs@CA water dispersion under daylight and with the 365 nm UV lamp of irradiation on and off

Fig. S5 a) TEM, and **b-c**) high resolution TEM images of o-CDs (the larger red squares in b and c being enlarged images of the nearby smaller squares)

Fig. S6 a) TEM, b) high resolution TEM (red area) images of the o-CDs@CA

Fig. S7 SEM images of pCA (a-b) and o-CDs@CA (c-d)

Fig. S8 Schematic illustration of the structural interconversion of CA from solution state (left) to solid state (right)

Fig. S9 XPS survey (a), high resolution C 1s (b), N 1s (c) and O 1s (d) spectra of o-CDs

Fig. S10 Afterglow decay profiles (λ_{em} =550 nm) of o-CDs@CA powder at 298.15 to 523.15 K under 320 nm excitation

Fig. S11 Fluorescence and phosphorescence emission spectra (λ_{exc} =400 nm) of o-CDs@CA powder for the calculation of its energy gap ΔE_{ST}

Fig. S12 FT-IR spectra of CA, o-CDs, o-CDs@CA and o-CDs#CA

Nano-Micro Letters

Fig. S13 XPS surveys of CA and o-CDs#CA

Fig. S14 High resolution XPS spectra of C1s, N1s and O1s of CA (a) and o-CDs#CA (b)

Fig. S15 Photographs of o-CDs#CA powder under daylight, and irradiation with 365 nm UV lamp ON and after the lamp was just switched off

Fig. S16 Afterglow emission spectra of **a**) o-CDs@CA powder under air (Air) and argon (Ar) atmospheres at 365 nm excitation, **b**) o-CDs@CA under air-saturated (Air) and argon (Ar) conditions in water dispersion at 400 nm excitation

Fig. S17 Photostability of the o-CDs@CA powder under continuous excitation at 365 nm (emission wavelength of 550 nm and 690 nm) for one hour using spectrofluorometer equipped with a xenon lamp (150 W)

Fig. S18 Comparison of the afterglow emission of the freshly-prepared and the stored (6 months) o-CDs@CA powder under excitation of 365 nm

Fig. S19 Photographs of o-CDs@CA ink patterned flower after switching off the 365 nm UV lamp

Fig. S20 Photographs of the URTP-CDs@CA, AA-CDs@CA, FA-CDs@CA, C-CDs@CA and CE-CDs@CA water dispersions under daylight, and with irradiation of 365 nm UV lamp on and off

Fig. S21 Afterglow emission and excitation spectra of **a**) o-CDs@CA, **b**) URTP-CDs@CA, **c**) AA-CDs@CA, **d**) FA-CDs@CA, **e**) C-CDs@CA, and **f**) CE-CDs@CA in water dispersion

Fig. S22 FT-IR spectra of URTP-CDs, AA-CDs, FA-CDs, C-CDs and CE-CDs

Table S1 PL quantum yields (QYs) of o-CDs@CA composites prepared by different ratios of o-CDs and urea

ratio of o-CDs to urea (w/w, %)	0.005 %	0.0125 %	0.05 %	0.1 %	0.25 %	0.5 %
QYs	1.95	2.42	3.00	2.87	2.07	1.35

NOTE: Although the PL QY of 0.1% ratio is slightly lower than 0.05% ratio, it was observed that the 0.1% ratio sample exhibited better PL and afterglow performances. Therefore, 0.1% was selected as the optimal ratio to prepare o-CDs@CA and discussed in this study.

Table S2 Relative contents of C, N and O atoms for o-CDs, CA, o-CDs@CA and o-CDs#CA (determined by XPS survey)

Sample	C (%)	N (%)	0 (%)
o-CDs	78.99	12.87	8.14
CA	37.58	38.17	24.25
o-CDs@CA	41.58	36.11	22.31
o-CDs#CA	40.90	31.40	27.69

Table S3 Relative contents of different functional groups in CA, o-CDs@CA and o-CDs#CA (based on the fitting results of Fig. 2d-f and Fig. S14)

Sample	C 1s (%)			N 1s (%)	O 1s (%)		
	C-C/C=C	C-N	N-C=N	N-(C)3	C=N-C	N-H	C=O	-ОН
CA	12.09	6.59	81.32	-	88.85	11.15	65.40	34.60
o-CDs@CA	21.26	12.70	66.04	47.91	46.92	5.17	74.93	25.07
o-CDs#CA	15.89	4.87	79.24	-	90.69	9.31	74.79	25.21

Table S4 Fitting results of the afterglow lifetimes of the o-CDs@CA powder at 550 and 690 nm under 320 nm excitation

λ_{ex} [nm]	λ _{em} [nm]	B ₁ [%]	τ ₁ [ms]	B ₂ [%]	$\tau_2 [ms]$	B ₃ [%]	$\tau_3 [ms]$	$ au_{avg}$ [ms]	χ^2
365	550	6.46	4.69	27.63	49.90	65.91	236.29	220.74	1.1655
365	690	5.55	2.26	94.45	13.4	-	-	13.29	1.1296

T (K)	λ _{ex} [nm]	λ _{em} [nm]	B1 [%]	τ ₁ [ms]	B2 [%]	τ ₂ [ms]	B3 [%]	τ ₃ [ms]	τ _{avg} [ms]	χ^2
298.15	320	550	55.37	108.88	34.98	522.04	9.65	9.744	417.91	1.327
323.15	320	550	52.14	91.98	36.68	472.9	11.18	7.9167	388.87	1.302
348.15	320	550	47.81	65.80	36.82	441.8	15.37	5.1188	379.35	1.550
373.15	320	550	44.13	45.38	19.34	3.556	36.53	349.9	307.24	1.439
398.15	320	550	46.41	16.66	35.69	165.1	17.89	1.668	147.23	1.635
423.15	320	550	54.07	10.69	28.86	129.8	17.07	0.9188	113.47	1.278
448.15	320	550	60.83	6.978	23.41	73.49	15.76	0.704	60.01	1.397
473.15	320	550	66.41	5.589	18.08	53.74	15.51	0.5868	40.16	1.323
498.15	320	550	17.76	0.5763	68.03	4.320	14.21	23.61	14.38	1.656
523.15	320	550	17.88	0.5295	69.45	3.894	12.67	18.52	10.50	1.285

Table S5 Afterglow lifetimes of the o-CDs@CA powder at different temperatures (λ_{ex} =320 nm, λ_{em} =550 nm, based on the afterglow decay curves in Fig. S10)

Table S6 Afterglow lifetimes of various CDs before and after compositing with different matrices

Sample	Matrix	λ _{ex} [nm]	λ _{em} [nm]	B ₁ [%]	$\tau_1[s]$	B2 [%]	$\tau_2[s]$	B3 [%]	τ3[s]	$ au_{avg}[s]$	χ^2	Refs.
URTP- CDs	-	-	-	-	-	-	-	-	-	1.46		[S1]
	CA	355	520	19.83	0.315	74.88	1.640	5.18	0.0292	1.57	1.793	
	PVA	355	530	32.19	0.405	62.63	1.306	5.18	0.0430	1.18	1.537	
AA-CDs	-	-	-	-	-	-	-	-	-	0.24		[S2]
	CA	300	485	35.23	0.0791	49.56	0.526	15.22	0.00573	0.48	1.310	
	PVA	300	485	47.19	0.102	28.89	0.523	23.92	0.0164	0.41	1.682	
FA-CDs	CA	300	445	37.29	0.155	57.90	1.025	4.81	0.0108	0.95	1.305	
	PVA	300	540	30.23	0.249	58.73	0.976	11.04	0.0354	0.89	1.002	
	Biuret	-	-	-	-	-	-	-	-	0.93		[S3]
C-CDs	CA	300	490	22.98	0.035	66.96	0.452	11.07	0.00385	0.44	1.107	
	PVA	365	545	41.99	0.154	45.23	0.638	12.78	0.0201	0.55	1.433	
	BA	-	-	-	-	-	-	-	-	1.6		[S4]
CE-CDs	CA	320	530	40.45	0.137	44.13	0.713	15.42	0.0181	0.62	1.505	
	PVA	300	535	52.55	0.163	16.92	0.027	30.52	0.620	0.47	1.596	

Supplementary References

[S1] K. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Facile, quick, and gram-scale synthesis of ultralonglifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem. Int. Ed. 57(21), 6216-6220 (2018). https://doi.org/10.1002/anie.201802441

- [S2] S. Hu, K. Jiang, Y. Wang, S. Wang, Z. Li et al., Visible-light-excited room temperature phosphorescent carbon dots. Nanomaterials 10(3), 464 (2020). https://doi.org/10.3390/nano10030464
- [S3] Q. Li, M. Zhou, Q. Yang, Q. Wu, J. Shi et al., Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 28(22), 8221-8227 (2016). https://doi.org/10.1021/acs.chemmater.6b03049
- [S4] W. Li, W. Zhou, Z. Zhou, H. Zhang, X. Zhang et al., A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem. Int. Ed. 58(22), 7278-7283 (2019). https://doi.org/10.1002/anie.201814629