Supporting Information for

Flexible Ag Microparticle/MXene Based Film for Energy-Harvesting

Yunpeng Jia^{1, #}, Yamin Pan^{1, #}, Chunfeng Wang^{2, 3}, Chuntai Liu¹, Changyu Shen¹, Caofeng Pan², Zhanhu Guo⁴, Xianhu Liu^{1, *}

¹ College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450002, P. R. China

² Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing, 100083, P. R. China

³ College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China

⁴ Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA

[#] Yunpeng Jia and Yamin Pan contributed equally to this work

*Corresponding author. E-mail: xianhu.liu@zzu.edu.cn (Xianhu Liu)

Supplementary Figures

Fig. S1 Comparison of electrical conductivity before and after hot-pressing

Fig. S2 Micromorphology of AgMPs a before and b after hot-pressing

Nano-Micro Letters

Fig. S3 Typical stress–strain curves of the MxAgy EHFs. The tensile strength increases due to the increase of AgMPs content and its embedding

Fig. S4 Electric-thermal property of M1Ag5 film at high and low temperatures for over two hours

Fig. S5 Temperature of different films under 100 mW cm⁻²

Nano-Micro Letters

Fig. S6 Absorbance of the Ag5, M1, and M1Ag5 films

Fig. S7 Thermal conductivity of MxAgy EHFs in through-plane

Fig. S8 Electrical potential distributions of the MxAgy-based STENG simulated by the COMSOL software

Nano-Micro Letters

Fig. S9 Variations in the a V_{OC} and b I_{SC} for MxAgy-based STENG with various AgMPs content at a frequency of 5 Hz and a force of 10 N

Fig. S10 V_{OC} of the STENG with various applying pressure (fixed frequency of 5 Hz)

Fig. S11 Corresponding Voc of the MxAgy-based STENG to monitor **a** finger bending of different frequencies and **b** regular steps

Fig. S12 Electrical output mechanism of double triboelectrification layers