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HIGHLIGHTS

• Electronic waste Cu wires were successfully used as a cost‑effective current collector for high‑energy wire‑type rechargeable alkaline 
batteries.

• The scalable approach was applied to reduce, reuse, and recycle electronic waste.

• A developed wire‑type rechargeable alkaline battery exhibited a high‑energy‑density of 82.42 Wh kg−1 with long‑term cycling stability.

ABSTRACT  Rechargeable 
alkaline batteries (RABs) have 
received remarkable attention 
in the past decade for their high 
energy, low cost, safe operation, 
facile manufacture, and eco‑
friendly nature. To date, expen‑
sive electrode materials and 
current collectors were predomi‑
nantly applied for RABs, which 
have limited their real‑world effi‑
cacy. In the present work, we pro‑
pose a scalable process to utilize electronic waste (e‑waste) Cu wires as a cost‑effective current collector for high‑energy wire‑type RABs. 
Initially, the vertically aligned CuO nanowires were prepared over the waste Cu wires via in situ alkaline corrosion. Then, both atomic‑
layer‑deposited NiO and NiCo‑hydroxide were applied to the CuO nanowires to form a uniform dendritic‑structured NiCo‑hydroxide/
NiO/CuO/Cu electrode. When the prepared dendritic‑structured electrode was applied to the RAB, it showed excellent electrochemical 
features, namely high‑energy‑density (82.42 Wh kg−1), excellent specific capacity (219 mAh g−1), and long‑term cycling stability (94% 
capacity retention over 5000 cycles). The presented approach and material meet the requirements of a cost‑effective, abundant, and highly 
efficient electrode for advanced eco‑friendly RABs. More importantly, the present method provides an efficient path to recycle e‑waste for 
value‑added energy storage applications.
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1 Introduction

The extensive growth of portable electronics, implant‑
able biomedical devices, and hybrid electrical vehicles 
demands low‑cost, high‑performance energy storage 
devices [1]. In the last two decades, lithium‑ion batteries 
(LIBs) and supercapacitors (SCs) have been the dominant 
energy storage devices for portable and grid‑level applica‑
tions [2–5]. The higher energy density of LIBs makes them 
suitable for commercial application; however, the lower 
power capability, limited cycling stability, high cost, flam‑
mability, and toxicity of LIBs have limited their practical 
utility. In contrast, SCs have attracted immense interest for 
their higher power capability, long cycle life, and nontoxic 
nature. However, the surface charge storage mechanism of 
SCs leads to lower energy density and capacitance values 
[6]. For certain applications, energy storage devices must 
exhibit energy densities similar to those of LIBs and power 
capabilities similar to those of SCs. Recently, recharge‑
able alkaline batteries (RABs) have been considered as 
alternative energy storage devices for LIBs and SCs as 
they show higher energy density than SCs and higher 
power density than LIBs [7, 8]. Unlike the conventional 
liquid electrolyte‑based planar RABs, wire‑type solid‑state 
RABs have recently attracted increased research interest 
owing to their flexible and lightweight nature, which is 
suitable for wearable electronics [9–11]. In addition to 
their flexible and lightweight nature, the lower energy 
storage capacity due to the smaller operating voltage 
window and limited cycling stability of wire‑type RABs 
have inspired us to investigate advanced electrode materi‑
als, current collectors, and electrolytes to achieve higher 
energy density and cycling stability. In the literature, vari‑
ous electrode materials were reported to enable RABs to 
attain higher electrochemical performance. In particular, 
multicomponent electrode materials in the core–shell form 
are preferred to obtain higher energy storage capacities 
due to their synergistic effect [12, 13]. Nickel cobalt‑based 
nanostructured electrode materials have attracted interest 
for their high abundance, high capacity, and good revers‑
ibility over several electrochemical cycles. In addition, 
the higher electrical conductivity and redox activity of 
nickel cobalt‑based electrode materials make them suitable 
candidates for energy storage applications [14, 15]. Apart 
from electrode materials, identifying a low‑cost current 

collector is also essential to minimize the production cost 
of energy storage devices.

The rapidly increasing human population, growing 
economy, rapid urbanization, and increase in living stand‑
ards have greatly accelerated the rate of waste generation, 
thereby directly affecting the earth’s atmosphere. Most of 
this waste is toxic and contains hazardous and health‑threat‑
ening chemicals. Proper waste management is the best way 
to maintain a clean atmosphere by reducing, reusing, and 
recycling our waste [16, 17]. Among the different types of 
waste, electronic waste (e‑waste) is of serious concern to 
society and arises from discarding electronic equipment after 
the end of its useful life. The rapid increase in the demand 
for advanced electronic devices has led to the constant gen‑
eration of enormous amounts of e‑waste, thereby causing 
environmental issues, as they contain harmful materials such 
as lead, cadmium, and beryllium. Electric wires are a uni‑
versally occurring form of e‑waste and primarily contain 
metallic Cu or Al. Recycling these metallic waste wires for 
different energy applications will effectively mitigate eco‑
nomic and environmental concerns [18–22]. To develop an 
efficient energy storage device that is also cost‑effective, it 
is imperative to search for a common material that could be 
employed as a current collector, active material, and elec‑
trolyte for suitable expanse, as well as possesses adequate 
energy storage capacity [23, 24]. In general, various cur‑
rent collectors have been used to develop energy storage 
devices, including stainless steel, carbon cloth, Ti foil, and 
Ni foam [23]. However, these current collectors are expen‑
sive, which will increase the production cost of the energy 
storage device. To control the production cost, the utilization 
of waste Cu wires as a current collector to assemble energy 
storage devices is the best option.

With this motivation, in the present work, we have 
developed a wire‑type RAB using waste Cu wires as a cur‑
rent collector. Briefly, a dendritic‑structured NiCo‑hydrox‑
ide/NiO/CuO/Cu electrode has been designed by combin‑
ing wet (alkaline corrosion and chemical bath deposition) 
and dry (atomic‑layer deposition) processes, to yield a 
high‑specific‑capacity electrode for batteries, excellent 
rate capability, and long‑term cycling performance when 
used in an RAB. The designed electrode provides suffi‑
cient interspace, as well as a multichannel pathway, for 
the electrolyte penetration to enable efficient charge and 
mass transfer within the bulk materials. Moreover, the 
dendritic‑structured electrode prepared over the waste Cu 
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wire itself acts as a self‑supportive electrode to control the 
resultant resistance of the electrode. This synthesis route 
also provides the facial route to utilize the cost‑effective 
current collector for energy storage applications [25, 26].

2  Experimental Section

2.1  Materials and Chemicals

All chemicals were used as received from Sigma‑Aldrich 
Corp., South Korea. The copper (Cu) wires used in the 
experiments were collected from our department’s store‑
room. All chemicals were analytical grade and used as 
received without any further processing. All precursor 
solutions were prepared in deionized water.

2.2  Preparation of Cu(OH)2 Nanowires on Cu Wire

Prior to the preparation of Cu(OH)2 nanowires on the Cu wire, 
the plastic coating of the scrap Cu wire was removed by a 
wire stripper, and then the obtained Cu fibers were braided to 
form a single structure. Furthermore, the Cu wire was cleaned 
with 1 M HCl and deionized (DI) water to remove the native 
oxide layer from its surface. To grow the Cu(OH)2 nanowires, 
the typical alkaline corrosion method was used. The precur‑
sor solution was prepared by dissolving  (NH4)2S2O8 (4.107 g) 
and NaOH (11.997 g) in 100 mL of DI water with continuous 
stirring for 30 min. The cleaned Cu fibers were then prepared 
at a length of 5 cm and kept in the prepared solution for 5 min 
to form the Cu(OH)2 nanowires. The active region of the elec‑
trode occupied 4 cm of the wire, and the remaining 1 cm, was 
used for the electric contacts. During the reaction time, the 
color of the solution changed from transparent to blue indi‑
cating the formation of Cu(OH)2 nanowires over waste Cu 
wires. Furthermore, the prepared Cu(OH)2/Cu wire sample 
was rinsed in DI water and kept at 60 °C overnight.

2.3  Preparation of Thin NiO on the Cu(OH)2/Cu Wire

To enhance the electrical conductivity and surface area of the 
Cu(OH)2/Cu wire, thin NiO was carried out with a homemade 
atomic‑layer deposition (ALD) system. Commercially available 
Ni(EtCp)2 was used as the precursor with  O2 plasma as the oxi‑
dant. The temperature of the precursor was maintained at 50 °C 

with a line temperature of 60 °C, and the deposition chamber 
was maintained at 250 °C. Initially, the ALD conditions were 
optimized by conducting the deposition of NiO over a silicon 
substrate. The standard optimized conditions for the NiO ALD 
process were as follows: precursor pulsing (30 sccm, 1.5 s), 
main purging (30 sccm, 20 s), bypass purging (250 sccm, 5 s), 
oxygen plasma (5 s), and Ar purging (30 s). Under these condi‑
tions, the growth rate of the NiO layer was 0.037 nm per cycle 
at 250 °C. After the ALD parameters were optimized, NiO 
was deposited over the Cu(OH)2/Cu nanowires for 200 cycles.

2.4  Preparation of NiCo‑Hydroxide/NiO/CuO/Cu 
Electrode

The nanowires of NiCo‑hydroxide were prepared on the 
NiO/CuO/Cu electrode via low‑temperature chemical bath 
deposition. The precursor solution was prepared by dissolv‑
ing 0.05 M Co(NO3)2·H2O, 0.05 M Ni(NO3)2·6H2O, and 
0.25 M urea in 50 mL DI water. Afterward, the NiO/CuO/
Cu electrode was immersed in the precursor solution and 
kept in the oven at 80 °C for 2 h to form the NiCo‑hydroxide 
nanowires over the NiO/CuO/Cu electrode. After the growth 
process, the sample was removed from the precursor solu‑
tion, then rinsed with DI water, and dried in the oven at 
60 °C overnight. The mass loading of the material (NiO and 
NiCo‑hydroxide) over CuO/Cu is 0.56 mg (0.14 mg cm−1). 
The prepared dendritic‑type NiCo‑hydroxide/NiO/Cu(OH)2/
Cu electrode was used to assemble the wire‑type recharge‑
able aqueous battery.

2.5  Preparation of Gel Electrolyte and Wire‑Type 
Rechargeable Aqueous Battery

The PVA–KOH gel electrolyte was prepared by mixing 
2 M KOH and 2 g of PVA in 20 mL of DI water at 70 °C 
for 20 min while stirring. The formed transparent gel‑like 
solution was used to assemble the wire‑type rechargeable 
aqueous battery by immersing both electrodes (4 cm), i.e., 
NiCo‑hydroxide/NiO/CuO/Cu and AC/SS, in the PVA–KOH 
gel electrolyte for 20 min to cover all the active sites of 
the material with the gel electrolyte, which was then hung 
in the oven at 60 °C for 6 h to remove the water content 
from the gel electrolyte. After that, both electrodes were 
held together and again dipped in the gel electrolyte and 
solidified at 60 °C for 6 h. Finally, the assembled device was 
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covered with parafilm and used for further electrochemical 
measurements. The mass ratio of the positive to negative 
electrode was determined by the well‑known charge‑balance 
equation (q+ = q−) to be 1:4.5.

2.6  Preparation of Activated Carbon/Stainless Steel 
Electrode

To assemble the full rechargeable aqueous battery, a nega‑
tive electrode is required, whereas NiCo‑hydroxide/NiO/
CuO/Cu will act as a positive electrode. To prepare the nega‑
tive electrode, the stainless steel wires were collected from 
the 200 stainless steel mesh (304 type). The 20 stainless 
steel wires were braided to form a uniform structure. The 
traditional activated carbon coating was carried out over the 
braided stainless steel wires. Typically, a uniform mixture of 
the activated carbon (80%), carbon black (10%), and PVDF 
(10%) with a few drops of ethanol was prepared and loaded 
over the braided stainless steel wires. To enhance the com‑
patibility between the activated carbon and stainless steel 
wires, the prepared electrode was heated on a hot plate for 
1 h at 200 °C.

2.7  Electrochemical Measurements

The electrochemical measurements for the prepared electrode 
and wire‑type rechargeable aqueous battery were carried 
out by performing cyclic voltammetry (CV), galvanostatic 
charge–discharge (GCD), and electrochemical impedance 
spectroscopy (EIS). For the three‑electrode measurements, 
electrochemical measurements were carried out using the 
NiCo‑hydroxide/NiO/CuO/Cu electrode as a working elec‑
trode, platinum plate as a counter electrode, and saturated 
calomel electrode (SCE) as the reference electrode in 2 M 
potassium hydroxide (KOH). The two‑electrode measure‑
ments were performed by fabricating a wire‑type recharge‑
able aqueous battery with PVA–KOH gel electrolytes.

The thickness of the ALD films was measured by ellip‑
sometry (Gaertner Scientific). The surface morphology of 
the prepared samples was characterized using field‑emission 
scanning electron microscopy (FE‑SEM, JEOL JSM‑7500F) 
and high‑resolution transmission electron microscopy (HR‑
TEM, JEOL JEM‑2100F). The crystal structure and oxida‑
tion state of the prepared samples were confirmed by X‑ray 

diffraction (XRD, X’Pert Pro using CuKg radiation) and 
X‑ray photoelectron spectroscopy (XPS, ESCALAB‑MKII).

The electrochemical parameters include the specific 
capacitance (F g−1), length capacitance (mF cm−1), and 
specific capacity (mAh g−1), which were calculated by the 
following equations:

here I(A) is the discharge current, ∆t (s) is the discharge 
time, m (g) is the mass of the active material, ∆V (V) is 
the potential, and L (cm) is the length of the electrode/
device.

3  Results and Discussion

The stepwise preparation of the dendritic‑structured NiCo‑
hydroxide/NiO/CuO/Cu electrode is presented in Fig. 1. 
Waste management is critical to maintain a clean atmos‑
phere for living creatures. With this motivation, and to mini‑
mize e‑waste, we used e‑waste Cu wires for energy stor‑
age applications. The fabrication of the electrode involves 
three major steps. First, the plastic nonconducting coating 
of the waste Cu wires was removed by wire stepper, and the 
obtained Cu wires were treated with an alkaline solution for 
a very short time (5 min) to form vertically aligned Cu(OH)2 
nanowires. However, the lower electrical conductivity of the 
Cu(OH)2 is a major obstacle for facial electrochemical reac‑
tions [27]. Second, to enhance the electrical conductivity 
of the Cu(OH)2 nanowires, ALD of NiO film (200 cycles) 
was carried out on the Cu(OH)2 nanowires. Here, ALD NiO 
plays multiple roles in enhancing the energy storage capac‑
ity of the RAB and enhances the electrical conductivity of 
the electrode to increase the power capability of the RAB. 
Furthermore, it will contribute to the redox capacity and 
allow more active sites to host NiCo‑hydroxide. As the ALD 
of NiO film was carried out at a reaction temperature of 
250 °C, Cu(OH)2 was converted into CuO, which will, again, 
be beneficial in enhancing the electrochemical features of 
the RAB. Finally, the NiCo‑hydroxide nanowires were pre‑
pared over the NiO/CuO/Cu wires by conventional chemi‑
cal bath deposition (CBD) at a low reaction temperature of 

Specific capacitance∶Cs = IΔt∕(mΔV)

Length capacitance∶CL = IΔt∕(LΔV)

Specific capacity∶Q = IΔt∕(3.6m)
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80 °C to form the dendritic‑structured NiCo‑hydroxide/NiO/
CuO/Cu electrode.

The physical and chemical properties of the as‑prepared 
dendritic‑structured NiCo‑hydroxide/NiO/CuO/Cu elec‑
trode were determined by X‑ray diffraction (XRD), X‑ray 
photoelectron spectroscopy (XPS), field‑emission scanning 
electron microscopy (FE‑SEM), and transmission electron 
microscopy (TEM) measurements to verify that the qual‑
ity of the materials could meet the requirements for RAB 
applications. Figure 2 shows the FE‑SEM and TEM results 
for the prepared electrodes. As shown in Fig. 2a, b, Cu(OH)2 
nanowires are layered uniformly over the Cu wire after 
alkaline corrosion. The vertically aligned and well‑sepa‑
rated Cu(OH)2 nanowires are beneficial for energy storage 
applications, as they provide sufficient interspacing for ion 
movement. However, to overcome the limited conductivity 
of the Cu(OH)2 nanowires, thin NiO deposition (200 cycles) 
is carried out by ALD. Even after 200 ALD NiO cycles, 
the electrode still maintained basic nanowire‑like nano‑
structures due to the conformal deposition in the ALD tech‑
nique, as well as maintained its macroscopic nature without 

blocking the macropores, as shown in Fig. 2c, d [28–30]. 
TEM analysis for the NiO/CuO/Cu electrode is presented 
in Fig. S1, which clearly shows the formation of a very thin 
(~ 7 nm) NiO coating over the CuO/Cu nanowire electrode. 
The surface morphology of the NiCo‑hydroxide/NiO/CuO/
Cu electrode is presented in Fig. 2e–g at different magni‑
fications. The low‑magnification images clearly show the 
formation of the dendritic nanostructures through the surface 
of the sample (Fig. 2e, f), whereas the high‑magnification 
SEM image shows the formation of very fine and vertically 
aligned NiCo‑hydroxide nanowires over NiO/CuO/Cu to 
form dendritic nanostructures. TEM images also show the 
formation of dendritic nanostructures for the NiCo‑hydrox‑
ide/NiO/CuO/Cu electrode (Fig. 2h, i). After CBD of the 
NiCo‑hydroxide, each NiO/CuO/Cu nanowire is decorated 
with NiCo‑hydroxide nanowires to form a branched nano‑
structure, which will enhance the energy storage capacity of 
the RAB by providing a large surface area as well as redox 
capacity [31, 32]. From the energy storage perspective, this 
type of nanostructure is favorable for charge storage as it 
provides a large surface area as well as multiple channels 

NiCo-hydroxide/NiO/CuO/Cu wire NiO/CuO/Cu wire

CBD, 80 °C/2 h

ALD      250 °C

Cu(OH)2/Cu wire

Alkaline corrosion

Cu wire

Waste wire

Ni2+ + Co2+

Ni(EtCp)2 + O2 Plasma

(NH4)2S2O8 + NaOH

Fig. 1  Schematic illustration of the preparation of dendritic‑structured NiCo‑hydroxide/NiO/CuO/Cu electrode using e‑waste Cu wires for the 
RAB application
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for charge transfer that will simultaneously boost the energy 
and power densities. Moreover, each dendritic nanowire is 
separated from the others by the formation of a porous nano‑
structure, which will provide large and open channels for the 
diffusion of electrolyte ions. Scanning transmission elec‑
tron microscopy (STEM)–energy‑dispersive X‑ray (EDX) 
elemental mapping for the NiCo‑hydroxide/NiO/CuO/Cu 
electrode is shown in Fig. 2j, which confirms the uniform 
distribution of each element through the surface of the elec‑
trode. The phase and surface chemical state of the prepared 
electrodes were measured by XRD and XPS, and the cor‑
responding results are presented in Figs. S2, S3.

To demonstrate the electrochemical superiority of the 
NiCo‑hydroxide/NiO/CuO/Cu electrode for the RAB, com‑
parative cyclic voltammetry (CV) measurements were car‑
ried out in a three‑electrode system with 2 M KOH electro‑
lyte. Figure 3a shows the comparative CV curves for all the 

electrodes at an identical scan rate of 100 mV s−1, indicating 
a higher integral area with large anodic and cathodic cur‑
rents for the NiCo‑hydroxide/NiO/CuO/Cu electrode, thus 
suggesting a higher energy storage capacity [33]. To prove 
our claim, we calculated the length capacitance for all the 
electrodes and plotted them in Fig. 3b. The higher length 
capacitance of the NiCo‑hydroxide/NiO/CuO/Cu electrode 
(2.19 F cm−1) is indicative of its improved electrochemical 
features compared to the other electrodes. Furthermore, to 
determine the rate capability of the NiCo‑hydroxide/NiO/
CuO/Cu electrode, CV and charge–discharge (CD) meas‑
urements were carried out at various scanning rates, and the 
corresponding results are presented in Fig. 3c, d. The CV 
curves show nonrectangular behavior, with a pair of redox 
peaks indicating the faradaic redox processes of the elec‑
trode components. More importantly, the CV curves main‑
tain their shape at both lower and higher scanning rates, 

500 μm

30 μm

300 nm

10 μm 5 μm

)c()b()a(

(d)

(g)

(j)

Cu Ni Co O C

(h)

100 nm 40 nm

(i)

)f()e(

500 μm10 μm

200 nm 200 nm 200 nm 200 nm 200 nm 200 nm

Fig. 2  FE‑SEM images for the a, b Cu(OH)2/Cu wire, c, d NiO/CuO/Cu, and e–g NiCo‑hydroxide/NiO/CuO/Cu electrodes. h, i TEM images 
for the NiCo‑hydroxide/NiO/CuO/Cu electrode. j STEM‑EDS elemental mapping results for the NiCo‑hydroxide/NiO/CuO/Cu electrode
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signifying better rate capability [34, 35]. Figure 3d shows 
the representative CD curves for the NiCo‑hydroxide/NiO/
CuO/Cu electrode at different currents ranging from 1 to 
10 mA. The CD curves show nonlinear behavior, suggest‑
ing the existence of faradaic processes, and are consistent 
with the CV results. The CD curves are approximately 
symmetric in nature, without any potential drop, even at a 
higher current of 10 mA, indicating that the dendritic NiCo‑
hydroxide/NiO/CuO/Cu electrode has good electrochemi‑
cal characteristics and superior reversible redox properties. 
The discharge‑specific capacitance and specific capacity 

were calculated for the NiCo‑hydroxide/NiO/CuO/Cu elec‑
trode at various currents and are plotted in Fig. 3d. At a low 
current of 1 mA, the electrode shows the highest specific 
capacity of 387.37 mAh g−1 (2486 F g−1), which decreases 
to 262.62 mAh g−1 (1363.63 F g−1) at a higher current of 
10 mA with a rate capability of 67.79%. This suggests that 
the developed electrode has better electrochemical charac‑
teristics. Furthermore, we quantified the capacitive (Qc) and 
diffusion (Qd) controlled contribution to the overall current 
response in the CV curves for the NiCo‑hydroxide/NiO/
CuO/Cu electrode, and the obtained results are presented 
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versus cycle number for the NiCo‑hydroxide/NiO/CuO/Cu electrode. The inset shows the first and last cycles. i Schematic representation show‑
ing the merits of the NiCo‑hydroxide/NiO/CuO/Cu electrode for the RAB application
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in Fig. 3f. The diffusion‑controlled contribution is domi‑
nant at low scan rates, whereas the capacitive contribution 
is higher at a high scan rate. At a low scan rate of 5 mV s−1, 
the diffusion‑controlled contribution is ~ 65%, indicating the 
facial diffusion of the electrolyte ions in the active electrode 
materials for the faradaic reactions. With an increase in scan 
rate from 5 to 60 mV s−1, it is reasonable to observe that 
the diffusion‑controlled contribution decreases to ~ 32%, 
signifying that surface redox reactions dominate at the high 
scan rate.

To further understand the electrochemical kinetics of 
the NiCo‑hydroxide/NiO/CuO/Cu electrode, EIS was car‑
ried out in the frequency range of 100 kHz to 10 MHz. 
Figure 3g shows the obtained Nyquist plot. In order of 
decreasing frequency, the first intercept of the Nyquist plot 
in the high‑frequency region shows the equivalent series 
resistance (Rs), the diameter of the semicircle in the high‑
frequency region provides the charge transfer resistance 
(Rct), and the vertical line in the low‑frequency region rep‑
resents the electrolyte ion diffusion in the structure of the 
electrode materials [36, 37]. In the present case, the NiCo‑
hydroxide/NiO/CuO/Cu electrode shows a lower Rs (1.07 
Ω) as well as Rct (0.32 Ω), suggesting a facial electrochem‑
ical reaction between the electrolyte ions and active elec‑
trode materials. The long‑term cycling stability is, again, 
an important factor for energy storage devices. Here, the 
cycling stability for the NiCo‑hydroxide/NiO/CuO/Cu 
electrode was measured by performing CD measurements 
at a high current of 12 mA for 5000 cycles, where a 97% 
capacity retention is observed. The excellent electrochemi‑
cal performance in terms of higher specific capacity, rate 
capability, and long‑term cycling stability for the den‑
dritic‑structured NiCo‑hydroxide/NiO/CuO/Cu electrode 
is mainly due to its hierarchical nanoporous structure, as 
schematically presented in Fig. 3i. First, the vertically 
aligned CuO nanowires themselves act as a current collec‑
tor that will drastically reduce the resultant resistance of 
the electrode. Second, the vertically aligned CuO nanow‑
ires provide a large interspace for electrolyte penetration, 
as well as to host the NiO and NiCo‑hydroxide [38, 39]. 
Third, the ALD NiO over the CuO nanowires enhances the 
electrical conductivity, resultant surface area, redox sites 
for the electrochemical reactions, and NiCo‑hydroxide 
hosting [40]. Fourth, the NiCo‑hydroxide nanowires over 
the NiO/CuO/Cu nanowires drastically enhance the elec‑
troactive surface area for the redox reactions to enhance 

the energy storage capacity of the electrode. The intercon‑
nected arrangement of the NiCo‑hydroxide and NiO/CuO/
Cu nanowires creates abundant pathways for electrolyte 
penetration. The amorphous nature of NiCo‑OH is favora‑
ble for charge storage because it provides abundant grain 
boundaries and ion diffusion channels. In addition, the 
binderless approach avoids unnecessary dead surface area 
by enhancing the electrical conductivity of the electrode 
[41–43]. Finally, in addition to the synergetic effect of the 
dendritic structure, the low cost and abundant availability 
of the waste Cu wires with low‑cost processing make them 
strong candidates for energy storage applications.

To demonstrate the actual application of the prepared 
electrode to batteries, an RAB was assembled with NiCo‑
hydroxide/NiO/CuO/Cu as a positive electrode and acti‑
vated carbon (AC)/stainless steel (SS) as a negative elec‑
trode with aqueous PVA‑KOH gel electrolyte. Figure 4a 
shows the CV curves for the NiCo‑hydroxide/NiO/CuO/
Cu and AC/SS electrode in the three‑electrode system at 
a constant scan rate of 20 mV s−1 in 2 M KOH electro‑
lyte. As observed in the CV curve, the NiCo‑hydroxide/
NiO/CuO/Cu electrode can work in the positive potential 
(− 0.2 to 0.6 V/SCE), whereas the AC/SS electrode shows 
good electrochemical performance in the negative poten‑
tial (− 1.0 to 0 V/SCE); therefore, it is possible to combine 
these electrodes in a single cell to enhance the energy stor‑
age capacity and operating voltage of the RAB. To optimize 
the voltage window for the assembled NiCo‑hydroxide/NiO/
CuO/Cu//AC/SS RAB, the CV measurements were carried 
out at various voltage windows (Fig. 4b). The optimized 
voltage limit for the NiCo‑hydroxide/NiO/CuO/Cu//AC/
SS RAB is 1.5 V. However, from the three‑electrode meas‑
urements, the maximum operating voltage window for the 
proposed RAB is 1.6 V. To maintain the long‑term cycling 
stability and reversibility of the electrodes, we selected the 
voltage limit of 0–1.5 V [44, 45]. Figure 4c shows the CV 
curves for the NiCo‑hydroxide/NiO/CuO/Cu//AC/SS RAB 
at various scanning rates within the voltage limit of 0–1.5 V. 
The CV curves maintain their CV shape at both lower and 
higher scan rates, suggesting better electrochemical fea‑
tures with excellent rate capability. The assembled NiCo‑
hydroxide/NiO/CuO/Cu//AC/SS RABs work very well, 
even at a high scan rate of 100 mV s−1 by sustaining the 
original CV curve, indicating the higher electrical conduc‑
tivity of the electrode and electrolyte. Figure 4d presents 
the CD curves for the NiCo‑hydroxide/NiO/CuO/Cu//AC/
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SS RAB at various currents within the voltage window of 
0–1.5 V. Based on the CD curves, we calculated the specific 
capacitance and specific capacity for the NiCo‑hydroxide/
NiO/CuO/Cu//AC/SS RAB at various currents, and the cor‑
responding results are presented in Fig. 4d. At the low cur‑
rent of 10 mA, the NiCo‑hydroxide/NiO/CuO/Cu//AC/SS 
RAB shows a specific capacity of 219 mAh g−1 (263 F g−1), 
which then decreases to 207 mAh g−1 (249 F g−1) at a high 
current density of 20 mA, corresponding to a rate capabil‑
ity of 94.17%. Furthermore, the energy density and power 
density were calculated for the NiCo‑hydroxide/NiO/CuO/
Cu//AC/SS RAB by considering the discharge curves, and 
the corresponding results are plotted in the Ragone plot 

(Fig. 4f). The device exhibited the highest energy density 
of 82.42 Wh kg−1 at a power density of 1630.43 W kg−1, 
and a high power density of 3660.87 W kg−1 at an energy 
density of 77.89 Wh kg−1. Importantly, the assembled NiCo‑
hydroxide/NiO/CuO/Cu//AC/SS RAB simultaneously shows 
higher energy and power densities, thereby expanding the 
applicability of the battery technology. Further, the obtained 
energy densities are higher than those for lead acid, vana‑
dium redox flow, and aqueous LIBs and SIBs [46, 47]. EIS 
was further used to investigate the electrochemical proper‑
ties of the NiCo‑hydroxide/NiO/CuO/Cu//AC/SS RAB. The 
Nyquist plot (Fig. 4g) shows that Rs and Rct are less than 3 Ω, 
indicating the occurrence of facial electrochemical reactions 
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between the electrode material and electrolyte ions. In addi‑
tion, long‑term cycling stability measurements were carried 
out for the NiCo‑hydroxide/NiO/CuO/Cu//AC/SS RAB, 
and the corresponding results are presented in Fig. 4h, i. As 
shown in Fig. 4h, the NiCo‑hydroxide/NiO/CuO/Cu//AC/
SS RAB shows excellent cycling stability by maintaining 
94% of capacity over the 5000 CD cycles. Moreover, the 
NiCo‑hydroxide/NiO/CuO/Cu//AC/SS RAB shows a better 
columbic efficiency of 93%, even after 5000 cycles, repre‑
senting the excellent reversibility of the electrode materials. 
Moreover, Fig. 4i shows the initial and final CD cycles with 
similar electrochemical characteristics, indicating the supe‑
rior electrochemical performance of the NiCo‑hydroxide/
NiO/CuO/Cu//AC/SS RAB. The above‑mentioned results 
indicate that the dendritic‑structured NiCo‑hydroxide/NiO/
CuO/Cu electrode exhibits excellent electrochemical fea‑
tures that are suitable for high‑energy RAB applications.

4  Conclusions

In conclusion, a uniform dendritic‑structured NiCo‑hydrox‑
ide/NiO/CuO/Cu electrode was successfully fabricated over 
a waste Cu wire via a low‑cost and scalable process for a 
high‑energy RAB. The electrochemical investigation for the 
developed RAB shows excellent features in terms of a high‑
energy‑density (82.42 Wh kg−1), excellent specific capac‑
ity (219 mAh g−1), and long‑term cycling stability (94% 
capacity retention over 5000 cycles). The excellent electro‑
chemical properties result from the innovative design of the 
hierarchical nanostructure with a highly porous branched 
nanostructure that provides a multichannel for facial and fast 
ion transportation during the charge/discharge process. More 
importantly, the simple synthetic approach provided in this 
work is highly repeatable and easy to scale up for different 
applications. Finally, the presented approach and material 
meet the requirements of cost‑effectiveness, abundance, and 
high effectiveness of the electrode for advanced eco‑friendly 
energy storage devices.
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