Supporting Information for

MOF-Derived ZnS Nanodots/Ti₃C₂T_x MXene Hybrids Boosting

Superior Lithium Storage Performance

Bin Cao¹, Huan Liu^{1, 2, *}, Xin Zhang¹, Peng Zhang¹, Qizhen Zhu¹, Huiling Du², Lianli Wang², Rupeng Zhang¹, and Bin Xu^{1, *}

¹State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of

Electrochemical Process and Technology for Materials, Beijing University of

Chemical Technology, Beijing 100029, People's Republic of China

²College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, People's Republic of China

*Corresponding authors. E-mail: <u>huanliu@xust.edu.cn</u> (H. Liu), <u>xubin@mail.buct.edu.cn</u> (B. Xu)

S1 DFT Calculation Methods

We have employed the Vienna ab initio package (VASP) [S1, S2] to perform all spinpolarization density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) [S3] formulation. We have chosen the projected augmented wave (PAW) potentials [S4] to describe the ionic cores and take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of 400 eV. Partial occupancies of the Kohn -Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10^{-6} eV. A geometry optimization was considered convergent when the energy change was smaller than 0.05 eV $Å^{-1}$. In addition, for the Ti atoms, the U schemes need to be applied, and the U has been set as 3.2 eV. Finally, the adsorption energies (E_{ads}) were calculated as $E_{ads} = E_{ad/sub} - E_{ad} - E_{sub}$, where $E_{ad/sub}$, E_{ad} , and E_{sub} are the total energies of the optimized adsorbate/substrate system, the adsorbate, and the clean substrate, respectively. Moreover, Li ions migration barrier energies had been evaluated using the climbing nudged elastic band (CI-NEB) methods. In our calculation, the interface binding energy can be obtained by the equation: Ebinding= $(E_{total} - E_1 - E_2)$, where the E_{total} is the energy of interface structure, E_1 and E_2 is the energy of the surfaces.

S2 Supplementary Figures

Fig. S1 TEM image (a) with the corresponding selected area electron diffraction pattern (b), and atomic force microscope image (c) of $Ti_3C_2T_x$ MXene nanosheets

Fig. S2 Zeta potential of $Ti_3C_2T_x$ MXene nanosheets

Fig. S3 TEM image of ZIF-8/MXene-0.9 (**a**), SEM image (**b**) and TEM image (**c**) of the ZIF-8/MXene-2

Fig. S4 SEM image (a) and TEM image (b) with the corresponding SAED pattern (c) of ZnSMX80

Fig. S5 XRD patterns of ZIF-8 (a), ZIF-8/MXene-0.9 (b) and ZIF-8/MXene-2 (c)

Fig. S6 Raman spectra of ZIF-8 and ZIF-8/MXene composites

Fig. S7 XPS spectra of MXene, ZnS, ZnSMX64 and ZnSMX80

Fig. S8 High-resolution XPS spectra of C 1*s* for MXene (**a**), ZnSMX64 (**b**), and ZnSMX80 (**c**)

Fig. S9 High-resolution XPS spectra of Ti 2p for ZnSMX80

Fig. S10 High-resolution XPS spectra of O 1s for MXene (a) and ZnSMX80 (b)

Fig. S11 Nitrogen (77K) adsorption-desorption isotherms (**a**) and pore size distributions (**b**) of all the samples

Fig. S12 XRD pattern of CZnS

Fig. S13 CV curves of CZnS anode

Fig. S14 Contour maps of *in situ* XRD characterization during second cycle for CZnS anode

Fig. S15 In situ XRD patterns for the second cycle of CZnS anode

S6 / S12

Fig. S16 Cycle performance (a) and rate capability (b) of CZnS anode

Fig. S17 SEM images of CZnS anode after 70 charge-discharge cycles

Fig. S18 CV curves of ZnSMX80 at 0.1 mV s⁻¹

Fig. S19 Galvanostatic discharge-charge curves at 0.1 A g⁻¹ for ZnS

Fig. S20 Electrochemical performance of MXene. Galvanostatic discharge-charge curves at a current density of 0.1 A g^{-1} (**a**) and CV curves at a scan rate of 0.1 mV s^{-1} (**b**)

Fig. S21 Representative discharge-charge profiles of ZnSMX64 at 100 mA g⁻¹ for 100 cycles

Fig. S22 CV curve of ZnSMX80 with the surface dominating capacity contribution for cathodic process at 0.5 mV s⁻¹ (**a**), and the proportion of capacity contributions at different scan rates (**b**)

Fig. S23 *In situ* EIS characterization of ZnS (**a**) and ZnSMX80 (**b**) anode at different lithiation states of 2.0-0.01 V

The diffusion coefficient (D) can be calculated from the GITT potential profiles by Fick's second law with Eq. S1:

$$D = \frac{4}{\pi \tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2$$
(S1)

where τ is the titration time, m_B is the mass of active material, S is the area of electrodes, ΔE_s is the quasi-thermodynamic equilibrium potential difference before and after the current pulse, ΔE_{τ} is the potential difference during current pulse, V_M is the molar volume, and M_B is the molar mass.

Fig. S24 GITT potential profile of the ZnS (a) and ZnSMX80 (b)

Fig. S25 (a) Simulation model of $Ti_3C_2T_x$, ZnS (111), ZnS (101) and ZnS (001). (b) Binding energy for ZnS (101)/Ti₃C₂T_x, ZnS (001)/Ti₃C₂T_x, and ZnS (111)/Ti₃C₂T_x. According to binding energy values of different structure, the ZnS (111)/Ti₃C₂T_x structure is most stable

Fig. S26 Lithium adsorption in ZnS (111) model at Zn top, S top, Zn-S bridge, and hollow site with the corresponding adsorption energy

Fig. S27 Lithium adsorption in $Ti_3C_2T_x$ MXene model at Ti top, C top, Ti-C top and hollow site with the corresponding adsorption energy

Fig. S28 Lithium diffusion path at ZnS (111)

Supplementary References

- [S1] G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). <u>https://doi.org/10.1016/0927-0256(96)00008-0</u>
- [S2] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16) 11169 (1996). <u>https://doi.org/ 10.1103/PhysRevB.54.11169</u>
- [S3] K.B. John P. Perdew, Ernzerhof Matthias, Generalized gradient approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- [S4] G.K.D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B 59, 1758 (1998). https://doi.org/10.1103/PhysRevB.59.1758