Supporting Information for

Synergistic Effect of Cation and Anion for Low-Temperature

Aqueous Zinc-Ion Battery

Tianjiang Sun¹, Shibing Zheng¹, Haihui Du¹, Zhanliang Tao^{1, *}

¹Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China

*Corresponding author. E-mail: <u>taozhl@nankai.edu.cn</u> (Zhanliang Tao)

Supplementary Figures and Table

Fig. S1 a) Optimal structure of water molecule. b) The combining energy of two molecules and corresponding structure information

Fig. S2 a) FTIR spectra of O-H bond. b) FTIR spectra of Cl-O

Fig. S3 The fitted O–H stretching vibration representing water molecules with strong, medium and weak HBs. **a**) Pure water. **b**) 1 M Zn(ClO₄)₂. **c**) 1 M Mg(ClO₄)₂

Fig. S4 The ratio of different types of HBs

Fig. S5 ¹H NMR spectra of different solutions

S2 / S9

Nano-Micro Letters

Fig. S6 The freezing points of different solutions

Fig. S7 The all FT-IR spectra of different concentration electrolytes

Fig. S8 The wavenumber shift of different types of HBs

Fig. S9 a) Optimal structure of ClO_4^- . b) Combining energy between ClO_4^- and H_2O and corresponding structure information

Fig. S10 FTIR spectra of Cl-O bond

Fig. S11 a) All Raman spectra of different concentration electrolytes. **b)** The fitted O– H stretching vibration representing water molecules with strong, medium and weak HBs

Fig. S12 The ratio and Raman shift of different types of HBs

Fig. S13 The all ¹H NMR spectra of different concentration electrolytes

Fig. S14 DSC curves of **a**) 0 M (1 M Zn(ClO₄)₂); **b**) 1 M; **c**) 2 M; **d**) 2.5 M; **e**) 3 M; **f**) 4 M solution

Fig. S15 The non-polarizing light microscope observation of 0 M electrolyte (1 M $Zn(ClO_4)_2$) at a) 25 °C; b) -20 °C

Fig. S16 CV curves of Zn||SS at a) 1 M Zn(ClO₄)₂; b) 3.5 M Mg(ClO₄)₂ + 1 M Zn(ClO₄)₂ electrolyte

Fig. S17 The cycling stability of Zn||Zn battery at different electrolytes

Fig. S18 The cycling stability of Zn||Zn battery at 3.5 M electrolyte

Fig. S19 SEM images of Zn a) at 3.5 M electrolyte; b) at 1 M Zn(ClO₄)₂ electrolyte

Fig. S20 CV curves of Zn||PTO battery at different electrolytes

Fig. S21 a) ESP of PNZ. b) HOMO plots of PNZ and PNZ²⁻. c) The corrected binding energies of PNZ with Zn^{2+} or Mg^{2+}

Fig. S22 SEM images of PTO electrodes at a) Initial state; b) Discharge state; c) Charge state

Fig. S23 CV curves of Zn||PTO battery at a) 25 °C; b) 0, -30 °C, -50 °C and -70 °C; c) -70 °C and 0.3 mV s⁻¹

Fig. S24 CV curves of Zn||PNZ battery at a) 25 °C; b) -70 °C

Fig. S25 The charge-discharge curves of Zn||PNZ battery at 25 °C and -70 °C

Fig. S26 The rate capacity of Zn||PNZ battery at -70 °C

Fig. S27 The cycling stability of Zn||PNZ battery at -70 °C

Table S1 DES of PTO electrodes at different states

	C (atom%)	O (atom%)	Zn (atom%)	Mg (atom%)
Initial	87.26	12.74	0	0
Discharge	53.42	34.47	11.90	0.22
Charge	84.41	10.67	4.92	0