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Flexible Ag Microparticle/MXene‑Based Film 
for Energy Harvesting
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HIGHLIGHTS

• Flexible Ag microparticle/MXene-based energy-harvesting films were fabricated via simple spraying and hot-pressing.

• Optimal film shows high conductivity and effective electro/photo-thermal abilities.

• It can be easy assembled single-electrode TENG and the output voltage is enhanced by assembled two triboelectrification layers.

ABSTRACT Ultra-thin flexible films have attracted wide attention 
because of their excellent ductility and potential versatility. In particu-
lar, the energy-harvesting films (EHFs) have become a research hot-
spot because of the indispensability of power source in various devices. 
However, the design and fabrication of such films that can capture or 
transform different types of energy from environments for multiple 
usages remains a challenge. Herein, the multifunctional flexible EHFs 
with effective electro-/photo-thermal abilities are proposed by successive 
spraying Ag microparticles and MXene suspension between on water-
borne polyurethane films, supplemented by a hot-pressing. The optimal 
coherent film exhibits a high electrical conductivity (1.17×104 S  m−1), 
excellent Joule heating performance (121.3 °C) at 2 V, and outstanding 
photo-thermal performance (66.2 °C within 70 s under 100 mW  cm−1). 
In addition, the EHFs-based single-electrode triboelectric nanogenerators (TENG) give short-circuit transferred charge of 38.9 nC, open 
circuit voltage of 114.7 V, and short circuit current of 0.82 μA. More interestingly, the output voltage of TENG can be further increased 
via constructing the double triboelectrification layers. The comprehensive ability for harvesting various energies of the EHFs promises 
their potential to satisfy the corresponding requirements.
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1 Introduction

The consumption of natural resources such as fossil fuels con-
tinues to increase with the rapid development of the economy, 
and we are facing increasingly serious energy shortages and 
environmental damage. The efficient utilization of renew-
able resources (e.g., solar, wind, and tidal power) has been 
extensively explored; meanwhile, biomechanical energy from 
human movements is considered as an emerging way to pro-
vide the driving force for equipment [1–3]. In this context, the 
research of developing energy collection devices for ensuring 
energy security, realizing recycling, and promoting sustain-
able economic development is of great significance.

Energy-harvesting films (EHFs) are considered to be ideal 
candidate in this respect, which have been widely applied in 
solar cells [4–6], light-emitting components [7, 8], heating 
devices [9, 10], and so on. In general, the current EHFs col-
lect various forms of energy by introducing fillers with dif-
ferent properties including carbon nanotubes, metal nanow-
ires and conducting polymer to the elastic matrix [11–17]. 
Nevertheless, the nanofillers are easy to agglomerate during 
the preparation process and limit the application in practice 
[18, 19]. Therefore, it is extremely important to select fillers 
with good dispersion and excellent performance. In particu-
lar, a newly emerged two-dimensional (2D) transition metal 
carbonitride noted as MXene, has shown surprising proper-
ties in the fields of electrical energy transmission and vis-
ible light absorption. The multilayer 2D material possesses 
high electrical conductivity (~  104 S  cm−1), as well as a large 
specific surface area and excellent dispersion, making it an 
ideal candidate for fabricating appreciable EHFs [20–23].

Triboelectric nanogenerator (TENG), converting mechani-
cal energy, especially the human activities, into electricity 
by coupling the electrification and electrostatic induction, 
enables the energy storage and self-powered signal collection 
[24–26] and therefore has been highlighted combined with 
their portability, durability, material diversity for triboelectric 
layer (e.g., flexible polymers) and electrode (e.g., conduc-
tive hydrogel or fabric), and cost-effectiveness. The tribo-
electric layer usually has a strong triboelectrification effect 
and is less conductive or insulating, which can capture the 
transferred charges and retain them for an extended period of 
time, to build up the electrostatic charges and potential differ-
ence [27]. For example, polyurethane has been selected as a 

triboelectric layer more frequently due to its strong electron-
egativity, excellent flexibility, and environmental friendliness 
[28, 29]. In another aspect, the electrode with a conductive 
network enables the electrons’ transportation and the charg-
ing and discharging process. In particular, a hybrid electrode 
layer with the embedded conductive fillers can synergisti-
cally trap and block the charges, thereby further improving 
the electrical output capacity [30–33]. Through the constant 
contact-separation mode, TENG could convert mechanical 
energy into electricity by generating an objective electric cur-
rent, enabling the construction of the self-powered systems.

Herein, the multifunctional EHFs were developed by 
spraying Ag microparticles (AgMPs) and MXene dispersed 
solution in sequence between on waterborne polyurethane 
(WPU) layers, featuring remarkable mechanical properties 
and high electrical conductivity. On the one hand, the EHFs 
can convert electrical energy and light energy into heat with 
a maximum of 121.3 and 66.2 °C, respectively, indicating the 
reliability in application of electric-photo-thermal. On the 
other hand, electrons can be quickly transferred in the EHFs 
benefiting from the low resistance of the filler layer, and thus 
the composite films can be assembled into a single-electrode 
TENG (STENG) assisted with the strong triboelectric effect 
of the WPU layer. The EHFs with stable electrical output can 
provide power for electronic components, and their outstand-
ing waterproof ability also broadens the application range. 
This work confirmed that the EHFs possess the feasibility 
of in-depth exploration in energy collection, utilization, and 
transformation.

2  Experimental Section

2.1  Materials

Lithium fluoride (LiF, 99%) was purchased from Aladdin 
Reagent Co., Ltd.  Ti3AlC2 powder (MAX, 400 mesh) was 
obtained from Jilin 11 Technology Co., Ltd. Ag microparti-
cles (NO-M-004–3) with a size of 1 μm were purchased from 
Shanghai Naiou Nano technology Co., Ltd., with a purity 
of ~ 99.9%. And commercial WPU was supplied by Guang-
zhou Dolphin New Materials Co., Ltd., with a concentration 
of 50 wt%. Besides, Acrylic sheets and silicone rubber were 
purchased from Shanghai Yu Zhao Industrial Co., Ltd.
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2.2  Synthesis of  Ti3C2Tx MXene Nanosheets

As previous research has stated,  Ti3C2Tx MXene nanosheets 
were obtained by etching  Ti3AlC2 in hydrofluoric acid (HF). 
Firstly, LiF (2 g) was slowly introduced into a Teflon beaker 
containing 40 mL HCl (9 M) with stirring continuously 
at 35 °C for 30 min. Then, at an extremely slow pace, 2 g 
 Ti3AlC2 was added to it. The etching process, which takes 
24 h under magnetic agitation, aims to remove the aluminum 
layer. After it, the solution was centrifuged at 3500 rpm for 
10 min to collect the precipitate. The precipitate was fur-
ther treated by ultrasound and centrifugation until reaching a 
suitable pH value (about 6). Then, the multilayered  Ti3C2Tx 
MXene was dispersed in ethanol and ultrasonicated for 1 h. 
After centrifugation at 10,000 rpm for 10 min, the obtained 
products were further treated by ultrasound to remove the 
unexfoliated  Ti3C2Tx and collected. Finally, the 2D  Ti3C2Tx 
MXene nanosheets were obtained by freeze-drying at -80 °C 
for 3 days.

2.3  Fabrication of EHFs

Following the schematic exhibited in Fig. 1, the multilay-
ered WPU/AgMPs/MXene/WPU films were fabricated by a 
layer-by-layer spraying process. Typically, different amounts 
of AgMPs or MXene were dispersed in an equal mixture 
of alcohol and water assisted by a hot plate to shorten the 
evaporation time during the spraying process. Then, the cor-
responding suspensions were evenly sprayed onto the Teflon 
substrate with a commercial spray gun at a distance of 10 cm 
and a pressure of 2 bar, respectively. Firstly, AgMPs are 
sprayed on the first layer of WPU, after it, the film is then 
transferred to a vacuum press (100 °C, 1 MPa) for 20 min 
to make the metal particles hot sintering process. Then, the 
MXene dispersion was coated on the sintered layer to form 
the composite films. Finally, the second layer of WPU is 
overlaid on it for coating. Ag layer, with different areal den-
sities (1, 3, and 5 mg  cm−2), was used as the core layer along 
with the MXene layer.

2.4  Fabrication of Sandwich‑Structured STENG

The preparation process of STENG is simple and efficient. 
Before spraying the MXene layer, a copper wire was intro-
duced, and then the resulting composite film was affixed to 

the acrylic substrate with double-sided tape. What needs 
to be explained is that the top WPU layer acts as a positive 
dielectric material and the MXene and Ag layer act as a 
synergistic electrode.

2.5  Characterization

The morphology of the MxAgy films was characterized by 
field emission scanning electron microscopic (FE-SEM, 
JSM-7001F) at an accelerating voltage of 20 kV. The vol-
ume conductivity of samples was performed with the aid of a 
digital multimeter (Tektronix DMM4050), and the value can 
be calculated by the following equation: � = L∕RS , where � 
is the volume conductivity, L is the length of both ends, R is 
the volume resistance, and S is the cross section area of the 
film. The transmittance spectrum was measured by UV–Vis 
NIR absorption spectrometer (Cary 5000) with the measured 
wavelength range of 300–2400 nm.

A universal test platform (UTM2203, Shenzhen Suns 
Technology Stock Co., Ltd., China) controlled by a custom 
computer was used and equipped with a 100 N force sensor 
to measure mechanical properties. The stress–strain curves 
of MxAgy films were carried out under uniaxial test condi-
tions with a crosshead speed of 5 mm  min−1.

The electro-photo-thermal property was characterized by 
an infrared (IR) thermal imaging instrument (FLIR, E60), 
and the temperature change was real-time-recorded. The dif-
ference is that the electro-thermal test was done by applying 
a voltage to the sample, while the photo-thermal test was 
done by exposing the membrane to a solar simulator. The 
value of  QSC,  VOC, and  ISC was precisely recorded by an 
electrometer (Keithley-6514). It was carried out under the 
frequency-controlled force generated by the motor.

3  Results and Discussion

3.1  Fabrication and Structure of the MxAgy EHFs

The schematic process of multifunctional EHFs is illus-
trated in Fig. 1a. Briefly, on one side of the prepared WPU 
film, AgMPs are sprayed and then subjected to a certain 
condition of hot-pressing treatment. The purpose of the 
hot-pressing process is mainly for sintering AgMPs. The 
activation energy required for surface diffusion is rela-
tively low, and the high temperature can just provide the 



 Nano-Micro Lett.          (2021) 13:201   201  Page 4 of 12

https://doi.
org/10.1007/s40820-021-00729-w

© The authors

required energy. Furthermore, the surface diffusion has a 
certain effect on the formation and expansion of the sinter-
ing neck, and the necks between the particles become wider 
under high-pressure conditions to form an effective metallic 

bonding [34, 35]. As shown in Fig. S1, before sintering, the 
conductivity of the Ag layer is relatively low, which is due 
to a sparse percolation network of particles. During the hot-
pressing process, AgMPs are transformed into a coherent 
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microstructure at an elevated temperature, and subsequently, 
the ligament size of nano-porous Ag increases, leading to the 
complete bonding of AgMPs with each other (Fig. S2). After 
hot-pressing, MXene dispersion and WPU emulsion were 
sprayed sequentially. The corresponding composite films 
are described as MxAgy, where x and y represent the areal 
density (mg  cm−2) of MXene and AgMPs, respectively. In 
addition, a mixed MXene and AgMPs was prepared, which 
is named M1@Ag5 for comparison. M1Ag5-NO represents 
the sample without the hot-pressing treatment of AgMPs. 
The two sides of EHFs have different colors (Fig. 1b), and 
the electrical conductivity of EHFs increased as the AgMPs 
contents increased (Fig. 1c), enabling the lighting-up of a 
LED under a power supply (Fig. 1d).

The scanning electron microscopy (SEM) images of 
films show a typical layer-by-layer structure (Fig. 1e–j). 
In Fig. 1e, it can be clearly seen that MXene sheets are 
sandwiched between WPU layers. With the introduction of 
AgMPs, an obvious granular layer appeared below MXene. 
It is worth noting that due to the effect of the hot-pressing, 
some AgMPs will be pressed into the bottom WPU layer, 
which may enhance the mechanical properties of the film 
for the embedding of fillers (Fig. S3). More importantly, no 
obvious interface defects are discovered between these lay-
ers, which is conducive to ensure performance stability in 
different conditions. In contrast to the mixed-phase film of 
M1@Ag5, AgMPs are randomly distributed on the MXene 
layer, and the overall structure was relatively loose. Moreo-
ver, the thin thickness of MxAgy (~ 50 μm) and conductive 
layer (~ 10 μm) make it great potential in miniaturized and 
lightweight regions.

3.2  Electric‑Thermal and Photo‑Thermal Performances

According to the principle of Joule heating, heat can be 
generated when electric currents pass through a conductor. 
Joule’s law can be expressed by Eq. 1:

where Q , U,I , R, and t  represent generated Joule, applied 
voltage, current, resistance, and operating time, respectively 
[36, 37]. For the convenience of research, all the tests are 
characterized in the surface of AgMPs. Figure 2a–c reflects 
the timely feedback of Joule-heating temperature of M1, 
M1Ag1, M1Ag5 under different voltages. The temperature 

(1)Q = UIt = I2Rt =
U2

R
t

of M1Ag1 and M1Ag5 can rapidly heat up to the platform 
of 72.1 and 121.3 °C within 20 s, with applied voltages of 
4 and 2 V, respectively. However, the control group M1 can 
only heat up to about 43.6 °C, even at a high voltage of 
14 V, ascribing to the low conductivity of M1, as depicted 
in Fig. 1c. The M1Ag5 can maintain a stable temperature 
platform under the long period of working conditions (Fig. 
S4). By applying different gradients of external voltage, the 
EHFs exhibit controllable cycle stability and temperature 
responsiveness (Fig. 2d). During the energization process, 
the temperature distribution on the film surface is uniform, 
and the brightness of the infrared image obviously increases 
as the voltage rises. Moreover, the stability of the heater is 
also an important indicator of whether it can work for a long 
term. As shown in Fig. 2e, the voltage–current curves of 
all three samples are described, indicating that the constant 
resistance of the composite films and the height conforms 
to Ohm’s law through the fitting curves under different volt-
ages. While, due to the polymer matrix, the heating upper 
limit of the heater is subject to certain restrictions.

As shown in Fig. 2f, contrast to the pure WPU film, the 
EHFs of M1, Ag5, and M1Ag5 exhibit excellent photo-
thermal abilities, which can be heated to 54.2, 64.3, and 
66.2 °C, respectively, within 70 s when exposed to 1 sun 
irradiation (100 mW  cm−2), ascribing to the effective photo-
thermal effect of AgMPs and MXene. The higher overall 
temperature of the MxAgy films compared to M1 and Ag5 
confirms the synergetic photo-thermal effect of MXene and 
AgMPs (Fig. 2g, a clearer photograph is shown in Fig. S5), 
for the coherent oscillation of the surface electrons induced 
and localized surface plasmon resonance (LSPR) of metal 
particles by light [38, 39]. Similarly, the semi-metallic prop-
erties of MXene also exhibit this similar property [40, 41]. 
When AgMPs of 1 mg  cm−2 are sprayed, the photo-ther-
mal effect of the EHFs is hardly improved. What’s more, 
it can be concluded that the hybrid EHFs possess a higher 
absorbance in the visible wavelength range of 400 to 800 nm 
(Fig. S6), which provides the most important factor for the 
enhancement of the photo-thermal effect. Figure 2h dem-
onstrates that the photo-thermal performance of the film is 
stable under the cyclic irradiation of 100 mW  cm−2, and the 
photo-to-heat output capacity does not decrease obviously. 
Furthermore, the temperature of the M1Ag5 film rises from 
42.3 to 76.5 °C with the increase in light irradiation intensity 
from 50 to 200 mW  cm−2, and the infrared image on the 
right visually reflects this difference (Fig. 2i). It is worth 
noting that the photo-thermal output of the film does not 
show a linear relationship with the illumination intensity 
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(Fig. 2j), which may be caused by the inherent property 
of the high thermal conductivity of the AgMPs. Figure S7 
reveals that with the increase in AgMPs content, the thermal 

conductivity in the vertical direction of the MxAgy EHFs 
gradually increases.
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3.3  Electrical Output Performance of the EHFs‑based 
STENG

In addition to the excellent flexibility of WPU [42], WPU 
exhibits a remarkable ability to gain or lose electrons when 
in contact with different materials as well, allowing it to 
be the triboelectric layer in STENG [43]. In this work, the 
STENG can be prepared easily by introducing a copper 
wire before spraying MXene (Fig. 3a). Figure 3b system-
atically illustrates the structure and working principle of 
the STENG. At first, the silicone rubber and WPU layer is 
determined as the negative and positive triboelectric materi-
als, respectively, due to their difference in relative polarity 

(I). When the two subjects contact, negative charges will 
produce on silicon rubber due to its strong negative charge 
capturing ability, and the same amount of positive charge is 
generated on the surface of the WPU layer to keep the poten-
tial in balance (II). When the silicone rubber separates from 
the WPU layer, the unscreened positive charges will induce 
the accumulation of negative charges in the AgMPs/MXene 
interface. Meanwhile, the instantaneous electrons will flow 
from the ground to the AgMPs/MXene layer (III). When the 
separation degree between the rubber and the WPU layer 
reaches the maximum, the potential in the STENG system 
will reach equilibrium and the flow of free electrons will 
also terminate (IV). As rubber and WPU approach again, 
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the electrons will flow from the MxAgy conductive layer to 
the ground, indicating a reversed operation mechanism (V). 
By repeating the contact-separation procedure mentioned 
above, an alternating electrical signal can be generated. The 
changes of the induced voltage of rubber and WPU layer 
during the movement process can be intuitively illustrated 
through the simulation of COMSOL (Fig. S8).

The electrical output performance of STENG is affected 
by different factors such as pressure, frequency, and contact 
material [44–48]. Therefore, a linear motor is used to study 
the property of EHFs-based STENG in the periodic contact-
separation motions. The contact area is chosen as 40 × 40  mm2 
and the tapping force is 10 N (frequency: 5 Hz). As shown in 
Fig. 3c, the transferred short-circuit charge  (QSC), the open-
circuit voltage  (VOC) and the short-circuit current  (ISC) of 
the STENG are 38.9 nC, 114.7 V and 0.82 µA, respectively. 
The variation of output performance dependence on differ-
ent AgMPs content is shown in Fig. S9. Increasing output 
 VOC and  ISC performance of STENG is due to the following 
reasons: the outstanding electrical conductivity of AgMPs 
causes the decrease in surface resistance significantly; the 
high AgMPs content leads to more effective contact area with 
the WPU layer. The  VOC of STENG at different frequencies 
is also studied (Fig. 3d). The  VOC increases accordingly with 
the motor frequency, which is mainly because the higher the 
frequency, the smaller the neutralization of positive and nega-
tive charges in the dielectric layer and the triboelectrification 
layer during contact, resulting in more charges gathering on 
the electrode and high electrical output [45]. In addition, the 
influence of tapping force on STENG electrical output capac-
ity can be seen in Fig. S10. With the augment of applying 
pressure, the effective triboelectric area increases due to the 
deformation of the polymer materials [27, 49]. Figure 3e dis-
plays the output voltage, current density, and power density 
of the STENG by connecting various external resistors of 1 
kΩ to 1 GΩ. As shown in the chart, following Ohm’s law, 
the voltage of the external resistance rises while the current 
decreases with the resistance increasing. The power density 
( P ) can be calculated by Eq. 2:

where U and I represent the output voltage and current of 
the STENG, respectively. A is the contact area, R stands 
for the magnitude of the resistance. When the external load 

(2)P =

U2

RA
=

UI

A

resistance is about 250 MΩ, the output power density of 
EHFs-based STENG can reach a maximum of approximately 
186.8 mW  m−2. The repeatability of electrical output is cru-
cial for STENG equipment, herein, the STENG still main-
tains satisfactory stable outputs after over 2000 pressing-
releasing circulations (Fig. 3g), showing the reliability of 
the device in practical application. Besides, the waterproof 
performance of STENG was characterized. Surprisingly, the 
 VOC remained at a similar level even after soaking in deion-
ized water for 1 week due to the excellent waterproof per-
formance of WPU (Fig. 3f). Additionally, the EHFs-based 
STENG also has a good responsiveness to human skin. As 
shown in Fig. S10 and Movie S1, the STENG can gener-
ate identifiable voltage signals by finger tapping and regu-
lar steps with different frequencies. This work provides a 
promising exploration of EHFs-based STENG in the field 
of human body sensors.

A self-powered system is assembled to verify the feasi-
bility of EHFs-based STENG in practical application. As 
depicted in Fig. 4a, the STENG was linked to capacitor, 
LEDs, and electronic watch through a rectified circuit that 
converts the output alternating current to direct current. 
The charging capability of the STENG was measured by 
charging a 0.22 µF commercial capacitor with different 
operating frequencies (1–5 Hz) and capacitors of vari-
ous capacity sizes (0.22–10 µF) at a frequency of 5 Hz 
(Fig. 4b, c). It exhibits that the charging rate increases 
significantly with the increasing motor frequency, which 
is mainly attributed to the higher contact-separation fre-
quency of the triboelectrically layer, leading to the more 
accumulation of the friction charge. And, as the capaci-
tance increases, the charging rate of the capacitor slows 
down reasonably. Moreover, the STENG can impel more 
than 20 commercial LEDs to light up by periodically 
clapping hands at a certain frequency (Fig. 4d and Movie 
S2). Further, combining with an energy storage unit, the 
STENG can provide driving power for portable electronic 
devices, such as electronic watches (Fig. 4e), electronic 
thermometers (Fig. 4f), etc. These results confirm that 
the EHFs-based STENG has the potential to be further 
explored in self-charging power supply system [50]. Par-
ticularly, the structure of the double triboelectrification 
layers is constructed to greatly increase the output voltage 
of STENG (Fig. 4g), which provides a potential direction 
for future research. The possible mechanism is shown in 
Fig. S12. The polarization and accumulation of charge 
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occurred simultaneously in the upper and lower layers of 
WPU, and the design of double triboelectrification layers 
shorts the distance and speeds up the contact efficiency. 
The larger contact area, the higher contact-separation fre-
quency, and the more significant the potential difference 
formed.

4  Conclusions

In summary, EHFs were fabricated via the technology of 
layer-by-layer spraying and hot-pressing. The cross-section 
SEM images reveal the effective establishment of a strati-
fied structure in EHFs. As expected, the high electrical 
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conductivity and absorbance of the network constructed by 
the fillers endow the EHFs with low-voltage-driven Joule 
heating effect and remarkable photo-thermal property, 
respectively. Furthermore, due to the WPU layer is easy to 
gain or lose electrons when contacting different polarities 
materials, the EHFs-based STENG is verified to be able to 
effectively convert mechanical energy into electrical energy 
output and provide power for microelectronic devices in con-
tinuous contact-separation mode. This work illustrates the 
great potential applications of EHFs for energy harvesting 
to achieve better energy recycling.
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