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Advanced Strategies to Improve Performances 
of Molybdenum‑Based Gas Sensors
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HIGHLIGHTS

• Various advanced strategies for improving gas sensing performances of molybdenum-based nanostructures are reviewed.

• The plausible mechanism of enhanced gas sensing properties from each strategy is discussed.

• The conclusive outlook, challenge, and suggestions for future development toward marked commercialization of molybdenum-based 
gas sensing devices are provided.

ABSTRACT Molybdenum-based materials have been intensively investi-
gated for high-performance gas sensor applications. Particularly, molybde-
num oxides and dichalcogenides nanostructures have been widely examined 
due to their tunable structural and physicochemical properties that meet 
sensor requirements. These materials have good durability, are naturally 
abundant, low cost, and have facile preparation, allowing scalable fabrica-
tion to fulfill the growing demand of susceptible sensor devices. Significant 
advances have been made in recent decades to design and fabricate various 
molybdenum oxides- and dichalcogenides-based sensing materials, though 
it is still challenging to achieve high performances. Therefore, many experi-
mental and theoretical investigations have been devoted to exploring suitable 
approaches which can significantly enhance their gas sensing properties. This 
review comprehensively examines recent advanced strategies to improve 
the nanostructured molybdenum-based material performance for detecting 
harmful pollutants, dangerous gases, or even exhaled breath monitoring. The 
summary and future challenges to advance their gas sensing performances 
will also be presented.
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1 Introduction

With advancements in technology, science, and economic 
mobilities, pollution has become a global concern, especially 
emissions from vehicles, various industrial processes and 
transports, agriculture, and residential activities [1–6]. For 
instance, air pollutions contain many particulate matters 
and harmful gases directly impacting the environment and 
human beings [1, 2]. The emissions mostly contain  NOx, 
CO,  SO2,  NH3, and volatile organic compounds (VOCs) [5], 
which cause global warming and climate change. Human 
health is also at risk because these toxic gases enter unde-
tectably (because some gases have colorless and odorless 
properties) to the body through oral intake, inhalation, and 
skin contact, causing serious problems that might eventually 
lead to death [1, 2, 7–9]. According to the World Health 
Organization (WHO), air pollution is responsible for nearly 
800,000 premature deaths per year [10]. Some gases, such 
as  H2, propane, and methane, are highly explosive without 
proper handling and safety measures. Therefore, there is a 
need to develop advanced gas sensor devices to detect these 
deleterious, dangerous and poisonous pollutants and reduce 
their damaging effect [4, 11]. Moreover, existing gas sensing 
technology is forecasted to take a dominant role in health 
monitoring and disease prediction by analyzing exhaled 
breath biomarkers [12–14].

Gas sensor devices, based on their working mechanism, 
are mainly classified into chemoresistive, electrochemi-
cal, optical, surface acoustic, surface plasmon resonance, 
and micro-cantilever sensors [15–21]. Among them, the 
chemoresistive-type gas sensor is the most popular due to 
its low cost, high sensitivity, fabrication simplicity, ease of 
miniaturization, and portability, apart from having a well-
accepted empirically gas sensing mechanism [22, 23]. The 
term chemoresistive originates from its working principle 
in which sensing measurement is based on the change in 
electrical resistivity upon target gas or chemical exposure. 
Therefore, the active sensing materials should possess dis-
tinguished electrical properties in the different surrounding 
atmospheres. Metal semiconductors are generally utilized 
as active materials to sense gases. Initially, the gas sensing 
materials in sensor device are exposed to the air atmosphere 
at certain temperatures based on their optimum working 
conditions. The oxygen molecules  (O2) are then adsorbed 
onto the surface of materials by catching electrons near the 

conduction band, creating electron depletion layers (EDLs) 
in n-type semiconductor and hole accumulation layers 
(HALs) in p-type semiconductor materials. The adsorbed 
oxygen transforms into different ion species  O2−,  O− and 
 O2− [24, 25]. Due to the charge carrier concentration differ-
ence in the material before and after exposure in ambient, 
the internal resistance is altered.

At this point, the measured resistance represents sensor 
resistance in the air (Ra) [26, 27]. When the target gas flows 
and comes into the sensor system, the sensor resistance 
changes due to the active reaction between ionized oxygen, 
releasing trapped electrons from the depleted region [27, 
28]. The measured resistance in the sensor represents sen-
sor resistance in the air (Rg). Depending on the nature of 
semiconducting materials, the sensor sensitivity (S) can be 
calculated by Ra/Rg for n-type and Rg/Ra for p-type. Some-
times when the resistance difference is too small, sensitivity 
is defined as the relative change in resistance or S = (Ra-
Rg/Rg) × 100% for n-type and S = (Rg-Ra/Ra) × 100% for 
p-type [29]. According to this mechanism, the high sensi-
tivity value is an important parameter for gas sensing mate-
rials. Furthermore, operating temperatures, selectivity, 
response–recovery times, long-term stability, and durabil-
ity against extreme conditions are crucial for evaluating gas 
sensor device performances [30].

For decades, studies have been conducted on the poten-
tiality of various types of semiconducting materials for an 
active component in chemoresistive gas sensors, including 
metal oxides, sulfides/oxysulfides, nitrides/oxynitrides, and 
fluoride/oxyfluorides, as well as optimizing their gas sensing 
properties through advanced strategies [30–34]. Consider-
able efforts have also been directed toward the investigation 
of a different class of materials, including molybdenum-
based gas sensing materials, which are an attractive group 
of materials for a wide range of applications, including cata-
lyst, photocatalyst, gas sensor, biomedical therapy, energy 
storage and conversion, and optoelectronic devices owing 
to unique tunability of physical and chemical characteris-
tic [32, 35–41]. The most important materials in this group 
are alpha-molybdenum oxide (α-MoO3) and molybdenum 
sulfide  (MoS2). These two are promising candidates for 
high-performance gas sensor applications because their 
unique layered 2D structures allow gaseous compounds 
to access more adsorption sites. This is where the adsorp-
tion/desorption process extensively occurs, leading to high 
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sensitivity [32, 42]. With a high aspect ratio, 2D-structured 
α-MoO3 and  MoS2 naturally exhibit high specific surface 
area that is undoubtedly beneficial for gas adsorption [43]. 
The synergistic effect of physical, electronic, chemical, 
and mechanical properties was previously examined for α-
MoO3- and  MoS2-based sensing materials. Furthermore, 
enormous research strategies have been employed through 
morphology and crystal phase control, facet engineering, 
surface functionalization with noble metals, elemental dop-
ing, and heterostructures coupling to escalate their gas sens-
ing performance and meet the expected criteria for mass 
productions. Some previous reviews have been published 
elsewhere, but they focused on general synthesis and appli-
cations of molybdenum-based materials [37, 44]. No recent 
report has focused on advanced strategies for optimization 
of their gas sensing performance.

This review provides a comprehensive perspective of 
α-MoO3 and  MoS2 as gas sensing materials. The basic crys-
tal structures of these materials and their common properties 
include physical, electrical, electronics, optical, chemical, 
and mechanical that strongly correlate to their gas sensing 
behavior are presented. Afterward, the focus is on the most 
recent and advanced strategies to optimize gas sensing per-
formances of α-MoO3 and  MoS2 in detecting various harm-
ful gases. It is noteworthy that the recent progress on the gas 
sensing performance of other molybdenum-based materials, 
such as  MoSe2,  MoTe2,  Mo2C, and MoC, is briefly discussed 
to encourage further extensive development. This review 
also summarizes molybdenum-based gas sensing materials 
and an overview, including challenges and future works.

2  Molybdenum Oxide  (MoO3) Gas Sensing 
Materials

Molybdenum oxide  (MoO3) is one of the n-type metal 
oxide semiconductors with a band gap ranging from 2.39 to 
2.9 eV [45–47]. This oxide has unique optical and electronic 
properties, layered structure, and good catalytic properties 
suitable for photodevice, energy storage, and catalyst [43]. 
Furthermore, its intrinsic semiconductor property with high 
sensitivity to the presence of gas explains its wide use as a 
gas sensor material [43, 48]. Regarding crystal structure, 
 MoO3 exist in three different types of structures depend-
ing on growth temperature, pressure, and impurities [43]. 
The structures are orthorhombic (α-MoO3), monoclinic 

(β-MoO3), hexagonal (h-MoO3), and ε-MoO3, as shown in 
Fig. 1. However, α-MoO3 is the most popular and widely 
used since it is stable thermodynamically and often formed 
at high temperatures. In this type of structure, the distorted 
 MoO6 octahedral are arranged in layers toward the b axis 
with corner and edge-sharing [49]. This layered structure is 
supported by Mo–O’s asymmetry coordination, where the 
distance between them is varied from 1.67 to 2.33 Å [50]. 
In the gas sensor application, this phase is popular due to 
its high stability. The other phases, β-MoO3 and h-MoO3, 
are metastable and need a complex preparation procedure to 
prepare [51]. In general, β-MoO3 is prepared by the cation 
exchange approach, while h-MoO3 preparation involves 
alkaline earth metal [52]. Despite the superior nature of the 
catalyst, β-MoO3 is a rarely found in gas sensor application. 
Regarding h-MoO3, several studies have utilized this phase 
to detect ethanol, formaldehyde, acetone,  NH3, and  H2. In 
terms of electronic properties, the n-type semiconductor 
properties of  MoO3 are supported by the presence of oxy-
gen vacancies, which induce localization of electrons on the 
surface [53]. These electrons fill the 4d state of Mo in the 
Mo–Mo bond, and the state is located in the  MoO3 band gap. 
However, the number of oxygen vacancies strongly deter-
mines the electronic properties of MoOx and according to 
previous studies,  MoO2 has metallic properties [53, 54]. In 
this section, the use of  MoO3 semiconductors as gas sen-
sors is reviewed. The development of  MoO3 modifications 
to improve its performance as a gas sensor, such as morphol-
ogy modification, metal decorated, elemental doping, and 
heterostructures, are also discussed in detail.

From the literature research obtained from the Web of 
Science database as shown in Fig. 2, we discovered the total 
number of publications related to  MoO3 based gas sensor is 
265, with the first report of  MoO3 was published in 1992. 
After a decade, the number of work is still few which the 
most of the work focused on thin-film preparation. The num-
ber of detected gas is limited to non-VOCs gas. Early investi-
gations demonstrated  MoO3 thin-film deposition method in 
electronic substrate via physical sputtering. Also, the inter-
calation of polymeric materials guest on interlayer  MoO3 
host became a major approach for increasing  MoO3 gas sens-
ing properties. Because of the development of sol–gel chem-
istry as a novel wet preparation of inorganic solid, various 
morphological nanostructured  MoO3 such as nanoparticles, 
nanobelts, and nanoplatelets have been successfully synthe-
sized within the time frame of 2010–2014. This approach 
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attracted many researchers in the gas sensing field, as dem-
onstrated by the number of publications that exceeded other 
approaches. We have recognized that the acidity of  MoO3 
is effective in detecting gases with basic nature, such as the 
gas with an amine group (TMA and TEA). The noble met-
als functionalization and elemental doping strategies have 
also been getting more popularity in recent years and are 
predicted to compete with the other 2 approaches. We will 
be discussing the development of each strategy in the fol-
lowing section.

2.1  Morphological Design

The morphology design is essential in improving gas sen-
sor performance because it strongly determines the active 
sites for surface reaction. Several efforts to design  MoO3 
from zero dimensional to hierarchical three dimensional 
have been recently reported. Each dimension has its role in 
enhancing sensor performances. Zero-dimensional nanoma-
terials commonly referred as quantum dots (QDs), typically 
semiconductor materials with a size less than 10 nm. This 
nanoscale size of  MoO3 allows their electrons to be depleted 
entirely by oxygens, thus significantly improve the sensitiv-
ity [55]. The quantum confinement that occurs in quantum 
dots also makes their bandgap tunable depending on their 
size. Based on its property, its sensing performance can be 
altered by altering its size [55–57]. Moreover, the reactiv-
ity of the QDs is considerably high due to the many defects 
or oxygen vacancies present on their surface, increasing 
active sites for oxygen adsorption. In general preparation of 
 MoO3 or  MoOx QDs, exfoliation process of  MoS2 or  MoO3 
precursor is involved in the presence of an oxidant such as 
 H2O2 that act as an exfoliating agent [58–60]. When  MoS2 
precursor is dispersed in the aqueous solution containing 
 H2O2, the oxidant provides the excess of oxygen that induces 
exfoliation and oxidation of  Mo4+ to its higher oxidation 
state. It was also reported that short oxidation of an aggres-
sive oxidant of  KMnO4, followed by oxidation by  H2O2 in 
hydrothermal conditions, will also produce high quality of 
 MoOx QDs [61]. Moreover, post-treatment, such as thermal 
exfoliation and surfactants addition, were reported to control 
the size and stabilize the QDs [59]. Those techniques pro-
duced the QDs with the size in the range of 2–6 nm. Aside 
from  MoS2,  MoO3 powder was also reported as a precursor 

for the formation of  MoOx QDs. The exfoliation of  MoO3 
can be realized by dispersing the oxide in organic solvents 
such as dimethyl sulfoxide (DMSO) and N-methyl-2-pyrro-
lidinone (NMP) with the help of ultraviolet (UV) light [60, 
62]. Although many reports in  MoOx QDs are available, 
their exploitation as gas sensor materials cannot be found. 
Therefore, the research on this topic is still widely opened. 
The QDs can be present as supporting material for other 
oxides or carbon nanomaterials.

Unlike zero-dimensional  MoO3, other dimensions of this 
oxide, such as one dimensional (1D), two dimensional (2D), 
and three dimensional (3D), were widely examined as sen-
sitive materials for gas sensors. 1D  MoO3 is a popular gas 
sensor due to its high surface-to-volume ratio, high exposed 
facet, and high chemical stability [63–65]. Controlling their 
diameter close to the Debye length (λL) can give various con-
duction states improving the sensing performances signifi-
cantly. Moreover, the back-to-back Schottky barrier can be 
generated by contacting two or more random oriented  MoO3 
[66, 67]. The synergistic effect between the wide depletion 
layer on the 1D surface and the back-to-back Schottky barrier 
is believed as a reason for their excellent performances. In 
the case of  MoO3-based gas sensors, several 1D nanostruc-
tures have been reported, including nanowires, nanorods, 
and nanobelts. Self-assembly α-MoO3 nanowires on a flex-
ible hydrophobic substrate for  H2 sensing was reported by 
Luo et al. [48]. Since  MoO3 tends to form 2D in its grow-
ing process, modifications of the synthesis method need 
to be carried out. The nanowire was firstly prepared by 
hydrothermal method at 260 °C for 96 h. The formation of 
orthorhombic phase α-MoO3 nanorod occurred with a diam-
eter of ~ 300 nm and a length of ~ 1 mm. The authors define 
its sensing performance by sensitivity factor, β,  (Rair-Rgas)/
Rair. At room temperature, the resulted α-MoO3 displayed a 
good response toward 1.5% of  H2 with a sensitivity factor 
of 0.85. Moreover, the materials can detect the gas in 3 s 
and need only 2.7 s to recover with remarkable selectivity. 
The excellent performances of the α-MoO3 nanowire are 
caused by the  Mo5+ species contained in the oxide. Since 
this species has a stronger bonding with adsorbed oxygen, 
it provides more active sites for gas sensor reactions. Other 
1D nanorods of α-MoO3 were prepared by Cao et al. [68] 
using a similar method with the assistance of hydrochloric 
acid (HCl) and cetyltrimethylammonium bromide (CTAB) at 
180–190 °C for 24 h. The process led to nanorod formation 
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with a diameter and length in the range of 100–200 nm 
and 1–3 µm, respectively. The resulting nanorod shows a 
response of 35 toward 400 ppm ethanol at a relatively high 
optimal temperature of 350 °C.

VOCs sensor based on α-MoO3 nanobelts was prepared 
by Jiang et al. [69] and Mo et al. [70] using a similar method, 
hydrothermal. Both groups used ammonium heptamolybdate 
tetrahydrate as a Mo source with different acids. Nanobelts 
of α-MoO3 with a width of 200 nm and length of ~ 6 µm 
were produced by a hydrothermally heated Mo precursor 
solution containing  HNO3 at 180 °C for 36 h. The nanobelts 
show a response of ~ 3 to 100 ppm of xylene at 206 °C with 
the response and recovery times of 7 and 87 s, respectively. 
The addition of HCl as a pH modulator and hydrothermal 
condition at 160 °C for 15 h resulted in nanobelts structure 
with a width of 180 nm. Mo et al. reported that the prepared 
oxide displayed good performance as an ethanol sensor at 
300 °C with a 50–800 ppm detection range. At its optimal 
temperature, the oxide has a response and recovery times in 
the range of 10–40 and ~ 4–70 s, respectively. Interestingly, 
the sensing mechanism of α-MoO3 is mainly contributed by 
surface lattice oxygen. The ethanol target is oxidized by the 
oxygen lattice, causing electron transfer to the metallic core 
and producing oxygen vacancies. This phenomenon changes 
the oxide resistance that is used as a sensor signal.

Naturally,  MoO3 with orthorhombic crystal structure or 
α-MoO3 has a double-layer structure [43]. This feature of 
α-MoO3 offers the easiness to produce 2D morphologies, 
including a thin layer via the exfoliation process. The 2D 
material itself is considered a promising class of materi-
als due to its unique properties, the high surface area that 
provide a huge number of active sites, and the possibility 
for surface modification as needed [71, 72]. As sensitive 
materials for gas sensors, increasing its affinity to target gas 
combine with the high surface area leads to superior gas 
sensor performance. Moreover, in the α-MoO3 case, the 
distance between its layer provides an additional diffusion 
path for gases to reach accessible sites. Several works report 
on the exfoliation of bulk α-MoO3 to 2D structures, such 
as nanoflakes [72, 73] and nanosheets [74]. Generally, the 
exfoliation process is successfully executed with ultrasoni-
cation assistance in the mixture of ethanol/water medium. 
Ji et al. [74] reported that nanosheets of α-MoO3 could be 
produced via exfoliation in the water/ethanol mixture with 
the ratio of 50%. Another liquid, such as DMSO, DMF, and 
IPA, produces a many layers of nanoflake. The nanosheets 

have superior alcohol sensing performance compared to 
the nanoflakes, with a response value of 31 at 300 °C to 
100 ppm of alcohol vapor. The nanosheets with a higher 
surface area than the nanoflakes provide more active sites for 
surface reaction. Rahman et al. [75] also performed exfolia-
tion using a different route. The CVD method was used to 
deposit α-MoO3 on the substrate. This technique produces 
nonstoichiometry of nanoflakes of α-MoO3-x with many 
 Mo5+ and oxygen vacancies on its surfaces. Since oxygen 
vacancies are the main key in the sensing mechanism of lay-
ered α-MoO3, the more vacancy, the higher the performance 
will be. The nanoflakes show good performance to  NO2 and 
 H2S at 250 °C with excellent selectivity.

Surface modification by enriching oxygen vacancy on 
 MoO3 surface for TMA sensing was carried out by Shen 
et al. [76] The ultrasonication of bulk  MoO3 in the solution 
containing methanol and  H2O2, followed by solvothermal 
at 180 °C for 12 h were performed to exfoliate the bulk 
oxide. The nanosheets with a thickness of 28 nm and rich in 
oxygen vacancies were obtained after calcining the solvo-
thermal product at 400 °C. The abundance of oxygen vacan-
cies provides many delocalized electrons that support charge 
transfer between the surface and TMA. These nanosheets 
detect 50 ppm of TMA at the optimal temperature of 133 °C 
with a response of 198. The different surface modifications 
with different results in types of gas sensor behavior were 
observed by Bisht et al. [77]. In their work, α-MoO3 was 
deposited using the pulsed laser deposition (PLD) technique 
on Si/SiO2 substrates. By varying the number of pulses, 2D, 
ultrathin-film (UTF) and thin-film (TF) α-MoO3 were pro-
duced with the thickness of 6, 18, and 80 nm, respectively. 
Interestingly only TF exhibits n-type behavior while 2D and 
UTF exhibit p-type behavior during  NO2 exposure at 100 °C. 
Two reasons are believed to cause this unusual behavior of 
2D and UTF; first, the high number of oxygen species on the 
surface of 2D and UTF induce the inversion layer resulting 
in the domination of holes in their conduction process. Sec-
ond, the Schottky barriers at metal-α-MoO3 contact of 2D 
and UTF are higher than that of TF preventing the electrons 
transfer from metal to α-MoO3 and allowing holes to pass 
the conduction channel. At 100 °C, the 2D α-MoO3 shows 
the highest response to 10 ppm of  NO2 with a response value 
of 25% and response time of 200 s.

Several studies show that low dimensional of  MoO3, such 
as nanorods [78–80], nanowires [48, 81], nanobelts [82, 83], 
nanoflakes [26, 84], and nanosheets [45, 49, 85] have good 
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performance as sensitive materials for toxic gas detection. 
However, some works reported that hierarchical 3D struc-
tures assembled by their low dimensional form offer higher 
performance due to their low density, high surface area, and 
porosity that allow more adsorption sites [86, 87]. Huo’s 
group compared the TEA sensor performance of α-MoO3 
nanoparticles, nanobelts, and nanobelt-assembled hierar-
chical flower-like [87] at 170 °C. α-MoO3 flower-like show 
superior response of 931.2 to 10 ppm TEA, 8.1 and 33.7, 
higher than the value generated by nanobelts and nanopar-
ticles, respectively. The high performance is attributed to 
the combination of high surface area and high (010) facet. 
Some studies also report the active facet of (010), especially 
to TEA [88, 89]. The flower-like α-MoO3 produced by Huo’s 
group also shows higher performance than ultralong α-MoO3 
nanobelts and nanorod, which show the highest performance 
to detect TEA at 240 and 300 °C [78, 83], respectively, as 

shown in Fig. 3. The microboxes of α-MoO3 composed of 
nanosheets are obtained using  MnCO3 microboxes as a tem-
plate [90]. In this case, the template was removed by an acid 
treatment. As a gas sensor, the boxes show good perfor-
mance in detecting 100 ppm ethanol at 260 °C with response 
value and response time of 78 and 15 s, respectively. Its per-
formance is higher than other works that developed sponge-
like nanorods, nanofibers, and nanobelts α-MoO3 [89, 91].

In the case of 3D α-MoO3, the gas sensor performances 
also depend on its assembly units. For instance, Ji et al. pre-
pared a hierarchical 3D structure assembled from nanosheets 
with three different thicknesses, 65–80, 30–40, and 5–8 nm 
[85]. The gas sensor measurements to 300 ppm of ethanol 
at 300 °C show the thinnest sheets show the highest perfor-
mances due to its relatively larger surface area. Furthermore, 
the two assembly units, nanofibers and nanosheets, assem-
ble a 3D sphere of α-MoO3 were prepared by Ji et al. as 
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ethanol sensors [92]. The nanosheets show a higher response 
to 400 ppm of ethanol at 300 °C than the nanofiber one due 
to their higher surface area and there are many intersections 
between individual sheets that force gas to adsorb on the 
surface effectively. However, the higher diffusion rate and 
lower potential energy of the nanofiber-assembled sphere 
lead to a faster response.

The morphology design apparently can reduce the opti-
mal temperature which has an impact on increasing sen-
sor stability. Efforts to reduce the working temperature of 
a pure  MoO3-based gas sensor can be done by making the 
2D structure as thin as possible. The thin 2D structure has 
abundant defects and oxygen vacancies providing a large 
amount of electron delocalization so that the reactivity 
increases at lower temperatures. However, another chal-
lenge in the utilization of this oxide is the negative effect 
of humidity. High humidity generally reduces sensor per-
formance because moisture on the surface can hinder oxide 
and target gas interaction. Therefore, other efforts such as 
modification with noble metals, elemental doping, and creat-
ing heterostructures can minimize the influence of humidity.

2.2  Surface Functionalization with Noble Metals

Improvement in the gas sensor performance can be achieved 
by introducing a noble metal on the metal oxide surface. 
Apart from their action as active sites, noble metals with 
high catalytic activity also reduce the activation energy of 
a gas, leading to an increase in adsorption rate and lower-
ing operating temperature [93–95]. Improvement of sensor 
performance due to the functionalization of noble metal is 
attributed to its ability to induce electronic and chemical sen-
sitization. Fermi level differences between noble metal and 
metal oxide generate a Schottky barrier at the interface that 
is sensitive to the presence of gas (electronic sensitization). 

For instance, some noble metals, such as Au [26, 45, 96–98], 
Ag [99], Pt [100], and Pd [101], were reported to enhance 
gas sensors based on  MoO3. These metals have a higher 
work functions of 5.1 [97, 102], 4.72 [103], 5.6 [104], and 
5.2 eV [105], respectively, compared to work function of 
 MoO3 that is 2.9 eV [106]. These differences induce the 
occurrence of electronic sensitization. Moreover, the disper-
sion of noble metals on the surface of metal oxides induces 
spill-over effects that help to increase the rate of surface 
reactions, leading to reduce response and recovery times. 
This chemical sensitization also helps to convert unreactive 
gas into a reactive form and improve selectivity [107–110]. 
Figure 4 shows an illustration of chemical and electronic 
sensitization in noble metal decorated  MoO3. Under an air 
atmosphere, the noble nanoparticles on  MoO3 surface act as 
an active site for  O2 dissociation. During gas exposure, for 
example  R2, the noble metal dissociates them to R, which 
is more reactive than  R2, as seen in Fig. 4a. This spill-over 
effect increases the reaction rate that resulting in reduced 
response time and lowered operating temperature. As men-
tioned earlier, electronic sensitization occurs due to the dif-
ference in work function between noble metal and  MoO3. 
Almost all noble metals have a work function higher than 
that of  MoO3. Right after  MoO3 makes contact with noble 
metals, electrons will flow from  MoO3 to noble metal along 
with Fermi level alignment leading to upward bending of 
 MoO3 (Fig. 4b). The band bending is associated with barrier 
potential qV at the noble metal/MoO3 interface that can be 
changed during the surface reaction as shown in Fig. 4c. The 
combination of chemical and electronic sensitizations results 
in high sensitivity, low temperature, and fast response.

Decoration of Au on  MoO3 successfully improved tol-
uene [96], xylene [96], ethanol [45],  H2S [26, 111], and 
1-butylamine [106] sensing performances. As toluene and 
xylene sensors, the α-MoO3 hollow spheres with 450 nm in 
diameter have been prepared by the solvothermal method, 
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metal right after making contact along with Fermi alignment that generates Schottky barrier at the interface of noble metal/MoO3
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followed by chemical reduction of Au at 120 °C. The Au 
nanoparticles have a diameter in the range of 10–25 nm. 
The higher numbers of chemisorbed oxygens on Au deco-
rated α-MoO3 hollow sphere than in its pure one increase 
response 4.6 and 3.9 times at 250 °C to 100 ppm of toluene 
and xylene, respectively, higher than the pure one at 290 °C 
[96]. Aside from operating temperature, the presence of a 
certain amount of Au nanoparticles also reduces response 
times from 19 and 6 s to 1.6 and 2 s for toluene and xylene, 
respectively. Moreover, Au preference to coordinate with 
the aromatic ring group may improve Au–MoO3 selectiv-
ity to toluene and xylene. The Amount and distribution of 
Au or noble metal also affect the sensing performance. A 
high amount and good dispersion of noble metal nanopar-
ticles on the surface of metal oxide raise the catalytic effect 
yet cover the active sites of oxide leading to decreased per-
formance [112]. A low amount of the metal is distributed 
sparsely, causing a lower catalytic activity and synergetic 
effect. Therefore, the proper ratio of metal/metal oxide is 
vital for achieving the best sensing performance. In the pre-
vious case, optimal amount of Au to deliver the highest per-
formance was 2.04% of α-MoO3. A different shape leads to 
a different sensor preference. 4 wt% of Au decorated  MoO3 
nanosheet was reported to sense 200 ppm of ethanol bet-
ter at its optimum temperature of 280 °C with the response 
and recovery times of 14 and 5 s, respectively [45]. The 
nanosheet with the size of 600 nm was prepared using a 
solvothermal method, while 10–15 nm of Au decoration was 
performed using the chemical reduction technique. However, 
the pure  MoO3 has a lower operating temperature, though 
the response value is much lower than the decorated one. 
The same amount of Au was used to decorate 200 nm in 
a width of  MoO3 nanobelt and was reported selectively in 
response to the presence of 1-butylamine [106]. The material 
preparations were similar to the previous work [45]. Com-
pared to the pure  MoO3 nanobelt with an optimal operating 
temperature of 340 °C, the Au decorated nanobelt shows the 
best performance at 240 °C with a response value of ~ 300. 
The high selectivity to 1-butylamine is caused by a nitro-
gen atom in 1-butylamine that has electrons lone pair and 
bind with acid-Lewis site of Mo ions (Fig. 5a). Moreover, 
the hydrogen atoms in the gas also support the second-
ary dehydrogenation producing more electrons. However, 
strong interaction between the Au decorated  MoO3 and the 
gas result in a long recovery. Hence the response time was 

much shorter than recovery time in both pure and decorated 
cases, as seen in Fig. 5b [97, 113, 114].

A lower operating temperature is achieved after an addi-
tional of Ag to α-MoO3 nanorods. The nanorods possess 
the length and diameter of 10 µm and 200–300 nm, respec-
tively. The Ag nanoparticles on the nanorod surface has a 
size of ~ 20 nm. The structure was obtained by the solvo-
thermal method to produce nanorods, then Ag reducing by 
wet chemical reduction at 50 °C. Also, 100 ppm of TEA was 
detected with the response value of 400.8 at 200 °C with 
high selectivity [99]. This value is three times greater than 
its pure counterpart and detects the gas within 3 s. Similar 
to the previous case, the strong interaction between amine-
contained gas and Mo ions leads to an incomplete recovery. 
To solve the problem, He et al. [101] proposed short-time 
pulse heating at high temperatures and established that pulse 
heating at 300 °C for 1 min completes the recovery in 107 s. 
At the same temperature, Pd-loaded  MoO3 flower-like nano-
belts detect  NO2 gas with good selectivity [101]. The nano-
belt was prepared using chemical spray pyrolysis (CSP) on a 
glass substrate with  MoCl5 as a Mo source. The Pd loading 
was done by dipping the  MoO3 film in PdCl solution several 
times and heat at 200 °C to remove the chlorine compound. 
The pure nanobelts achieves a response of 68% to 100 ppm 
of  NO2 at 200 °C. After Pd’s addition, the response value 
increased to 95.3%, with response and recovery time of 74 
and 297 s, respectively. The higher affinity of  NO2 causes the 
high selectivity to  NO2 compared to pre-adsorbed oxygen 
and other gases; hence the  NO2 chemisorption is preferen-
tially on the Pd-loaded  MoO3 surface. In another case, the 
addition of Pt nanoparticles on the α-MoO3 nanobelts effec-
tively detected formaldehyde at room temperature [100]. The 
nanobelts with 200–400 nm in width were prepared using 
a hydrothermal method, while Pt decoration was performed 
using the chemical reduction technique. A proper amount 
of Pt on the nanobelts had a response of 39.3% to 200 ppm 
of formaldehyde with a response and recovery times of 21.4 
and 16.6 s, at room temperature. The presence of Pt nano-
particles raises the response by almost six times of the bare 
α-MoO3.

Functionalization of  MoO3 with noble metal has been 
proven to increase response and decrease response time. 
Although the optimal temperature of  MoO3 is lower with 
noble metal functionalization, the reported optimal tem-
perature is still relatively high, which is in the range of 
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200–250 °C. The combination of ultrathin 2D  MoO3 and 
noble metal has the potential to be a superior gas sensor 
at low temperatures. In addition, this strategy has not been 
able to overcome the negative effect of humidity. In general, 
the best performance of gas sensors based on noble metal 
functionalized  MoO3 is obtained with a humidity of less than 
40% and significantly decreases with increasing humidity 
[26, 99, 100, 106, 115]. Therefore, further exploration to 
overcome these challenges needs to be carried out in the 
future.

2.3  Elemental Doping

Aside from noble metals, other metals are also useful in 
improving  MoO3 sensing performance. For instance, small 
quantities of iron (Fe), nickel (Ni), zinc (Zn), and chrome 
(Cr) raised the sensor response significantly. The possible 
reasons for the sensing improvement are believed to be as 

follows. First, metals increase the porosity of the metal 
oxides. Second, the high oxidation state of Mo allowed 
many lower-state metals to replace the Mo site and create 
an acceptor level. This substitution increases the resistance 
hence modulating sensing performances. Third, charge bal-
ancing compensation generates the oxygen vacancies that 
increase oxygen chemisorbed species on the oxide surface 
[116–118]. The metal-doped  MoO3 preparation and its sens-
ing performance are discussed efficiently in this section.

Fe-doped  MoO3 with nanobelts and nanoarrays mor-
phologies were prepared by Ruan and Cao groups, respec-
tively [119, 120]. The works were motivated partly by the 
similarity of the ionic radius of  Fe3+, 0.064 nm, and  Mo6+, 
0.069 nm, which allow substitution with a minimal defect 
in the oxide crystal structure. The  MoO3 nanobelts were 
prepared using a hydrothermal method with ammonium 
molybdate tetrahydrate as a Mo source in the water medium 
[119]. Fe doping was completed by mixing the Mo source 
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with iron nitrate nonahydrate during solution preparation. 
The pure nanobelts have a width and length of 350 nm and 
8 µm, respectively. Interestingly, higher Fe contents increase 
the tendency of  MoO3 to form nanosheets structure. How-
ever, with the variation of Fe content in the range of 1–15 
wt%, 5 wt.% became the optimal amount in detecting xylene. 
The optimal temperature for xylene detection is 206 °C, with 
a response value of 6.1. The response and recovery times 
were recorded as 20 and 75 s, respectively. Moreover, the 
pure nanobelts show a response value of 2.9 at the same 
temperature to 100 ppm xylene. In another case, Cao’s group 
prepared  MoO3 nanoarrays using the solid-state chemical 
reaction method with a similar Mo source as Ruan’s experi-
ment [120]. The Mo and Fe sources were mixed mechani-
cally with an agate mortar in the presence of PEG-400 and 
oxalic acid. The mixture was heated at 60 °C for 24 h and 
calcined at 450 °C for 1 h, resulting in nanoplate arrays of 
 MoO3. The  Fe3+ doping made the plate thinner due to the 
lattice distortion that hinders crystal growth. In this case, 
the Fe amounts are ranged between 0.1 and 0.7 wt%, and 
0.3 wt% was the optimal amount for the best structure and 
sensing performance. The optimal temperature for  MoO3 

nanoplates array was 370 °C, 30 °C higher than Fe-doped 
 MoO3. Although it works at high temperatures than those in 
nanobelts case, it shows a response to 100 ppm of xylene of 
28.1 with the response and recovery times of 2 and 21–33 s, 
respectively. The excellent performances of Fe-doped  MoO3 
are caused by the more oxygen vacancies available to facili-
tate more chemisorption as shown in Fig. 6a. The fact is 
strengthened by the density functional theory (DFT) calcu-
lation conducted by Lei et al. [121] The result shows that 
monolayer  MoO3 is insensitive toward oxygen molecule 
and Fe doping increase its molecule adsorption capability. 
The isosurface analysis (Fig. 6b) found that the oxygen was 
chemisorbed by capturing 0.2 e from one Fe-doped  MoO3. 
Upon exposure to xylene, oxygen molecules interact with 
it and consequently released the captured electrons to Fe-
MoO3. Moreover, the sensing material exhibited a stable 
response value up to 30 testing days (see Fig. 6c, d).

Ni-doped  MoO3 detects 100 ppm of xylene at the optimal 
temperature of 250 °C [116]. In Jiang et al. [116] synthesis 
procedure, the 800 nm in diameter of  nanosheet-assem-
bled   MoO3 spheres were obtained by the solvothermal 
method. With a similar procedure, adding a small amount of 
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Ni results in the smaller pompon-shaped sphere. The smaller 
size indicated the role of Ni as a crystal growth inhibitor. 
 Ni2+ diameter (0.072 nm), which is higher than  Mo6+, causes 
distortion that inhibits the crystal growth. The smaller Ni-
doped  MoO3 size improves the response value to 62.61, 18 
times higher than the  MoO3 nanosphere with good selectiv-
ity. The pompons structure detects xylene in only 1 s. The 
high response is attributed to the more Schottky contact by 
the small pompons, increasing the resistance. According to 
Ruan’s group, adding 5 wt% Zr to the  MoO3 matrix changed 
nanobelts to nanosphere structure [123]. In the absence of 
Zr, α-MoO3, which was synthesized using the solvothermal 
method at 180 °C for 36 h, has a nanobelt morphology with 
a length and width of 6 µm and 200 nm, respectively. A 
similar method was used with the addition of 5 wt% Zr to 
the Mo solution during synthesis. The presence of α-MoO3 
spheres assembled by nanobelts with a size of 600 nm was 
observed, indicating the role of Zr as a morphology modifier. 
As a xylene sensor, the presence of Zr increases the response 
of α-MoO3 to 100 ppm xylene by three times at 206 °C. 
Furthermore, α-MoO3 shows excellent selectivity to xylene 
compared to benzene and toluene due to two methyl groups 
in xylene. This makes it more reactive to Zr, which has good 
catalytic activity.

Several studies have reported the improvement of sensor 
performance of α-MoO3 to amine compounds, such as tri-
ethylamine (TEA) and trimethylamine (TMA) by involving 
chrome (Cr) [124], cerium (Ce) [125], and tungsten (W) 
[118] as metal doping. Li et al. [124] reported the fabrica-
tion of the nanorods structure of Cr-doped  MoO3 by mix-
ing  MoO3 powder produced through solvothermal followed 
by annealing processes. Doping Cr inhibits the growth of 
α-MoO3 grains, resulting in shorter nanorod than that of 
pure  MoO3. A response value of 150.25 was achieved at 
200 °C to 100 ppm TEA with a response and recovery of 7 
and 80 s, respectively. The relatively short recovery is sup-
ported by pulse heating at 300 °C. In TMA detection, Li 
et al. synthesized α-MoO3 nanobelts doped with Ce and W 
[118, 125]. Ce-doped α-MoO3 and W-doped α-MoO3 were 
obtained through a solvothermal process in the presence of 
cerium nitrate and  Na2WO4 as sources of Ce and W, respec-
tively. Ce and W doping result in different optimal tempera-
tures of 240 and 280 °C, respectively. α-MoO3 nanobelts 
show a response of 4.7 to 50 ppm TMA at the optimal tem-
perature of 280 °C, while Ce-doped α-MoO3 and W-doped 
α-MoO3 show a response of 17.4 and 13.8 at their optimal 

temperature, respectively. Ce and W substitution at the Mo 
lattice site increases oxygen vacancies, improving the TMA 
sensor performance. Furthermore, the relatively short recov-
ery times of 20 and 11 s for Ce and W doping, respectively, 
show superior amine compound detection performance.

The reducing gases, such as CO and  H2S, are also 
reported could be detected by modifying  MoO3 with metal 
doping. Bai et al. [126] examined Cd-doped α-MoO3 as an 
 H2S sensing material. Cd-doped α-MoO3 nanobelts with a 
200–800 nm width and a length of several micrometers were 
synthesized using a simple solvothermal method at 120 °C 
for 24 h. Analysis using photoluminescence (PL), XRD, and 
Raman spectroscopy showed  Mo6 + substitution with  Cd2+ 
generates defects and oxygen vacancies. Furthermore, Cd 
also narrowed the bandgap of α-MoO3, which was strength-
ened by the DFT study. These phenomena are the reason 
for the three times increase in the response of Cd-doped 
α-MoO3 to 100 ppm  H2S at 140 °C (378.5), where pure 
α-MoO3 performs optimally at 170 °C (123.4). In the case 
of CO detection, α-MoO3 is modified by metal Zn. Zn-doped 
α-MoO3 was prepared using a solvothermal method with a 
pH adjustment of 2. Wang et al. [122] reported the formation 
of a hierarchical micro flower α-MoO3 with a size of about 
2 µm that is composed of nanosheets. The presence of Zn in 
the α-MoO3 lattice inhibits grain growth, leading to thinner 
individual nanosheets. Based on DFT calculations as dis-
played in Fig. 6e, f, the interaction between CO and α-MoO3 
is classified as a weak interaction. In Zn presence, chem-
isorption of CO on the oxide surface occurs with a charge 
transfer of 0.451e. Additionally, the narrowing bandgap from 
1.447 to 1.167 eV after Zn addition leads to an increase in 
the conductance of α-MoO3. This narrowing is believed to 
increase the α-MoO3 response four times at a temperature 
of 240 °C, where pure α-MoO3 has an optimal temperature 
of 260 °C. In another report, Zn metal was also used to dope 
α-MoO3 and work as an ethanol sensor at 240 °C [127]. The 
response of 321–1000 ppm of ethanol was observed during 
the measurement. However, this value is 15 times higher 
than that of pure α-MoO3.

Based on the above discussion, metal doping generally 
has a function as a modifier of the morphology of  MoO3. 
The improved performance of the sensors appears to be 
due to an increase in the number of oxygen vacancies avail-
able on the oxide surface. Although the resulting response 
is relatively high, the challenge of lowering the working 
temperature of  MoO3 does not seem to be solved by this 
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strategy because the  MoO3 only participates in the sens-
ing mechanism. However, Cd-doped  MoO3 synthesized by 
Bai et al. showed superior performance in detecting  H2S at 
a relatively low temperature of 140 °C [126]. This proves 
that there is an excellent opportunity for further explora-
tion of this strategy. In addition, elemental doping can also 
be realized with nonmetal doping such as nitrogen, sulfur, 
selenium, and carbon [128–132]. Nonmetal doping has been 
reported to alter the electronic structure, reduce the bandgap, 
increase the amount of oxygen vacancy, increase the gas 
adsorption capacity, and induce bipolar electrical transport 
[128, 133]. Although nonmetal doping on  MoO3 has been 
relatively widely reported, its exploitation as a gas sensor 
is still rarely found. This is another challenge in the field of 
gas sensors, and exploration in the development of nonmetal 
doping  MoO3 is still very wide open.

2.4  Heterostructures Coupling

Another strategy to modulate the performance of 
 MoO3-based gas sensors is interface modification or hetero-
structure formation. The modification involves adding other 
materials, such as other metal oxides, carbon nanomaterials, 
and polymers. This composite strategy leverages the synergy 
of two different material properties to achieve superior per-
formance [134, 135]. Response, selectivity, and sensitivity 
improvement are achieved using this strategy [136–138]. 
There is a need to consider the ratio of the two materials 
and the distribution of interface in this strategy because it 
relates to the conduction path in the surface reaction. Add-
ing p-type semiconductor to n-type  MoO3 may increase the 
 MoO3 resistance due to the depletion region that reduces 
the  MoO3 charge conduction channel. The depletion region 

is created when the p-type semiconductor with a higher 
work function making contact with  MoO3. As illustrated in 
Fig. 7a, the electrons in the  MoO3 conduction band flow to 
the p-type conduction band and recombine with holes that 
flow in the opposite direction. This electron–hole recombi-
nation occurs until the Fermi level alignment meets the equi-
librium state as shown in Fig. 7b. The depletion region is the 
region at the interface of the two materials where the major 
charge carriers of both materials are depleted. This region is 
believed to be sensitive to the presence of gases. However, 
the gas sensor performance only can be maximized when the 
surface reaction is dominated by the depletion region and the 
 MoO3 itself. When the number of p-type material is higher 
or covers the surface of  MoO3 like in the core–shell case, the 
conduction path may be fully taken by the p-type materials, 
and the  MoO3 does not contribute to the sensing mechanism 
leading to a lower response. This is why the composition 
ratio of p-type: n-type is an important key for achieving the 
best sensing performances. Li et al. found that dispersing 
50 mg of  MoO3 nanobelts in ethanol containing 50 mM of 
Co(NO3)2.6H2O under ultrasonication resulted in  CoMoO4 
decorated  MoO3 after calcining the product at 500 °C [138]. 
In this case,  CoMoO4 acts as a p-type metal oxide that has 
a narrower bandgap compare to  MoO3. Moreover, from 
gas sensor measurement, one can easily find that the five-
fold increase in TMA sensing response of  CoMoO4/MoO3 
composite at 220 °C is contributed by the p–n junction at 
 CoMoO4/MoO3. The  MoO3 itself shows its highest response 
to 10 ppm of TMA at 280 °C.

In another report, Xu et al. [80] examined the p-type of 
 NiCo2O4 nanosheet coated α-MoO3 nanorods. The nanorods 
themselves were produced using the hydrothermal method 
with Mo powder as a precursor, while the composite of 
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 NiCo2O4/α-MoO3 was prepared using a chemical deposi-
tion approach. In their typical process, nickel and cobalt 
nitrates were dispersed in the aqueous solution containing 
α-MoO3 nanobelts powder. The mixture was then heated at 
95 °C for 2 h. The composite was obtained after calcining 
the product at 350 °C for 2 h. These procedures produce 
nanorods structure with width and length of 200 nm and 
20 µm, respectively. Furthermore, the rods were also cov-
ered by the  NiCo2O4 nanosheets. In its application as an 
ethanol sensor, the p–n junction was created at the interface 
of  NiCo2O4/α-MoO3. In general, Fermi alignment occurred 
along with the electron transfer from the n-type α-MoO3 
to p-type  NiCo2O4. Since the work function of  NiCo2O4 is 
lower than that of α-MoO3, electron transfer occurred from 
 NiCo2O4 to α-MoO3, leading to a thicker hole accumulation 
layer on the  NiCo2O4 side. The increase in resistance in the 
presence of ethanol indicates that the composite follows the 
 NiCo2O4 characteristic. Under a reducing gas atmosphere, 
the released electrons from oxygen ion and ethanol reac-
tion resulting in the thinner accumulation layer, leading to 
increase  the composite resistance. This phenomenon is 
responsible for the high response of composites of 20–1 ppm 
of ethanol at 350 °C. Furthermore, the acid–base combina-
tion in the composites was claimed to have a high selectivity 
to ethanol.

Aside from p–n junction, n–n junction also can be created 
by contacting  MoO3 with another n-type metal oxide. For 
example, the formation of the n–n junction was realized by 
decorating  MoO3 nanobelts with  Fe2O3 nanoparticles [139]. 
The decoration was completed using hydrothermal in the 
presence of  FeCl3·6H2O and  MoO3 nanobelts. The 40 nm 
of  Fe2O3 nanoparticles on the nanobelts create the n–n junc-
tion at its interface. As reported, different work functions 
between the two materials cause a depletion layer associated 
with barrier potential. The potential does not only produce 
the excellent response of 22.48 at 233.5 °C to 100 ppm of 
xylene but also improves the selectivity to xylene compared 
to the other VOC gases. Zhang et al. [140] prepared the 
 MoO3/Bi2Mo3O12 hollow sphere composite via hydrother-
mal method. Based on the XPS spectra, the conduction band 
of  MoO3 is located lower than  Bi2Mo3O12; hence the elec-
trons are transferred from  Bi2Mo3O12 to  MoO3. The elec-
tron transfer generates the depletion layer at the interface of 
 MoO3/Bi2Mo3O12 and its thickness is sensitive to the change 
of atmosphere. The creation of depletion layer created and 
the number of oxygen ions trapped at the interface modulate 

the composite response to 50 ppm of TMA at 170 °C, 2.5 
and 5.5 times higher than those of  MoO3 and  Bi2Mo3O12, 
respectively.

Heterostructure coupling can also be formed by combin-
ing  MoO3 with carbon nanomaterials, such as reduced gra-
phene oxide (rGO). The rGO is categorized as 2D materials 
with remarkable properties and high surface area. Incorpo-
rating rGO to α-MoO3 provides a conduction channel that 
increases surface reaction rate and reduces the operating 
temperature. Bai et al. [141] successfully incorporated  MoO3 
nanorod onto the rGO surface with a very good distribution 
for optimal contact with rGO to be achieved. Sensing exami-
nation to 40 ppm  H2S shows that without rGO, α-MoO3 
works well at 170 °C with a response of 23.4. With 5 wt% 
of rGO, the composite works best 110 °C with a response 
of 59.7. Moreover, the observed response time and recovery 
time were 9 and 17 s, respectively. With optimal contact 
between the oxide and rGO, the rGO facilitates gas diffu-
sion channels, mass transport, improve charge separation, 
and conduction channels between  H2S and α-MoO3. By 
increasing α-MoO3 resistance after rGO incorporation, rGO 
increases the characteristics of the n-type  MoO3 [141, 142]. 
The incorporation of α-MoO3 nanoparticles on the surface 
of rGO for the  H2S sensor has also been reported [143]. The 
increasing specific surface area from 770 to 894  m2  g−1 was 
achieved after 3 wt% of incorporating the nanoparticles. The 
enhancement of surface area causes the high response of 
4120–100 ppm of  H2S at 160 °C. Although the operating 
temperature of α-MoO3 nanoparticles-rGO is higher than the 
nanorod one, they show a better response. Figure 8 repre-
sents the work on heterostructures sensor based on α-MoO3.

As stated earlier, the heterostructure coupling can be real-
ized by combining  MoO3 with other metal oxide or carbon 
nanomaterials. Up to now, one can conclude that with proper 
ratio, high response and relatively low operating temperature 
can be achieved by p–n or n–n heterojunction. This strategy 
can also improve the selectivity of the composite. The higher 
resistance of the composite due to depletion layer formation 
is more suitable for detecting reducing gas such as TMA and 
 H2S. The higher resistance provides a wider detection range 
and a lower the limit of detection. Furthermore, the high 
conductivity of carbon nanomaterials at low temperatures is 
also a benefit for  MoO3. The highly p-doped carbon nano-
materials also contribute to sensing materials by generating 
Schottky contact with  MoO3, therefore, the high response 
at 100 °C can be achieved. Furthermore, it is expected that 
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hydrophobic of carbon nanomaterials can effectively help 
 MoO3 prevent the negative effect of humidity. As reported, 
carbon nanomaterials such as carbon nanotubes (CNT) and 
graphene show negligible humidity interfering effect up to 
80% at low temperature [144]. However, the study of the 
effect of carbon nanomaterials on humidity interference in 
 MoO3-based gas sensors cannot be found anywhere. There-
fore, the further investigation on this problem needs to be 
carried out in the future.

In summary, morphology design is most effective in 
increasing response. This strategy is strongly related to the 
number of active sites that depend on the morphology and 
specific surface area. The metal catalyst, such as noble metal 
and elemental doping, reduces the optimal temperature with 
the increased response. Moreover, the heterostructure strat-
egy is also essential in achieving gas sensors with a high 
sensitivity, low operating temperature, and low response 
and recovery times. The parameters, such as the ratio of the 
second phase and  MoO3 need to be considered carefully to 
obtain the best performance. Table 1 summarizes the com-
parison of all strategies in gas detection.

3  Molybdenum Disulfide  (MoS2) Gas Sensing 
Materials

Molybdenum sulfide  (MoS2) is naturally available as a bulk 
molybdenite crystal with a 2H phase as a thermodynami-
cally stable form. It exhibits an indirect band gap property 
of approximately 1.2 eV [145]. According to Fig. 9, the 
bulk possesses an interlayer space of 0.65 nm allows fur-
ther delamination. It can be transformed into  MoS2 single-
layer structures with a large intrinsic bandgap of 1.8 eV 
by mechanical exfoliation [146].  MoS2, in the bulk form, 
has different crystal phases depending on the coordination 
bonding and stacking orders of  [MoS6] polyhedral. In gen-
eral,  MoS2 crystallizes in three phases, including hexagonal 
(2H), octahedral (1 T), and rhombohedral (3R) with identi-
cal vertically stacking layers [147, 148]. There are strong 
in‐plane covalent bonds of two sulfur atoms-sandwiched 
molybdenum atoms bounded by weak van der Waals forces 
[149]. Although they have similarities in their structures, 
only hexagonal 2H-MoS2 with trigonal prismatic coordi-
nation behaves like a metal. 1 T-octahedral coordination 
(1T-MoS2) and rhombohedral structure 3R-MoS2 with trig-
onal prismatic coordination exhibit metals or semimetals 

characteristics [150]. There are five polymorphs in the single 
crystal or monolayer structure of  MoS2, including 1H, 1 T, 
1 T′, 1 T′′ and 1 T′′′ [151]. Trigonal prismatic and octahe-
dral coordination of bulk crystals are inherited by 1H-MoS2 
and 1 T-MoS2, respectively. However, in monolayer phases, 
some point group symmetry changes lead to different inver-
sion symmetries, such as  D6h to  D3h in the 1H-MoS2 case. 
1 T′, 1 T′′, and 1 T′′′ phases form due to the distorted struc-
tures of  [MoS6] octahedra [152, 153].

The significant variation of crystal structures (bulk and 
monolayer) and phases (stable and metastable) that  MoS2 
possess bequeaths the unique features in their properties, 
such as tunable optical band gap (1.2–1.8 eV) and electronic 
structures [155]. Mechanical properties of  MoS2 are previ-
ously investigated. Bertolazzi et al. [156] have measured 
some mechanical characteristics of ultrathin  MoS2, which 
consists of a few layers. The  MoS2 monolayer exhibited 
in-plane stiffness of 180 ± 60 N  m–1, corresponding to an 
effective Young’s modulus of 270 ± 100 GPa higher than 
its bulk  MoS2 counterpart (240 GPa) and benchmark car-
bon steel (210 GPa). Furthermore, the 2D monolayers have 
high stretchability and flexibility upon applying mechanical 
force without losing their inherited properties [157]. The 
monolayer  MoS2 has a breaking strength of 22 ± 4 GPa, 
which is about 11% of its Young’s modulus [156]. Accord-
ing to the literature, Bulk  MoS2 shows electron mobility 
of 0.5–3  cm2  V−1  s−1 [158]. The mobility can be increased 
to 12.1  cm2  V−1  s−1 by making the monolayer  MoS2 into 
polycrystalline nature [159]. The highest electron mobility 
(200  cm2  V−1  s−1) was achieved in a single-layer  MoS2 tran-
sistor [154]. The electrical conductance of monolayer  MoS2 
was 1.3 ×  10−5 Ω  cm−1 at room temperatures [160], which 
can be further increased through substitutional atomic dop-
ing, such as Nb and Re [161]. Additionally, 1 T-MoS2 has 
seven times higher conductivity than 2H phase and smaller 
contact resistance for FETs (200–300 Ω μm at zero gate 
bias for 1 T-MoS2 and 0.7–10 kΩ μm for 2H-MoS2) [162, 
163]. Both bulk and monolayer  MoS2 also exhibit excellent 
thermal conductivity. The experimental works showed that 
the out-of-plane thermal conductivity of bulk  MoS2 at 300 K 
falls within 1–52 W  m−1  K−1 range and depends on the layer 
thickness of  MoS2 [164–167].

The last parameter that affects the gas sensing properties 
of  MoS2 is chemical. In this review, the chemical property 
is limited to surface chemistry properties since the gas sens-
ing reaction and charge transfer process occurs mainly at 
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Table 1  Comparison of modification of  MoO3 technique in various gas detection

Improvement strategies Sensing materials Target gas Conc. (ppm) T (°C) Response (Ra/Rg) 
or  (Rair-Rgas)/Rair)

Response/
recovery 
times (s)

Refs.

Morphology design α-MoO3 nanowires H2 15,000 RT 0.85% 3/2.7 [48]
α-MoO3 nanorods Ethanol 400 350 35 N/A [68]
α-MoO3 nanobelts Xylene 100 206 3 7/87 [69]
α-MoO3 nanobelts Ethanol 800 300 174  ~ 40/ ~ 5 [70]
α-MoO3 nanosheets Alcohol 100 300 33.1 21/10 [74]
α-MoO3 nanoflakes Alcohol 100 300 28.1 23/13 [74]
α-MoO3 sheets NO2 10 250 56% N/A [75]
α-MoO3 sheets H2S 10 250 18% N/A [75]
Flower-like α-MoO3 TEA 10 170 931.2 25/– [87]
α-MoO3 nanobelts TEA 10 170 114.9 29/– [87]
α-MoO3 nanoparticles TEA 10 170 27.6 28/– [87]
α-MoO3 nanobelts Ethanol 200 300 21 69/174 [89]
α-MoO3 nanofibers Ethanol 200 275 53 45/138 [89]
α-MoO3 nanorods Ethanol 100 250 8.9 20/15 [91]
Sponges-like α-MoO3 Ethanol 100 250 19.8 15/15 [91]
α-MoO3 microboxes Ethanol 100 260 78 15/5 [90]
Sphere-like nanoflowers α-MoO3 Ethanol 300 300 30.9 N/A [85]
Rose-like nanoflowers α-MoO3 Ethanol 300 300 37.1 N/A [85]
Plate flowers α-MoO3 Ethanol 300 300 27.3 N/A [85]
Nanosheet-assembled hierarchical 

 MoO3

Ethanol 400 300 32 13/9.6 [92]

Nanofiber-assembled hierarchical 
 MoO3

Ethanol 400 300 24 3.2/2.4 [92]

Surface function-
alization with noble 
metals

Au decorated α-MoO3 hollow sphere Toluene 100 250 17.5 1.6/- [96]
Au decorated α-MoO3 hollow sphere Xylene 100 250 22.1 2/- [96]
Au decorated  MoO3 nanosheet Ethanol 200 280 169 14/5 [45]
Au decorated  MoO3 nanobelts 1-butylamine 100 240  ~ 300 23/388 [106]
Ag decorated α-MoO3 nanorods TEA 100 200 400.8 3/107 [99]
Pd-loaded  MoO3 flower-like nano-

belts
NO2 100 200 95.3 74/297 [101]

Pt loaded α-MoO3 nanobelts Formaldehyde 200 RT 39.3 21.4/16.6 [100]
Elemental doping Fe-doped  MoO3 nanobelts Xylene 100 206 6.1 20/75 [119]

Fe-doped  MoO3 nanoarrays Xylene 100 340 28.1 2/21–33 [120]
Ni-doped  MoO3 pompons Xylene 100 250 62.6 1/50 [116]
Zr-doped α-MoO3 nanobelts Xylene 100 206 7.99 32/264 [123]
Cr-doped  MoO3 nanorods TEA 100 200 150.25 7/80 [124]
Ce-doped α-MoO3 nanobelts TMA 50 240 17.4 10/20 [125]
W-doped α-MoO3 nanobelts TMA 50 280 13.8 6/11 [118]
Cd-doped α-MoO3 nanobelts H2S 100 140 378.5 23/45 [126]
Zn-doped α-MoO3 microflower CO 50 240 31.23 10/14 [122]
Zn-doped α-MoO3 nanobelts Ethanol 1000 240 321 N/A [127]

Heterostructure NiCo2O4 nanosheet coated α-MoO3 
nanorods

Ethanol 1 350 20 N/A [80]

Fe2O3–MoO3 nanobelts Xylene 100 233.5 22.48 4/102 [139]
MoO3/Bi2Mo3O12 hollow sphere TMA 50 170 25.8 7.1/– [140]
rGO–MoO3 nanorod H2S 40 110 59.7 9/17 [141]
rGO–α-MoO3 nanoparticles H2S 100 160 4120 –/120 [143]
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the material surface. Therefore, knowledge and understand-
ing of the surface chemistry nature of  MoS2 are essential in 
advancing gas sensing properties. Surface-active sites dif-
fer in each  MoS2 phase. 2H-MoS2 has highly surface-active 
for chemical adsorption edges at their layers [168, 169]. In 
1 T-MoS2, the surface-active is located in both edges and 
activated basal plane [170]. Therefore, 1 T-MoS2 is more 
promising for chemical adsorption technology, such as cata-
lysts and sensors [171, 172]. In a typical XRD pattern of 
 MoS2, three main peaks emerge. The inert basal plane has 
an orientation of (002) crystal plane, while (100) and (103) 
planes correspond to a step and edge plane, respectively.

We collected literature of  MoS2-based sensors available 
from the WoS database shown in Fig. 10. The first work on 
the  MoS2-based gas sensor was published in 1996. Similarly, 
 MoS2-based gas sensors were only available in thin-film 
structures. The sensing investigation of  MoS2 was limited to 
non-carbon-containing gases. A great interest in  MoS2-based 
sensors began not over a decade ago, where the significant 
improvement of their gas sensing performance was made 
by coupling with other materials. Moreover, this approach 
is still the most popular strategy for  MoS2 because of its 
interesting electronic structures that can support the per-
formance of most oxide-based materials. Designing various 
morphological nanostructured  MoS2 is more feasible by wet 
chemical synthesis, although they possess layered structures. 
Advanced knowledge of phase diversity in  MoS2 structure 
expands the new strategy on how 1 T-2H phases engineering 

affects the gas sensing properties. Different from that of 
 MoO3, the  MoS2 is more sensitive to non-volatile organic 
compound (VOCs) gas due to the non-catalytic properties of 
 MoS2. However, using noble metals-functionalized surface 
strategy, it is also possible to detect VOCs highly. It should 
be noted that the majority of  MoS2-based sensors can be 
operated at room temperature.

3.1  Insight into Gas Sensing Mechanism of  MoS2

The gas detection mechanism by  MoS2 is still debatable. 
Some researchers believe that the gas sensor mechanism of 
 MoS2 is similar to oxide-based materials where the oxy-
gen reduction and oxidation process during gas detection 
is involved. In contrast, others believe that the gas sensor 
mechanism of  MoS2 is a direct charge transfer from or to 
 MoS2, which directly affects its conductivity [173, 174]. 
However, the recent experimental and theoretical evidence 
have shown straightforward proof that the gas sensor mecha-
nism of  MoS2 is a charge transfer process. Yue et al. [175] 
have reported the theoretical study of the molecular adsorp-
tion process of  MoS2. Various gases, including the  H2,  O2, 
 NH3, NO,  NO2,  H2O, and CO gases, have been investigated 
to be adsorbed on the  MoS2 surface. Figure 11a shows the 
charge density difference of all gases interacting with the 
 MoS2 calculated by Bader charge analysis. It could be seen 
that the charge transfer process occurred from or to the  MoS2 
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surface. Different gases result in different charge transfer 
behaviors due to the chemical structure of the gases mol-
ecules. The  H2,  O2, NO,  NO2,  H2O, and CO gases received 
the electron from the  MoS2 surface, which indicates the 

electron acceptor behavior of these gases. On the other hand, 
in  NH3 gas, the  NH3 donates the electrons into the  MoS2 
surface. This phenomenon will affect the conductivity of 
 MoS2, which will be detected as the change of the electrical 
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signal during the gas detection. For example, in the case of 
 NO2, which acts as electron acceptor gas, the conductivity of 
n-type  MoS2 will decrease due to the reduction of its charge 
carrier (electron) number from the n-type  MoS2 surface. On 
the other hand, in  NH3, because it acts as an electron donor 
gas, the conductivity of n-type  MoS2 will increase due to the 
additional electron on the surface [176].

The experimental evidence about the charge transfer pro-
cess during the gas sensor measurement has also been inves-
tigated through several methods. Cho et al. [174] have con-
ducted the in situ photoluminescence (PL) analysis of  MoS2 
in the presence of  NO2 and  NH3 to understand the interac-
tion between  MoS2 and thus gases. Figure 11b, c shows the 
in situ photoluminescence measurement results of  MoS2 in 
the presence of  NO2 and  NH3 gases. The A exciton signal 
from  MoS2 can be expanded into two species: a trion of  A−/+ 
(two electrons to a hole, resulting in a negatively charged 
exciton, or an electron to two holes, resulting in a positively 
charged exciton) and a neutral exciton of  A0. The PL analy-
sis after and before gases exposure is shown in Fig. 11b, c. 
The  A+ and  A0 trion appeared in the PL spectra. After  NO2 
gas exposure, the  A+ and  A0 peak intensity change. The  A+ 
trion increase after  NO2 gas exposure while the  A0 peak 
intensity decrease. This phenomenon occurred because of 
the electron deficiency in the  MoS2 after  NO2 adsorption. 
Another report from Kelement et al. [180], who studied the 
Fermi energy of  MoS2 under  N2 and  O2 atmosphere, has also 
confirmed the charge transfer between  MoS2 and  O2 gases 
through PL measurement. A relative spectral weight shifts 
from  A− to  A0 during the oxygen exposure, and the PL inten-
sity increases. This behavior occurred due to the depletion of 
electrons which in this case is of chemical origin. Because 
 O2 is more electronegative than  N2, the ion sorption of  O2 as 
 O2− results in the depletion of free electrons due to charge 
transfer to  O2 molecules. The Raman analysis has been con-
firmed able to detect the charge transfer process between 
 MoS2 and the gases. Figure 11d shows the Raman spectra of 
the as-prepared  MoS2 and as-prepared  MoS2 in the presence 
of  NH3 investigated by Late et al. [178]. The Raman  A1g and 
 E2g peaks’ shifting was observed, which attributed to the 
charge transfer interaction with an electron donor molecule 
[181, 182]. Feng et al. [183] have conducted the potential 
surface analysis under different humid air environments by 
using Kelvin probe force microscopy. The result plotted in 
Fig. 11e has shown that the surface potential of the  MoS2 
decreases with the increase in humidity value. The decrease 

in the surface potential is due to the injection of carriers 
from the adsorbed water led to the Fermi level shift of  MoS2. 
From all this analysis, it is confirmed that the gas detection 
of  MoS2 is a charge transfer process.

3.2  Morphological Design

With a lamellar structure, it is quite demanding to design 
various morphological structures of  MoS2. Most of the syn-
thesized  MoS2 exhibited either monolayer, few layers, or 
multilayer structures. The sensing materials morphology is 
usually designed to optimize the gas adsorption/desorption 
processes, such as with more active sites, large surface area, 
porosity, or surface defect, leading to improved gas sens-
ing properties. With an appropriate approach and synthesis 
method, the shape of  MoS2 could be altered into different 
dimensions. A good example is the use of surfactants in 
hydrothermally synthesized  MoS2. A controlled morphol-
ogy, including spherical, bulk-like, and flower-like  MoS2, 
was produced by varying surfactants, such as PEG, SDS, 
PVP, AOT, or CTAB [178–180]. Other experiments involv-
ing surfactant-assisted hydrothermal process successfully 
fabricated some shape variants of  MoS2, such as 1D nanorib-
bons [181], 2D nanoplatelets [182], 3D hollow nanoparticles 
[183], and 3D hierarchical microspheres [184, 185]. The 
remaining surfactants may become an impurity in the syn-
thesized products, amplifying the functional performance. 
However, this leads to alternative surfactant-free synthesis 
for morphology-controlled  MoS2, which might be of great 
interest to many researchers. Sen et al. [186] and Ye et al. 
[187] fabricated 2D nanowalls and bilayer nanosheets with-
out involving any surfactant or directing agent. In many 
cases, with or without surfactants, morphological features 
and shape tunability of  MoS2 can be successfully performed.

This section discusses how different morphologies influ-
ence the gas sensing properties of  MoS2, including those 
layered structures and other morphologies. As a native struc-
ture, monolayer  MoS2 is among the primary gas sensing 
material due to its high surface-to-mass ratio. Other studies 
show that 2D monolayer structures sense chemical vapors, 
 NO2,  H2, and CO gases [32, 176, 188–192]. Figure 12a, b 
shows some selected works on gas sensing performances 
of 2D mono-/single-layer  MoS2 in  NO2, trimethylamine, 
and ammonia detection. Notably, edge sites of 2D  MoS2 
monolayer are more reactive than the basal planes. For 
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this reason, constructing  MoS2 with a dominant edge site 
improves the sensitivity to several folds. The first princi-
ple study suggested that hydrogen molecules are favorably 
adsorbed on the top of Mo atoms at the edge site rather than 
Mo atoms at basal planes that strongly supports the experi-
mental results [189]. The ability to respond to a wide range 
of low concentration gases, mono-/single-layer  MoS2 makes 
it an ideal sensing material. Moreover, such a structure offers 
greater flexibility with retained properties upon mechani-
cal bending, compressing, and stretching [44]. Whether 2D 
 MoS2 monolayer is an optimized structure to obtain high-
performance sensing is still under debate. Sensing devices 
comprising thin-layered  MoS2 with different thicknesses 
were fabricated by micromechanical exfoliation mounted 
on the chip [176]. The thickness of single-layer  MoS2 is 
about 0.9 nm, as confirmed by AFM (Fig. 12d, e). The 
results showed that the five-layer  MoS2 sample has better 
sensitivity to  NH3 and  NO2. However, the enhanced sens-
ing mechanism is still unclear because  MoS2 may exhibit 
different electronic structures and redox mechanisms when 
the layered structures are altered. This issue limits further 
understanding of the solid–gas interaction at the interface of 
single- and multilayer 2D  MoS2 and overcoming this issue 
requires special attention. DFT calculation can be a good 

approach attempting for the revelation of electronic structure 
dependency in a single- and multilayer 2D  MoS2.

Although 2D mono-/few layers  MoS2 have outstanding 
performances in sensitivity, selectivity, low-power consump-
tion and stability, their complex synthesis process, and device 
fabrication are not favorable for scaling-up production to 
mass application. However, 3D hierarchical nanostructures 
assembling from the lower dimension of 2D nanocrystal pro-
vide a simpler and scalable synthesis [195]. Particularly, their 
shorter diffusion pathway, relatively higher surface area, and 
distinguished electronic properties compared to conventional 
2D structures increase the interaction with adsorbed mol-
ecules, leading to higher responsivity. For instance, the 3D 
hierarchical  MoS2 nanospheres exhibited excellent sensing 
properties to CO gas at 230 °C, which surpassed the perfor-
mance of 2D nanosheets, as shown in Fig. 12g. The CO sens-
ing properties were not observed previously in any other 2D 
 MoS2 [188]. In similar cases, 3D hierarchical porous  MoS2 
synthesized by a simple hydrothermal method had differ-
ent gas selective properties, including  NO2 and  H2 [185]. It 
gives novel knowledge on tunable gas selectivity by precise 
morphological design. However, comprehensive works are 
needed to understand tunable selective properties on different 
crystal morphologies.
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The gas sensing performance of lower-dimensional  MoS2 
(0D and 1D) is far less investigated, although 0D and 1D 
 MoS2 fabrications are feasible, and they are substantial com-
ponents in several applications, including electrocatalysis 
and energy storage. 0D  MoS2 can be prepared by a top-down 
and bottom-up approach. In the top-down process, 2D  MoS2 
undergoes thinning and bond-braking processes with the aid 
of ion intercalation, chemical/liquid exfoliation, or sonica-
tion. On the other hand, the hydrothermal reaction has been 
a convenient pathway in producing 0D  MoS2 by a bottom-up 
process. The synthesis involves Mo and S precursors in aque-
ous media. Generally, the size of produced 0D  MoS2 is in a 
range of 0.5–4.5 nm. Due to this quantum size confinement, 
0D  MoS2 exhibits abundant active sites, large surface areas, 
and a large band gap (> 3.96 eV), raising unique gas sensing 
properties. Nevertheless, using 0D  MoS2 for gas sensing is 
challenging because it easily gets agglomerated, reducing its 
active surface areas. Thus, supporting materials are required to 
provide the anchor platform. The 1D  MoS2 (nanowires, nano-
tubes, nanoribbons, etc.) has also been successfully fabricated 
in a similar approach.  MoS2 nanotube, for example, was syn-
thesized by chemical transport using  MoS2 powder as a pre-
cursor and iodine as a transport agent [196]. It had, however, 
size nonuniformity, defective structure, and low yield. The 
low-temperature hydrothermal method offers an alternative 
to synthesize 1D  MoS2 nanotube and nanorod with high size 
homogeneity and high yield. Benefiting from the enhanced 
surface-to-volume ratio and the faster charge transfer along the 
length direction, high-performance gas sensing can be enabled. 
It is, therefore, expected that both 0D and 1D  MoS2 would 
boost the detection of various gases due to the facts described 
above. Nevertheless, this hypothesis needs theoretical and 
experimental validation.

3.3  1T—2H Phase Control

The recent development of gas sensor devices still focuses 
on semiconductor-like 2H-MoS2. However, the 2H-MoS2 
has limitations, primarily due to limited active sites and 
small adsorption energy. Several studies show that the active 
sites of 2H-MoS2 are only located on the edge of the crystal 
structure, while the abundant basal plane is inert for chemi-
cal reactions [197–199]. In comparison, the 1 T/1 T’ of 
 MoS2 is more active than 2H-MoS2. Tang et al. [200] studied 
the adsorption performance of various molecules, including 

H,  CH3,  CF3,  OCH3, and  NH3. The results showed that the 
adsorption energy of 1 T and the molecular adsorption abil-
ity of 1 T  MoS2 were significantly higher than 2H-MoS2. 
However, the 1 T-MoS2 itself is electrically conductive to 
be applied as a sensor; hence electrical change during the 
molecular adsorption was hardly observed. The 1 T/1 T’ 
phase is relatively unstable, and therefore, it only exists 
in the mixed phases of 1 T/2H-MoS2. The HRTEM image 
(Fig. 13a) showed the observed grain boundary between 
orthorhombic and tetragonal structures, which indicates the 
successful formation of 1 T/2H-MoS2 [201]. The electronic 
properties of 1 T/2H-MoS2 are easily understood by Raman 
and XPS analysis, as shown in Fig. 13b, c [202]. The Raman 
spectra of 1 T/2H-MoS2 consist of several vibration peaks. 
Three peaks located at 156, 228, and 330  cm−1 are attributed 
to the  J1,  J2, and  J3 vibration modes of the 1 T phase. The 
vibration peaks located at 283 and 403  cm−1 are attributed 
to the  E1g and  A1g modes. The formation of 1 T/2H-MoS2 
can be analyzed by XPS of Mo 3d core spectra, as shown in 
Fig. 13c. The Mo 3d core-level spectra of 1 T/2H-MoS2 are 
deconvoluted into four different peaks. The lower binding 
energy peaks are attributed to the 1 T phase, while the higher 
binding energy peaks belong to 2H-MoS2.

Several reports have demonstrated the formation of 
1 T/2H-MoS2 for various kinds of applications, such as 
hydrogen evolution reactions [201, 203, 204], hydrodesul-
furization [205], and gas sensor applications [172]. Yang 
et al. [206] demonstrated the formation of the 1 T/2H-mix 
phase in the molybdenum tungsten sulfate  (MWS2) sys-
tem for acetone gas detections. Hydrothermal reactions 
achieved the mixed 1 T/2H phases. With further annealing, 
the 1 T phase turned into a 2H phase. The enhanced ace-
tone detection performance to several folds was achieved 
with only 10% of 1 T content in the  MWS2 system. Taufik 
et al. [172] have also successfully demonstrated the forma-
tion of 1 T/2H-MoS2 structure via ethylene glycol (EG) 
intercalation for improved toluene gas detection perfor-
mance. The EG intercalation process enhanced the ratio 
1 T/2H phase from 1.7 to 4.0 and decreased the conduc-
tivity of 1 T/2H-MoS2 due to EG low conductivity. The 
electron from toluene is transferred to the  MoS2 surface 
during the toluene adsorption, increasing the conductiv-
ity. Moreover, the gas sensor performances of EG-inter-
calated samples are much higher than the pristine ones. It 
was indicated that 1 T-MoS2 is vital in improving the gas 
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sensor performance of  MoS2. Zong et al. [207] carefully 
controlled the amount of 1 T and 2H concentration by 
the annealing process of hydrothermally prepared  MoS2. 
The higher the annealing temperatures, the smaller the 
amount of 1 T concentrations, as shown in Fig. 13d. The 
highest  NO2 detection performance (sensitivity up to 25% 
under 2 ppm  NO2, rapid detection time of 10 s and LoD of 
25 ppb) was achieved by annealing  MoS2 at 100 °C, where 
the ratio of 1 T/2H is 2:3. The  NO2 gas sensor mechanism 
and performances of 1 T/2H-MoS2 are shown in Fig. 13e, 
f. The preceding results show that the gas detection capa-
bility of 1 T/2H-MoS2 could be boosted by controlling the 
heterophase, which brings new insights into transition-
metal dichalcogenide gas sensors. A further investiga-
tion should be performed, especially with the utilization 
of in situ/operando spectroscopy, to essentially improve 
our current understanding of how each phase’s stability 
and contribution to the overall gas sensing properties of 
 MoS2. Ideally, the papers report  MoS2 gas sensors should 
be accompanied by DFT simulation to reveal the principle 
gas sensing mechanism.

3.4  Surface Functionalization with Noble Metals

Numerous works on the noble metals-functionalized gas 
sensing materials have significantly enhanced responsivity, 
improved/tuning selectivity, and lowered working tempera-
tures. As mentioned in the earlier discussion, pristine  MoS2 
has shown a promising gas sensing performance. However, 
it is accompanied by several limitations, including poor 
selectivity due to high cross-sensitivity to many gases and 
limited sensitivity at room temperature. Surface functionali-
zation by noble metals has been applied to metal oxides gas 
sensing and non-oxides, including the  MoS2. Noble metals, 
especially in nanoparticles (NPs) form, are utilized because 
they generally promote a more catalytic process via spill-
over effect and electronic sensitization through charge car-
rier concentration and significantly alter internal electrical 
conductance or resistance of  MoS2 measured by the sensing 
system. The catalytic reactions always follow the preceding 
gas adsorption/desorption process, despite the nature of gas 
(reducing or oxidizing) and gas composition (organic or non-
organic). The spill-over effect by noble metals loading on 
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the sensing material’s surface helps lowering the potential 
energy dissociation of molecular oxygen  (O2) in the air, so 
that ionization process into monoatomic O is facilitated. It 
also facilitates the ionized O transport to the  MoS2 surface. 
The process cultivates the increase in the adsorbed oxy-
gen ions on the materials for further reaction with tested 
analytes. The work function of noble metals is critical in 
regulating the mechanism, and herewith the modified gas 
sensing mechanism of  MoS2 under different noble metals 
loading is discussed. The work functions of  MoS2, Au, Pt, 
Pd, and Ag are 4.6, 5.1, 5.6, 5.4, and 4.8 eV, respectively. 
Due to the different work functions, in which the  MoS2 has 
a lower work function than many noble metals, upon the 
contact, the electron will flow from  MoS2 to noble metal 
through the depletion channel until the Fermi energy levels 
are equalized. Because of this process, the charge carrier 
concentration and mobility in depleted regions are improved 
and dissociated oxygen is more captured. More active inter-
action between ionized oxygens and the analytes is expected 
to improve gas sensing properties upon the analyte flow. The 
 MoS2 surface decoration by noble metals can be performed 
using several approaches, including heat treatment, DC sput-
tering, chemical reduction, or directly adding the chemical 
reagent containing noble metals as the precursors under a 
one-pot synthesis condition.

It is noticed that the different noble metals will determine 
the different gas selectivity of  MoS2 to some extent. For 
example, Au@MoS2 nanostructures can directly be grown on 
ceramic tubes in one-pot hydrothermal treatment at 180 °C. 
Au nanoparticle decoration was deposited by DC sputtering 
with a predesignated sputter times [208]. The Au nanoparticles 
have a spherical shape with a diameter of 5 nm. Au@MoS2 
exhibited a remarkably higher response (5 times) and faster 
recovery speed to trimethylamine (TEA) gas at 280 °C than 
pristine  MoS2. As shown in Fig. 14a–d, the band depletion 
occurred during the contact between  MoS2 and Au due to the 
charge transfer process. The  O2 was adsorbed and then dissoci-
ated to  O− on the Au surface before redistributing it onto the 
 MoS2 surface. The thickening of the depletion layer and the 
increase in spilled  O− have increased the electrical resistance. 
During the TEA flow, the electrical decreased due to the active 
reaction of  O– with TEA and the removal of electrons in the 
depletion barrier. Au is believed to prefer adsorbing amine 
functional groups, as the Au–MoS2 had a remarkable sensing 
response towards ammonia [209].

Pd-functionalized  MoS2 sensor acted differently from that 
of Au@MoS2 because it had shown excellent hydrogen gas 
sensing properties, e.g., in the case of Pd-MoS2 nanosheets 
[210], Pd-MoS2 nanostructures [211], and vertically aligned 
edge-oriented  MoS2 nanostructured thin film functional-
ized by Pd nanoparticles [212]. Figure 14e–g shows that the 
exfoliated  MoS2 has 4–7 layered structures while Pd nano-
particles are 2–5 nm in size. Furthermore, Pd-functionalized 
vertically aligned  MoS2 thin film has an average thickness 
of 19.5 nm. At RT, the sensor exhibited the highest response 
of 33.7% to 500 ppm of  H2 with a rapid sensing response 
and recovery times (16/38 s). The spontaneous dissociation 
of hydrogen molecules on the Pd metals is the firm reason 
behind the strong response of Pd@MoS2, in which the forma-
tion of  PdHx affected the considerable resistance alteration. 
The distinguished selectivity behavior can also be found in 
the Ni-, Pt-, and Ag- loaded  MoS2 nanostructures gas sens-
ing [213–216]. However, the underlying mechanism of how 
the gas dissociation process occurs on the surface of noble 
metals is still uncertain. The comprehensive computational 
studies, such as combining DFT calculation and molecular 
dynamic (MD) simulation, are essential in the future to pro-
vide a deeper insight into the gas sensing mechanism in noble 
metals-functionalized  MoS2.

3.5  Elemental Doping

Various atoms are suitable doping elements for improving 
the gas sensor performance of  MoS2. Sulfur or molybde-
num substitution by foreign atoms is expected to improve 
the gas adsorption ability of  MoS2. As in many initial 
investigations, the introduction of doping into crystal struc-
tures of pristine  MoS2 [217] aims to increase charge carrier 
transfer via band structures alignment, form more effec-
tive gas adsorption sites, or create a trapping mechanism 
for suppressing the electron–hole recombination. Pristine 
 MoS2 is a natively n-type semiconductor originated from 
electron-donating sulfur vacancies, and the intrinsic n-type 
conductivity can be tuned to p-type conductivity with suit-
able substitutional atomic doping [218–220]. The resistivity 
behavior during the sensing mechanism will likely be simi-
lar to those of most metal oxides. Thus, discussion on the 
sensing mechanism has focused on the effect of dopings on 
gas sensing properties of  MoS2 proposed by recent investi-
gations. For instance, Zn doping is the effective dopant to 



 Nano-Micro Lett.          (2021) 13:207   207  Page 26 of 46

https://doi.org/10.1007/s40820-021-00724-1© The authors

induce p-type conductivity and tailoring effect on the  MoS2 
ultrathin nanosheets gas sensing properties. In this case, the 
Zn atom replaced the Mo atom at the edge site, inducing 
the formation of Mo vacancies and acted as a new adsorp-
tion site for both  O2 and  NO2 gas due to the difference in 
electronegativity  (Zn2+: 1.70 and  Mo4+: 2.24). Therefore, it 
is easier for oxygen molecules to capture the electron from 
the Zn site, resulting in enhanced adsorption capacity and 
wider depleted regions. However, when the  Zn2+ amount 
reached above 5% state, the adsorption capacity gets satu-
rated, potentially decreasing the gas sensing performance 
(Fig. 15). From this understanding, the choice of atomic 
doping and its amount are critical to tailor the gas sensing 
properties.

Although there are limited reports of doped  MoS2, recent 
theoretical calculations studies show that the gas adsorption 
ability of  MoS2 can be enhanced by ion substitution with 
other atoms. For example, Linghu et al. [133] reported the 
theoretical investigation on the effect of S substitution of 
 MoS2 by various nonmetallic atoms (C, N, and O) on the 
CO,  CO2,  NH3,  SO2, NO,  NO2, and  O2 gases adsorption abil-
ity. The results show that the anions significantly improve the 

gases adsorption ability of both 2H-MoS2 and 1 T’-MoS2, as 
shown in Fig. 16a, b. The adsorption energy of anion-doped 
 MoS2 samples shows a massive improvement than pristine 
 MoS2. Compared to other doping elements, C-doping shows 
the best adsorption ability for all tested gases. For 1 T’-
MoS2, the N-doped  MoS2 and O-doped  MoS2 showed the 
best adsorption ability on  CO2 and  O2, respectively. Other 
reports also have confirmed that N-doping, O-doping, and 
C-doping  MoS2 improve the gas adsorption performance of 
 MoS2, directly affecting the gas sensor performance. Recent 
experimental evidence of the improvement of  MoS2 gas sen-
sor by the presence of O atom was reported by Taufik et al. 
[222]  O2 plasma treatment was used to introduce O atom 
into the crystal structure of  MoS2 for enhancing the humid-
ity sensor performance of  MoS2, as shown in Fig. 16c. The 
more extended  O2 plasma irradiation led to more oxygen 
amount in the crystal structure. O atom’s presence signifi-
cantly improved the humidity sensor performance of  MoS2 
in the crystal structure. Although the direct evidence of 
the presence of N-doped  MoS2 and C-doped  MoS2 for gas 
sensor devices had not been reported, the N-doped  MoS2 
and C-doped  MoS2 are widely used for hydrogen evolution 
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reaction and photocatalyst [223–226]. According to Li et al. 
[225], the insertion of N atoms induced the defect on S sites. 
N atoms optimize the electron density beneficial for hydrogen 
evolution reactions. Guo et al. [227] reported that the edge 
of the  MoS2 structure can be engineered by the presence of 
N-doping and increase the hydrogen evolution reaction with 
a low overpotential of 114 mV to produce a current density of 
10 mA  cm−2 and high stability. The edge is also essential in 
the gas sensor performance because the active sites of  MoS2 
are primarily located at the edge of its layer.

Apart from the anions mentioned above, other chalcogen 
anions, such as selenium and tellurium, are potential doping 
sources for modifying the structure of  MoS2. The advantage 
of using chalcogen anions as dopant is the structural similar-
ity with  MoS2 [228]. Therefore, the  MoS2 structure is easily 
modified without additional impurities and secondary phase. 
According to Jin et al. [229], the MoSSe Janus structure 
might improve the gas adsorption properties of  MoS2. Fig-
ure 16d shows the adsorption parameters of  MoS2, MoSSe, 
and  MoSe2 on various gas adsorption, including CO,  CO2, 
NO,  NO2, and  NH3 [229]. The adsorption properties of 

S- and Se-modified MoSSe surfaces were investigated. The 
results showed that in the CO and  CO2 gas, the adsorption 
distance between MoSSe and analyte was greater than 3 Å. 
This shows that the adsorption process is weak (physisorp-
tion). In  NH3, NO, and  NO2 gas, the adsorption distance 
is less than 3 Å, which is considered strong adsorption 
(chemisorption). The adsorption distance between MoSSe 
and adsorbed molecules/gases is closer than  MoS2 and 
 MoSe2. The  Ea values (magnitudes) of all the studied mol-
ecules adsorbed on the Se-layer were obviously larger than 
those on the S-layer, indicating the surface selectivity of 
Janus MoSSe for these molecules. Therefore, gas molecules 
need to be adsorbed on the Se surface with higher bind-
ing strengths. Furthermore, the  Ea values of  NH3 and  NO2 
adsorption on the Janus layer were relatively larger, leading 
to higher selectivity of the MoSSe structure. There are sev-
eral interesting phenomena to be considered in this regard. 
For instance, CO,  CO2, and  NO2 on the MoSSe act as the 
charge acceptors while the  NH3 molecule behaves as the 
charge donor to the Se or S side of the monolayer. Particu-
larly, NO acts as an acceptor on the Se side and as a donor 
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on the S side. Figure 16d shows the charge density difference 
between MoSSe samples and adsorbed gases. The obvious 
charge redistribution occurred in  NH3, NO, and  NO2 gases 
which were considered as sensitive molecules to be adsorbed 
by MoSSe structures. The results have demonstrated that 
the modification of MoSSe has relatively more potential to 
improve molecular adsorption ability.

Besides the anion doping, modification of  MoS2 struc-
tures-led enhanced sensing performances can be conducted 
by cations elements. Zhu et al. [230] established that Nb, V, 
and Ta doping into  MoS2 monolayer significantly improves 
the gas adsorption properties to CO,  NO2,  H2O, and  NH3 
molecules. This effect occurs due to the substantial overlap 
between the metal and orbitals and gas molecule orbitals, 
leading to activation of the adsorbed gas molecules. Analy-
sis of Bader charge shows that more charge transfer (−0.66 
 e− to −0.72  e−) occurs from metal (V, Nb, Ta)-doped mon-
olayer  MoS2 to the oxidizing gas molecules  (NO2) acting as 
acceptors. Regarding CO molecules adsorption, relatively 
fewer electrons (about − 0.24  e−−0.35  e−) transfer occured 
from the substrate to the adsorbed gases. In experimental 
works, the  MoS2 gas sensing performances have been suc-
cessfully modified via Zn, Co, Ni, and Fe atomic dopings. 
These atoms usually replace the Mo atom due to similar 
cationic behavior. Shao et al. [221] varied the Zn concen-
tration in  MoS2 structures to understand the optimum gas 
sensing performances optimum condition. Regardless of the 
tested analytes, the 5%-Zn-doped  MoS2 attained the high-
est gas sensor. Zhang et al. [231] used Co, Ni, and Fe as 
dopants sources for  MoS2. The improved  SO2 gas sensor 
performance was observed in the Co-, Ni-, and Fe-doped 
 MoS2. Compared to other cations, Ni-doped  MoS2 exhib-
ited the best  SO2 gas sensor performance. DFT calculation 
showed that the cations-doped  MoS2 increases the adsorp-
tion energy, decreases the adsorption distance, and increases 
the charge transfer process between  MoS2 and  SO2. Moreo-
ver, Ni-doped  MoS2 showed the highest adsorption energy, 
closer adsorption distance, and highest charge transferability. 
All these results support the anion and cation doping process 
of  MoS2 that modifies the crystal structure and increases the 
gas adsorption performance of  MoS2. However, the long-
term and phase stability of the anion incorporation into 
 MoS2 crystal structures against environmental oxidation are 
lack of detailed studies.

3.6  Heterostructures Coupling

When two dissimilar materials are in contact, heterointer-
faces, commonly known as heterojunction, are formed. It 
offers various advantages to the improvement of many gas 
sensing materials. The underlying enhanced mechanisms of 
heterostructures include (i) band structures alteration due to 
Fermi level adjustment, (ii) depletion layer enlargement, (iii) 
synergistic surface reaction via electronic sensitization, and 
(iv) catalytic promotions [28]. Therefore, heterostructures 
coupling arose as one of the advanced strategies for opti-
mizing gas sensing performances of  MoS2. Many materials 
have been recently combined with  MoS2 to achieve good 
gas sensors materials, such as carbon-based materials, oxide 
materials, and other TMDs materials.

The combination between  MoS2 and carbon-based mate-
rials has been widely investigated due to the synergistic 
effects between the good sensitivity of  MoS2 with the good 
conductivity and high specific surface area of carbon-based 
materials. For instance, Sing et al. [232] reported the forma-
tion of  MoS2/CNTs heterostructures to detect  NH3 gas at 
RT. The addition of CNTs into  MoS2 increased the specific 
surface area. The fabricated sensor devices based on  MoS2 
and  MoS2/CNTs illustrated in Fig. 17a exhibited the n-type 
semiconducting behavior and showed room-temperature 
 NH3 detection down to 12 ppm-level. Regarding  MoS2, the 
corresponding response time  (tres = 400 s) and recovery time 
 (trecov = 280 s) are very large with LoD down to 1.2 ppm. 
In comparison, the prepared  MoS2/CNTs exhibited faster 
response–recovery (65 and 70 s, respectively) features along 
with enhanced relative response for various ammonia con-
centrations, ranging from 12 to 325 ppm. The improvement 
of ammonia detection performance of  MoS2/CNTs is attrib-
uted to the higher adsorption energy of  MoS2/CNTs than 
 MoS2 for ammonia adsorption.

The 2D/2D heterojunction showed fascinating effects on 
the gas detection improvement governed by large and strong 
interface contact areas. This is due to the close face-to-face 
contacts between 2D layered materials. The combination 
of 2D  MoS2 with 2D graphene-based materials needs to 
facilitate stronger interfacial electrical coupling and charge 
transfer than 0D/2D, 1D/2D, and 3D/2D. Park et al. [233] 
reported the successful formation of  MoS2/RGO composites 
for water vapors sensing devices with fast response, excellent 
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selectivity, and ultrahigh sensitivity based on 2D rGO and 
2D  MoS2 hybrid composites (RGMSs). The RGMSs were 
fabricated by simple ultrasonication without the addition of 
additives and additional heating. Compared to pristine rGO, 
the RGMS exhibited a 200 times higher response to water 
vapors at RT. The significant enhancement in the sensing 
performance of the composite was attributed to electronic 
sensitization due to p–n heterojunction formation and porous 
structures between rGO and  MoS2, as shown in Fig. 17b, 
c. The synergistic combination of rGO and  MoS2 could be 
applied to construct a flexible humidity sensor. Besides, a 
recent study suggested that carbon dots (CDs) can modify 
the humidity sensing properties of  MoS2 nanosheets because 
of the abundant surface functional groups of CDs that can 
possibly adsorb water molecules stronger than the bare  MoS2 
[234]. Yue et al. [235] investigated the formation of gra-
phene/MoS2 quantum dots composites for  NH3 and  NO2 gas 
recognition. The  NO2 detection gives a negative response 
value, while the  NH3 detections have a positive response 
value attributed to the different charge transfer mechanisms 
between  NO2 and  NH3. In  NO2 gas detection, all sensor 
materials lose the electron and increase the resistance. In 
 NH3 detection, the sensor materials gain an electron from 
 NH3 due to the electron donor properties of  NH3. These 

results confirm that the combination of  MoS2 and carbon-
based materials improve gas sensor performance.

Having many resemblances in term of crystal struc-
tures, combining  MoS2 with other TMDs families provide 
more synergistic process and component suitability, which 
often increases the gas sensor ability. An assemble hetero-
structure containing  MoS2 and  SnS2 composite has been 
successfully fabricated by Liu et al. [236] using a hydro-
thermal approach. The  MoS2/SnS2 composite exhibited 
an outstanding improvement for  NO2 gas detection com-
pared to  MoS2 and  SnS2. The higher  NO2 sensing ability 
of  MoS2/SnS2 composites is attributed to the p–n junction 
formation. In the p–n heterojunction system, the electrons 
flow from n-type  SnS2 to p-type  MoS2. Consequently, 
electron depletion layers formed on the surface of  SnS2. 
Simultaneously, the holes from  MoS2 tend to diffuse to the 
surface of  SnS2, which leaves a negatively charged region. 
Electron–hole diffusion continues until the Fermi level of 
the composite reaches an equilibrium state. The barrier at 
the  SnS2/MoS2 interface and the cumulative layer on the 
surface of the  MoS2 contribute to the low conductivity of 
the  SnS2/MoS2 nano-heterostructures in air, confirmed by 
I–V results. However, in the fresh air,  O2 is adsorbed on 
the surface of the sensor and changes into  O2

−. When the 
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sensor is exposed to  NO2 gas, the molecules are adsorbed 
on the surface of the sensor and capture free electrons from 
the accepter level of the sensor to form  NO2

−. Also, the 
 NO2 molecules reacted with chemisorbed oxygen and con-
sequently converted into  NO3, disturbing the electric field’s 
equilibrium to decrease the barrier width and increase the 
sensor conductivity toward  NO2 gas [236]. The entire pro-
cess is simplified in Fig. 18a. Ikram et al. [237] demon-
strated the synthesis of a heterojunction of few-layer  MoS2 
nanosheets (NSs) with multilayer  WS2 using a simple one-
pot hydrothermal process. They successfully improved the 
gas sensing performance of TMD heterostructure nanoma-
terials (NMs) for  NO2 at room temperature. The response 
value of  MoS2 and  MoS2@WS2 with Mo: W atomic ratio 
of 3.8:1 (MWS-1), 1.55:1 (MWS-2), and 0.36:1 (MWS-
3). The  NO2 detection response of all composite samples 
was higher than  MoS2 samples. Similarly, the response and 

recovery processes during the  NO2 adsorption are faster 
than  MoS2. The commendable selectivity and appreciable 
stability to  NO2 gas are believed to be a synergistic effect 
between  MoS2 and  WS2 NSs originating from the enhanced 
surface area and remarkably increased exposed active sites 
for  NO2 adsorption.

MoS2 has interesting features to support the performances 
of oxide-based sensing materials. One major problem of 
oxide-based is related to the high operating temperature of 
the oxide materials due to low conductivity. To make oxide-
based materials applicable in the room-temperature regime, 
 MoS2 is needed because of its relatively good conductivity 
and being reactive at room temperature for diverse types of 
gases. Han et al. [238] demonstrated  MoS2/ZnO heterostruc-
ture’s formation for improving  NO2 sensing performance. 
The purpose of this heterostructure formation is to fabricate 
the p–n heterostructures as an effective way to modulate the 
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intrinsic electronic properties of  MoS2 nanosheets (NSs), 
achieving high sensitivity and excellent recovery properties. 
Figure 18b shows the comparative  NO2 response between 
pure  MoS2 and  MoS2/ZnO (7-ZM). The 7-ZM displays supe-
rior performance with an excellent response of 30  (Ra/Rg) to 
5 ppm  NO2 with a fast response time of 40 s and outstanding 
recovery ability. Figure 18c shows a graphical illustration 
of the  NO2 sensing process. During the  NO2 adsorption, the 
electron from  MoS2 and ZnO tends to move toward  NO2 
molecules. Holes accumulate at the surface of  MoS2 NSs, 
and the width of the heterojunction barriers is decreased. 
Therefore, the conductivity of  MoS2/ZnO heterostructures 
greatly increases, contributing to the enhanced response val-
ues. Constructing p–n hetero-nanostructures for 2D mate-
rials is a versatile solution for achieving excellent sensing 
performances. According to Wang et al. [239], the combi-
nation of  MoS2 and  SnO2 effectively improves gas sensor 
performance. In this study, the  NH3 sensing performance of 
 MoS2/SnO2 at RT was examined. The  NH3 sensing perfor-
mance of  MoS2/SnO2 is much higher than  MoS2 and pure 
 MoS2. They also suggested the improvement of the  NH3 
sensing performance of  MoS2/SnO2 is due to the formation 
of n–n junction between  MoS2 and  SnO2. In a summary, 
heterojunction fabrication between  MoS2 and other mate-
rials, including carbon-based, TMDs, and oxide materials, 
has exceptional gas sensing benefits due to the advantages 
of the interfacial charge transfer mechanism. The computa-
tional dynamic simulation may give a deeper understanding 
of the hole–electron mobility and transfer at the interface, 
especially during the gas adsorption.

3.7  Other Recent Strategies

3.7.1  Enhancement by Light Irradiation

The recent experimental results have shown that light irra-
diation effectively increased the gas sensor performance of 
 MoS2. The light irradiation can have several impacts on the 
 MoS2 surface, which will benefit gas sensor enhancement. 
The electron–hole formation is unavoidably existed during 
the light irradiation due to its small band gap of  MoS2. The 
increase in the charge carrier formation during light irra-
diation could improve the sensor response due to increased 
reaction probability between the charge carrier and gases. 

Moreover, light irradiation can remove the oxygen ion from 
the surface, which will be beneficial to increase the reactiv-
ity of the tested gas with the  MoS2 surface. Pham et al. [240] 
have investigated the  NO2 sensor performance of  MoS2 by 
using red-light irradiation. As mentioned earlier, light irra-
diation can increase the charge carrier concentration. The 
increase in the charge carrier concentration directly relates 
to the increase in the conductivity, as shown in Fig. 19a. 
The I–V characteristics increase about 500% after light irra-
diation, which indicates this material is light sensitive. The 
 MoS2 was deposited on the  SiO2 substrate through spin-
coating techniques, and gold was used as an electrical chan-
nel. Figure 19b shows the  NO2 response under dark and light 
irradiation (inset is  MoS2-based sensor device). The  NO2 
detection performance of  MoS2 significantly improved after 
light irradiation and showed extremely high sensitivity to 
ppb level  NO2 gas exposure up to 3.3% ppb (3300% ppm) 
and sub-ppb limit of  NO2 gas detection at the 0.1 ppb level. 
Another report from Kumar et al. [241] has also shown the 
improvement of the  NO2 sensor of  MoS2 through UV-light 
irradiation. Figure 19c–e shows the gas sensor performance 
of  MoS2 under light irradiation, heating treatment, and room 
temperature. The sensor response of UV-activated is higher 
than at room temperature and with annealing treatment. 
Moreover, the response and recovery speed time are greatly 
improved under UV-light irradiation. The increase in the 
response and recovery speed under UV-light irradiation is 
due to the substantial enhancement in response to full repro-
ducibility of multilayer  MoS2 gas sensor to  NO2 gas at room 
temperature under the UV illumination was attributed to the 
removal of contamination from the surface (clean surface, 
renders greatest possible reactive sites per unit volume) and 
the minor effect of photogenerated electrons in the conduc-
tion band of  MoS2.

3.7.2  Substrate Engineering

The electrode preparation is also crucial in designing suitable 
sensor devices because the different substrates and differ-
ent electrical channels will give a different electrical signal 
response. Ali et al. [242] have investigated the detailed prepa-
ration of the electrode for gas sensor measurement of  MoS2. 
The different substrates and also different channel lengths 
have been carefully conducted. Two kinds of substrate  (SiO2 
and h-BN) have been used as a substrate. In  MoS2/h-BN, a 
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sharp decrease in mobility is observed for low concentration 
gas exposures, which can be explained by the increase in 
scattering sites on adsorption of  NOx molecules due to the 
device being more homogeneous on a flatter substrate. In the 
case of the  MoS2/SiO2 device, the change in mobility in  NOx 
presence is much lower for low concentrations, which shows 
that influence of surface roughness is more dominant. The 
different channel length is also crucial for the device with 
a shorter channel length shows a relatively higher response 
than a long channel, as the charges undergo less scattering 
during transport through a shorter channel. Another report 
from Kim et al. [243] has investigated the difference in chan-
nel materials. Three different metals were used. Al, Ag, and 
Au were used as conductive material for the electrical chan-
nel. The use of different conductive materials can change the 
Schottky barrier height (SBH) due to the different metals’ 
work functions, as shown in Fig. 12f. This Schottky bar-
rier height also affects the gas sensor response. Figure 12g 
shows that the  NO2 detection performance improves with the 
lower work function. The electrode with a low work function 
increased the responsivity.

Each advanced approach has interesting benefits for 
sensing enhancement. The precise selection and sensor 
design greatly produce sensors with expected performance 

and more effective experimental time. To clarify each 
strategy’s contribution, all reviewed strategies to advance 
the gas sensing performance of  MoS2 are summarized in 
Table 2.

4  Other Molybdenum‑Based Gas Sensor 
Materials

Concerning α-MoO3 and  MoS2, other molybdenum-con-
taining compounds have been recently examined for their 
functionality as next-generation solid-state chemiresistive 
gas sensing materials with desired specifications.  MoSe2 
and  MoTe2 are in the same family of TMDs, similar to 
 MoS2, and having two-dimensional layered structures 
with a high aspect ratio [246]. The physical and elec-
tronic properties of  MoSe2, such as very narrow band 
gap (1.1 eV for bulk and 1.5 eV for monolayer), good 
full-spectrum absorption at 200–800 nm, low internal 
resistance, and high carrier mobility (100  cm2  V−1  s−1), 
support its utilization in optoelectronic and photocatalysis 
application [247, 248]. Specifically, 2D structures mani-
fested by  MoSe2 secures the ultra-large specific surface 
area and abundant surface adsorption sites that govern 
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Fig. 19  a I–V dependence of the Au–MoS2–Au device in the dark and under red LED illumination with incident power of 60.9 nW. b Effect 
of  NO2 gas exposure at concentrations from 25 to 200 ppb on normalized resistance of the Au–MoS2–Au device in the dark (black line; gray 
line shows fivefold magnified data) and under red LED illumination (red curve). Reproduced from Ref. [240] with permission. Copyright 2019, 
American Chemical Society. c Transient relative response of sensor to 5, 10, 50, and 100 ppm concentration of  NO2 at room temperature (RT), 
at 100 °C, and at RT under UV illumination (1.2 mW  cm−2). d Relative response versus  NO2 concentration at RT, 100 °C, and at RT under light. 
e Cyclic test to 100 ppm of  NO2 at RT under UV light. Reproduced from Ref. [241] with permission. Copyright 2017, American Chemical Soci-
ety. f Band diagram of  MoS2 with metal electrodes. g Sensing characteristics of  NO2 for 3L  MoS2 with Al, Ag, and Au electrodes. Reproduced 
from Ref. [243] with permission. Copyright 2019, American Chemical Society
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Table 2  Improvement strategies of  MoS2-based gas sensor

n.a. = data not available

Improvement strategies Sensing materials Target gas Conc. (ppm) T (°C) Sensitivity Response/
recovery 
times (s)

Refs.

Morphological design Hierarchically  MoS2 nanospheres CO 500 230 92.6(Ra/Rg) 18/15 [188]
3D hierarchical porous  MoS2 micro-

spheres
H2 500 120 20.5% 30/60 [185]

MoS2 nanoflakes Ethanol
Methanol

10 50 17.6(ID/I0)
10.8(ID/I0)

53/–
67/–

[244]

3D  MoS2 Aerogel NO2 0.5 200 120% 33/107 [195]
Edge-oriented  MoS2 flakes H2 10,000 RT 1% 14.3/136.8 [189]
Atomic layered  MoS2 NO2 0.12 RT 35% n.a [193]
Monolayer  MoS2 Triethylamine 10 RT 18% 5/5 [190]
Single- and Multilayer  MoS2 NO 2 RT 80% n.a [191]
Monolayer  MoS2 NO2

NH3

0.02
1

RT 20%
40%

n.a [194]

Phase control
Surface functionalization

10%1 T  Mo0.87W0.13S2 Acetone 100 RT 1.6% n.a [206]
30%1 T  Mo0.87W0.13S2 Acetone 1000 RT 0.4% n.a [206]
1 T/2H  MoS2 NO2 2 RT 25% 10/700 [207]
1 T/2H (1.7)  MoS2 Toluene 100 RT 12.50% 52/48 [172]
1 T/2H (4)  MoS2 Toluene 100 RT 16.29% 52/26 [172]
Au
MoS2

NH3 1000 60 9.6 (Ra/Rg) n.a [209]

Au
MoS2

Triethylamine 50 280 59 (Ra/Rg) n.a [208]

Pd-MoS2 H2 10,000 RT 35.3% 786/900 [210]
Pd-MoS2 H2 50,000 RT 10 (Ra/Rg) 83/- [211]
Pd-MoS2 H2 500 RT 33.7% 16/38 [212]
Ni-MoS2 H2S 2 RT 80% n.a [215]
Pt-MoS2 NH3 70 RT 36% n.a [213]
Pt-MoS2 H2 100 150 10 (Ra/Rg) 4/19 [214]
Ni-MoS2 H2S 2 RT 80% n.a [215]
Ag-MoS2 Methanol 100 RT 21.6% n.a [216]

Elemental doping O-doped  MoS2 H2O RH (95%) RT 47% 228/184 [222]
Zn-doped  MoS2 O3 0.6 RT 8% 5.5/10.1 [221]
Fe-doped  MoS2 SO2 500 RT 5% 60/107 [231]
Ni-doped  MoS2 SO2 500 RT 14% 54/92 [231]
Co-doped  MoS2 SO2 500 RT 4% 58/98 [231]

Heterostructures MoS2/rGO H2O RH (85%) RT 2494.25% 6.3/30.8 [233]
MoS2
WS2

NO2 50 RT 25% 2/36 [237]

MoS2/ZnO NO2 5 RT 3050% n.a [238]
MoS2/SnO2 NH3 50 RT 90 (Ra/Rg) 2.3/1.6 [239]
MoS2/SnO2 NO2 5 RT 18.7  (Gg/Ga) 74/– [245]
MoS2/Carbon Dots (CDs) H2O RH (15–80%) RT 0.5  (IR/I0) 22/71 [234]
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the gas sensing performances. Because of these proper-
ties,  MoSe2 exhibited excellent sensing performances to 
sensitively recognize harmful and toxic gases, such as 
 NH3,  NO2, CO, and  H2S with LoD at ppb level and fast 
response/recovery times within few seconds [249–252]. 
2D  MoSe2 nanosheet can be synthesized via a liquid 
exfoliation approach in which the process is assisted by 
anhydrous ethanol as dispersant. With only a few layered 
structures, the 2D  MoSe2 exhibited the improved detec-
tion to  NO2 gas greater than bulk  MoSe2 [253]. Advanced 
strategies have also been conducted to improve the gas 
sensing performance of  MoSe2, including noble metals 
functionalization (Au, Pd), morphology and structural 
control, and nanocomposites [249, 251, 254, 255].  MoSe2 
is expected to have a bright prospect in gas sensing in 
the future. Although there have been extensive studies on 
 MoS2 and  MoSe2, there is still a lack of relevant research 
on  MoTe2 gas sensing properties despite their equivalent 
structures.  MoTe2 has a possible use for environmental 
monitoring, as initially suggested by Lin and group [256], 
followed by a few experimental works.  MoTe2 demon-
strated gas sensing ability to detect as low as 3 ppb of 
 NH3 gas upon UV-light illumination. Due to the excel-
lent  MoTe2 electronic properties, UV light improved 
 NH3 detectability [257]. Wu et al. stated that the  MoTe2 
sensing response behaved like a p-type semiconductor. 
With a similar approach, UV-light-illuminated  MoTe2 
gas sensors detected  NO2 and ketones with high selec-
tivity [258, 259]. The light-tunable sensing approach is 
a facile strategy and key performance applied in sens-
ing platforms based on other 2D materials. Due to many 
structural similarities, the enhanced gas detection per-
formances of  MoSe2 and  MoTe2 can be expected using 
approaches performed to  MoS2. Though less pronounced, 
molybdenum carbide (α-MoC1−x and β-Mo2C) nanopar-
ticles showed unprecedentedly high signal-to-noise ratio 
(SNR) with the ability to detect the ppb levels of  NH3 and 
 NO2 [260]. Furthermore, its chemical stability and high 
melting temperature properties are suitable for sensing 
hazardous gases in a harsh environment, which cannot be 
achieved by oxides semiconducting gas sensor. Hence, 
the research utilizing other kinds of molybdenum-based 
sensors is highly encouraged to extend the future high-
performance gas sensing materials.

5  Summary and Future Challenge

Extensive studies on molybdenum oxides and dichalco-
genides show a significant technological prospect and tre-
mendous assets for multiple functional applications on the 
environment, energy, and health. Due to excellent and many 
interesting properties, including 2D layered structures, stud-
ies have examined the ability and feasibility of α-MoO3 and 
 MoS2 as gas sensing materials. Various advancement strate-
gies of α-MoO3 and  MoS2 gas sensors have comprehensively 
been summarized. Regarding pristine α-MoO3 and  MoS2, 
enhancement strategy was performed by morphological 
design and shape control, including 0D (quantum dots), 1D 
(monolayer nanosheet or nanoplates), 2D (nanorods, nano-
tubes, nanofibers, nanobelts), and 3D hierarchical structures 
(microspheres, microflowers, hollow nanostructures) to 
enlarge their surface area in order to allow more gas adsorp-
tion/desorption process and catalytic reactions. Particularly, 
intrinsic crystal defects in α-MoO3, such as oxygen vacancy 
formed after synthesis, provides a highly active site for 
molecular oxygen adsorption. Similarly, most of the active 
surface of  MoS2 is situated at the edges of their layered struc-
tures. Therefore, it is essential to have phase control synthesis 
(1 T, 2H, and 3R) in bare  MoS2 to ensure adsorbed oxygen 
molecules are exposed to their edges-faceted surface. Fur-
ther effective strategies involve extrinsic chemicals or com-
pounds, either surface functionalization, elemental dopants, 
and heterostructure coupler. Surface functionalization lowers 
the activation energy of oxygen dissociation, leading to more 
abundant ionized oxygens. However, the decorative surface 
thickness needs to be controlled to avoid blocking oxygen 
diffusion into sensing materials. Dopants are used to modify 
electronic, efficient, and crystal structures, mainly for band 
gap tuning, charge carrier sensitization, and defect formation. 
The option to heterostructures coupled-α-MoO3 and  MoS2 
is more pronounced to effectively improve gas sensing prop-
erties due to widely available developed compounds (other 
semiconductor ceramics, metals, or polymer) meant for a par-
ticular purpose such as extreme environment resistant and 
flexible/wearable sensors.

The combination of the above strategies can be developed 
with special attention to their methodological simplicity and 
effectiveness. In the case of α-MoO3, this oxide is very suit-
able for detecting VOCs, especially VOCs containing amine, 
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due to its acid properties. However, its strong interaction 
results in a very long recovery time. Until this moment, the 
available solution is to apply a heating pulse at a relatively 
high temperature. This strategy is not suitable for α-MoO3 
which can only be operated at low temperatures. Moreo-
ver, it cannot be applied to the oxide that is prepared at 
low temperature due to its properties that tend to change at 
high temperature, leading to affect its stability. Therefore, 
it is important to maintain the long-term performance by 
lowering the operating temperature. Another worth trying 
strategy is combining the oxide with basic materials such 
as ZnO. Furthermore, combined with carbon nanotubes 
(CNT) is can also be done because its report is still rarely 
be found. Similarly, the gas sensing properties of pristine 
 MoSe2 and  MoTe2 can be dramatically tailored by such 
approaches. Table 3 shows the advantages and disadvantages 
of each respective strategy.

Despite enormous strategies for optimizing gas sensing 
properties of α-MoO3 and α-MoS2 developed until today, 
there is still a need to focus on and address some obstacles 
and challenges. Gas sensors are technologically important in 
modern society and help control atmospheric pollutions and 
their exposure to the environment or monitor human health. 
With the massive growth of information technology and 
Internet-of-Thing (IoT), the gas sensing research on 2D lay-
ered structured materials, including α-MoO3 and  MoS2, can 
be integrated into a flexible and wearable sensor to provide 
real-time gas detection and point-care. For wide deployment, 
gas sensor device requires ultralow power utilization, low-
cost fabrication, high signal-to-noise ratio, long time span, 

flexibility, and wearability on integrated electronic circuit 
and miniaturization. Achieving ultralow power consumption 
is still a critical task because the semiconducting properties 
of α-MoO3 require an external heat source to optimize their 
gas sensing performance, a similar case in  MoS2. Although 
some works reported that α-MoO3 and  MoS2 could work at 
room temperature, the sensitivity is still too low with terri-
bly slow responses. The surface functionalization by noble 
metals may significantly reduce working temperature and, 
at the same time, improves the gas sensitivity and creates 
high-cost sensing devices due to resource shortage and high 
price. Because of high abundancy, carbon-based may poten-
tially replace noble metals. Employing graphene oxides to 
ZnO microwires enabled the sensor device to work at room 
temperature with ultralow consumption [261]. Fabrication 
of α-MoO3- and  MoS2-based sensors with ultrahigh signal-
to-noise ratio is highly challenging. The ambient environ-
ment’s intervention, such as humidity or interference gas, 
leads to high noise background and cross-sensitivity, reduc-
ing a “real” electrical signal generated by the tested gases. 
Therefore, this issue needs to be tackled to produce a highly 
selective gas sensor.

To realize the room-temperature sensor device, the 
humidity factor is very crucial to be considered as the 
major factor because our air consists of different humidity 
in different situations. If the sensor is stable under differ-
ent humidity, the sensor is promising as a room-temperature 
device; however, if the sensor response is greatly altered dur-
ing the humidity change, the response value is not reliable. 
Recently, researchers are still struggling with stabilizing the 

Table 3  Advantages and disadvantages of each improvement strategy

Strategy Advantages Disadvantages

Morphological design Versatile to obtain nanostructured materials
Inexpensive equipment

Surfactant impurity
Gas sensing performance cannot be easily predicted

Noble metal functionalization High catalytic properties of noble metals to organic 
and non-organic compounds offers faster redox reac-
tion, lead to rapid and high responsivity

Reduce working temperature

Resource scarcity
High cost
Metal toxicity

Phase control Effective and efficient to highly adsorb analyte by 
increasing the edge site

Issue on phase stability at certain temperature

Elemental doping Improve charge carrier concentration
Oxygen deficiency induced by charge compensation 

can be active sites for gas adsorption

Secondary impurity phases
Morphology may be changed after doping due to crystal 

lattice adjustment
Heterostructures Enhance electron–hole spatial separation

More adsorption sites in heterojunction
Requires multistep synthetic approach which means 

more time and resource consuming
In some cases, optimized working temperature increases
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sensor response of  MoS2 in a humid environment. Since the 
 MoS2 is hydrophobic, it is very sensitive to react with water, 
altering the sensor response. High humidity decreases sen-
sor response decrease. The decrease in the sensor response 
during the humid environment is due to the competition 
between water molecules and targeted gas interact with 
 MoS2 surfaces. In compensation,  MoS2 can be used as a 
humidity sensing material in practical application.

There is a huge demand economically and environmentally 
for sensor devices that can retain their sensing properties over 
thousands of repeated cycles to avoid added recycling costs 
and electronic waste (e-waste). The stability of α-MoO3- and 
 MoS2-based sensors has been achieved for several days, but 
the measurement was conducted in a laboratory environment. 
The real test in the various environmental conditions, such 
as in winter and summer periods, needs to be performed to 
observe the environmental effect on gas sensing performance. 
Integration sensing materials and miniaturization into a flex-
ible electronic circuit are fascinating areas for study, yet still 
far from development. Given layered structures with excellent 
mechanical properties, α-MoO3 and α-MoS2 need to provide 
high and homogeneous coverage on the interdigitated elec-
trode of a flexible electronic substrate. The feasibility of vari-
ous flexible substrates needs to be examined. Furthermore, 
future investigation on the gas sensing performance of α-
MoO3 and  MoS2 given mechanically bent and stretched con-
ditions is needed in the future investigation. Such advance-
ment may develop suitable state-of-the-art integration 
methodologies and a general guideline. Finally, there is still 
insufficient understanding of the sensing mechanism despite 
the availability of many proposed mechanisms previously 
reported. Working with computational simulation and mod-
eling could help develop advanced knowledge of how gas 
molecules behave when exposed to sensing materials. This 
can help design and optimize the next generation of gas sens-
ing materials. A similar effort is needed in examining  MoSe2, 
 MoTe2,  Mo2C, MoC, or any other molybdenum-based mate-
rials aiming to provide more sensing material choices for a 
particular application. For example, molybdenum carbides 
are relatively more suitable for gas sensors working at higher 
temperatures and severe environments due to greater stability 
and higher melting points. Overall, molybdenum-based gas 
sensors hold multiple promising performances toward gas 
pollutant detections and have drawn great attention to the 
technological advancement of sensing devices. This review 
has provided a complete overview of recent strategies on 

optimizing gas sensing performance of molybdenum-based 
gas sensors and insight into the further advancement of these 
special groups as the next-generation sensing materials with 
high detection ability.
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