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HIGHLIGHTS

• The superior conductivity and unique porous electrode structure in the TiN paper enable fast charging by simultaneously providing 
efficient ion diffusion and electron transport.

• The TiN paper-based supercapacitors exhibit charging/discharging at an ultrahigh scan rate of 100 V s−1 in a wide voltage window of 
1.5 V in  Na2SO4 neutral electrolyte and show zero capacitance loss after 200,000 cycles.

ABSTRACT Ultrafast-charging 
energy storage devices are attrac-
tive for powering personal elec-
tronics and electric vehicles. Most 
ultrafast-charging devices are 
made of carbonaceous materials 
such as chemically converted gra-
phene and carbon nanotubes. Yet, 
their relatively low electrical con-
ductivity may restrict their perfor-
mance at ultrahigh charging rate. 
Here, we report the fabrication 
of a porous titanium nitride (TiN) 
paper as an alternative electrode material for ultrafast-charging devices. The TiN paper shows an excellent conductivity of 3.67 × 104 S m−1, 
which is considerably higher than most carbon-based electrodes. The paper-like structure also contains a combination of large pores 
between interconnected nanobelts and mesopores within the nanobelts. This unique electrode enables fast charging by simultaneously 
providing efficient ion diffusion and electron transport. The supercapacitors (SCs) made of TiN paper enable charging/discharging at an 
ultrahigh scan rate of 100 V s−1 in a wide voltage window of 1.5 V in  Na2SO4 neutral electrolyte. It has an outstanding response time 
with a characteristic time constant of 4 ms. Significantly, the TiN paper-based SCs also show zero capacitance loss after 200,000 cycles, 
which is much better than the stability performance reported for other metal nitride SCs. Furthermore, the device shows great promise in 
scalability. The filtration method enables good control of the thickness and mass loading of TiN electrodes and devices. 
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1 Introduction

The emerging advances in portable and wearable electronics 
urge the rapid development of fast charging and discharg-
ing energy storage devices [1–6]. Supercapacitors (SCs), 
renowned for their high charging rate and long lifespan, have 
received great attention in the past decades [7, 8]. Currently, 
most SCs are operated at a charging speed of 2–100 mV s−1, 
which corresponds to the charging time from tens of seconds 
to tens of minutes [9, 10]. Further increasing the charging 
speed usually results in an inferior performance and dete-
riorated material structure [11]. Ultrafast-charging SCs 
with charging rate > 10 V s−1 would significantly shorten 
the charging time and meet the requirements for high-rate 
energy storage devices [12–14]. Ultrafast-charging SCs 
are mainly fabricated by carbonaceous materials, such as 
activated carbon, graphene, and carbon nanotubes (CNTs) 
[15–18]. Yet, the relatively low electrical conductivity of 
activated carbon (~ 1 to 100 S m−1), chemically converted 
graphene (~ 500 to 2000 S m−1), and CNTs (~ 1 × 104 S  m−1) 
restricts their performances at ultrahigh charging rates [19, 
20]. Therefore, exploration of new materials with superior 
conductivity for ultrafast-charging SCs is highly desirable.

Transition metal nitrides have received increasing atten-
tion for energy storage devices due to their excellent electri-
cal conductivity and high capacities/capacitances [21, 22]. 
Among them, titanium nitride (TiN) stands out as one of the 
most promising material for SCs because of its outstanding 
conductivity (4 × 105 ~ 5.55 × 106 S  m−1) and mechanical sta-
bility [22, 23]. However, in most cases, TiN nanostructures 
were supported on a substrate, which limits the gravimetric 
capacitances of TiN electrodes when it is normalized with 
the mass of entire electrode. Besides, most TiN-based elec-
trodes suffered from severe capacitance loss in aqueous elec-
trolytes, especially in the acidic and alkaline medium [24, 
25]. Hasegawa et al. [25] showed that the neutral electrolyte 
can help to alleviate the cycling stability of transition metal 
nitrides. Here, we report the fabrication of a freestanding, 
flexible and porous TiN paper electrode for ultrafast-charg-
ing SCs. Electrical measurements showed that a single TiN 
nanobelt and a piece of TiN paper achieved excellent con-
ductivities of 4.5 × 105 and 3.67 × 104 S  m−1, respectively. 
The unique combination of high conductivity and pore struc-
ture of the TiN paper warrants rapid electron transport and 
ion diffusion that are required for ultrafast charging. The SC 

device also shows remarkable stability, which is uncommon 
for metal nitride materials.

2  Materials and Methods

2.1  Synthesis of Ultralong  TiO2 Nanobelts

P25 powder (0.1 g) was mixed with 20 mL 10 mol  L−1 
NaOH aqueous solution. The mixture was transferred to a 
Teflon-lined autoclave and heated at 200 °C for 48 h. The 
autoclave was cooled down at room temperature. The solid 
product, sodium titanate  (Na2Ti3O7) nanobelts, in the solu-
tion was collected by vacuum filtration and washed with 
deionized water. The sodium titanate was then re-dispersed 
into 0.1 mol L−1 HCl aqueous solution and let it stay for 24 h 
to form hydrogen titanate  (H2Ti3O7) nanobelts through ion 
exchange reaction. Finally,  TiO2 nanobelts were obtained 
by annealing the  H2Ti3O7 nanobelts at 500 °C in air for 1 h.

2.2  Preparation of  TiO2 and TiN Papers

TiO2 and TiN paper were prepared by vacuum filtration 
of the ultralong  H2Ti3O7 nanobelts followed by annealing 
process. First, the  H2Ti3O7 nanobelts were re-dispersed into 
100 mL deionized water and stirred for 0.5 h to make a uni-
form suspension. Then, the  H2Ti3O7 nanobelt suspension 
solution was poured into the vacuum filtration system to get 
a  H2Ti3O7 paper. The  H2Ti3O7 paper with the filter paper 
was put in an electric oven at 70 °C for 20 min until they get 
dry. The  H2Ti3O7 paper can be easily peeled off from the 
filter paper afterward. The mass loading of paper electrode 
can be readily adjusted by changing the amount of  H2Ti3O7 
nanobelt suspension in the solution for the filtration.

TiO2 paper was obtained by annealing the  H2Ti3O7 paper 
at 500 °C in air for 1 h. TiN papers were obtained by anneal-
ing the  TiO2 paper in ammonia environment at 800 °C for 
1 h. The conventional TiN pellet electrodes as a control sam-
ple were fabricated by mixing the TiN nanobelts, carbon 
black, and PTFE in a ratio of 8:1:1 followed by rolling the 
mixture into thin films.

2.3  Materials Characterization

The X-ray diffraction (XRD) patterns were collected on a 
powder X-ray diffractometer (Rigaku Americas Miniflex 
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Plus) with 2θ angle from 30° to 70° under a step size of 
0.01° at a rate of 1°  min−1. The morphology of nanobelts was 
investigated by a field emission scanning electron micros-
copy (SEM, FEI Quanta 3D FEG dual beam) and transmis-
sion electron microscopy (TEM, JEM, 2010-HR). X-ray 
photoelectron spectroscopy (XPS, ESCALAB 250) was used 
to analyze the chemical composition of samples. Textural 
properties were examined by Brunauer–Emmett–Teller and 
Barrett–Joyner–Halenda methods using an ASAP 2020 sur-
face area analyzer (Micromeritics Instrument) via nitrogen 
porosimetry. The areal mass of the electrodes was measured 
based on 4 cm2 TiN papers on an analytical balance (Citizen 
CX265) with a resolution of 0.01 mg. The thickness of the 
electrodes was measured using a micrometer caliper (NSC-
ING) with a resolution of 0.001 mm. The single  TiO2 and 
TiN nanobelt devices were fabricated via a focused ion beam 
(FIB, Quanta 3D FEG) with Pt as the contact electrode. The 
electrical measurement was carried out using an Agilent 
2400 instrument.

The electrochemical measurements were conducted 
using electrochemical workstation (CHI 660D and EC-
Lab SP-300). For three-electrode measurements, a piece of 
0.2 cm2 TiN paper was used as working electrode. Ag/AgCl 
(CHI, USA) and YP-50 activated carbon (Kuraray Chemi-
cal, Japan) were used as the reference electrode and counter 
electrode, respectively. The measurements were carried out 
in different aqueous electrolytes, including 0.5 M  Na2SO4 
(pH 7.67), 3 M LiCl (pH 6.76), 1 M  H2SO4 (pH 0.03), and 
1 M KOH (pH 13.65) solutions. A piece of Celgard film 
was used as a separator (Celgard, USA). Two-electrode sym-
metric devices were assembled with two pieces of 0.2 cm2 
TiN paper or pellet with the same area and mass loading 
(~ 1.5 mg cm−2). Three samples with similar mass loadings 
were tested for each condition to make sure the electrode’s 
capacitive performance is reproducible.

2.4  Calculation

Gravimetric capacitance is calculated from CV curves using 
Eq. 1:

where I is the current (A), V is the working potential, v is the 
scan rate (V s−1), ΔV is the working voltage, m is the mass 
loading (g). ∫ IdV corresponds to the area of the discharging 

(1)Cg =
∫ IdV

vΔVm

parts. For the working potential in the positive region, it 
corresponds the area in the reductive part. For the working 
potential in the negative region, it corresponds to the area 
in the oxidation part.

Areal capacitance is calculated from CV curves using 
Eq. 2

where I is the current (A), V is the working potential, v is 
the scan rate (V s−1), ΔV is the working voltage, A is the 
working area  (cm2). ∫ IdV  corresponds to the area of the 
discharging parts.

The characteristic time constant (τcharacteristic) is calculated 
by Eq. 3:

where the fcharacteristic is the frequency (Hz) at a phase degree 
of − 45° from the EIS measurement.

Imaginary capacitances (C”) were calculated by Eq. 4:

where Z′ (Ω) is the real part of Z, Z is the electrochemi-
cal impedance (Ω), f is the frequency (Hz) from the EIS 
measurement.

3  Results and Discussions

Ultralong  TiO2 nanobelts were prepared by a hydrother-
mal method.  TiO2 nanobelts have average length around 
tens of micrometers, width of 50–200 nm and thickness 
of 20–50 nm (Fig. S1). These nanobelts with large aspect 
ratio can be easily assembled into flexible, paper-like elec-
trodes using filtration method (Fig. S2) [26]. XRD patterns 
confirmed that the nanobelts are monoclinic  TiO2  (TiO2-B, 
JCPDS No. 74-1940) (Fig. S3). TiN paper was obtained by 
treating the  TiO2 paper in ammonia atmosphere at 800 °C 
(Fig. 1a). Notably, TiN paper inherits the excellent flexibility 
of  TiO2 paper (Fig. 1b inset). While the basic framework of 
the 3D nanobelts assembly did not change upon ammonia 
treatment, each nanobelt became porous structure (Fig. 1b, 
c).  N2 adsorption–desorption isotherms showed that the 
specific surface area increased from 31.2 m2 g−1  (TiO2 
paper) to 43.5 m2 g−1 (TiN paper) after ammonia treatment 
(Fig. S4). The hysteresis located at 0.4 < P/P0 < 1.0 indicates 

(2)CA =
∫ IdV

vΔVA

(3)�characteristic =
1

2�fcharacteristic

(4)C��
=

Z�

2�f |Z|2
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the presence of mesopores [27]. The pore size distribution 
profile also confirmed the presence of higher amount of 
mesopores for TiN paper (Fig. S5). The porous structure 
was further confirmed with TEM image (Fig. 1d). It has 
been reported that  TiO2 can be etched by ammonia at high 
temperatures [21, 22]. The topotactic reaction of  TiO2 nano-
belts and  NH3 led to the rearrangement of the oxide structure 
and produced a mesoporous structure in the framework of 
the TiN nanobelts [28, 29]. The high-resolution TEM image 
revealed the TiN nanobelt has a lattice fringe of 0.245 nm, 
which is consistent with the d-spacing of (111) crystal plane 
of cubic TiN (Fig. 1e). The cross-sectional SEM image 
clearly showed that the TiN paper is formed via uniform 
assembly of nanobelts (Fig. 1f). The filtration method allows 
good control of the TiN paper thickness. The large pores 
between the nanobelts and mesoporous structure of the 

nanobelts provide sufficient space for ion diffusion, which 
is critical for the fast charging.

Additional X-ray diffraction and spectroscopy tech-
niques were used to probe the chemical composition of 
the TiN paper. Despite XRD pattern showed that the sam-
ple is cubic phase TiN (JCPDS No. 38-1420) (Fig. 2a), 
XPS survey spectrum revealed the existence of Ti, N, and 
O on the surface of TiN nanobelts (Fig. S6). The O sig-
nal is believed to be due to  TiO2 and/or  TiOxNy, which 
might come from the incomplete conversion from their 
oxide predecessor and surface oxidation after exposure 
in air [25, 30]. The possible reactions between  TiO2 and 
 NH3 are ammonia first decomposes into nitrogen and 
hydrogen gas ( 2NH3 + heat → N2 + 3H2 ). The reaction 
proceeds with the reduction of  TiO2 to TiO by hydrogen 
gas ( TiO2 + H2 → TiO + H2O ). Then, TiO reacts with 

TiO2 paper

NH3 Annealing

TiN paper

(a) (b)

(f)(e)

0.245 nm

(c)

(d)

1 cm

300 nm5 µm

5 µm50 nm 2 nm

Fig. 1  a Schematic illustration of the fabrication process of TiN paper from  TiO2 paper. b, c SEM images of TiN nanobelts. Inset in b shows the 
digital image of a piece of flexible TiN paper. d, e TEM and high-resolution TEM images of porous TiN nanobelts. f Cross-sectional SEM image 
of TiN paper
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ammonia and generate TiN ( TiO + NH3 → TiN + H2O ) 
[31]. The  TiO2 can also react with nitrogen and generate 
 TiOxNy ( TiO2 + N2 → TiOx Ny + O2 ) [32].

The core-level Ti 2p XPS spectrum exhibits multiple 
peaks in the binding energy range between 453 and 466 eV. 
They can be deconvoluted into three sets of synthetic peaks, 
corresponding to Ti-N  (2p3/2 = 455.4 eV,  2p1/2 = 461.3 eV), 
Ti-N–O  (2p3/2 = 456.85 eV,  2p1/2 = 462.9 eV) and Ti–O 
 (2p3/2 = 458.4 eV,  2p1/2 = 464.15 eV) (Fig. 2b) [33] The 
N 1s spectrum also consists of two different peaks, Ti-N 
(396.6 eV) and Ti-N–O (398.6 eV), which are consistent 
with the peaks observed in the Ti 2p spectrum (Fig. 2c) 
[34] Furthermore, TEM elemental mapping results con-
firmed the uniform distribution of Ti, N, and O in TiN 
nanobelts (Fig. 2d).

To probe the electrical conductivity of  TiO2 and TiN, 
focused ion beam (FIB) lithography was used to fabricate 
single-nanobelt devices (Fig. 3a inset). The current–volt-
age (I–V) curves of the  TiO2 and TiN nanobelt devices 
are shown in Fig. 3a. TiN exhibits a significantly larger 
current response with voltage than  TiO2. Their specific 
conductivities were calculated according to Eqs. 5 and 6:

where R is the resistance, ρ is the resistivity, l is the length 
of the nanobelt, A is the cross-sectional area of the nano-
belt, and σ is the conductivity of the nanobelt. The conduc-
tivity of a single TiN nanobelt (4.5 × 105 S  m−1) is almost 
3 orders of magnitude higher than that of  TiO2 nanobelt 
(4.9 × 102 S m−1). The TiN paper also retains excellent con-
ductivity of 3.67 × 104 S  m−1. These values are much higher 
than the previous reported carbon-based materials, such as 
activated carbon (10–100 S m−1) [35], chemical converted 
graphene (5 × 102 S m−1) [20], holy graphene (~ 103 S m−1) 
[36], laser-scribed graphene (1738 S  m−1) and even higher 
than the commercial CNT (~ 104 S  m−1) [37].

Furthermore, the TiN paper has a low sheet resistance of 
only 2.73 Ω  sq−1, which is smaller than those of graphene 
film (280 Ω  sq−1) [38], chemical converted graphene film 
(124 Ω  sq−1) [39], CNT paper (10 Ω  sq−1) [40], Au paper 
(7 Ω  sq−1) [41],  MoO3−x paper (5.1 Ω  sq−1) [37], Polypyr-
role paper (4.5 Ω  sq−1) [9], and comparable to that for 
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poly(3,4-ethylenedioxythiophene):polystyrene sulfonate 
(PEDOT:PSS) paper (2.60 Ω  sq−1) [42] (Fig. 3b). Given 
the excellent conductivity, the TiN paper can actually be 
used as a connecting lead to power a 2.5 V light-emit-
ting-diode (LED) with a commercial 3 V button battery 
(Figs. 3b inset and S7).

The unique combination of high conductivity and pore 
structure makes TiN paper an excellent electrode candidate 
for ultrafast charging supercapacitors. The working potential 
of TiN papers was first evaluated using a three-electrode sys-
tem in electrolytes with different pH values. TiN paper elec-
trodes exhibit the largest working potential window (1.5 V) 
in 0.5 M  Na2SO4 (pH 7.57) neutral electrolyte, while only 
0.8 V in 1 M KOH (pH 13.65), 1 V in 1 M  H2SO4 (pH 0.03), 
and 0.9 V in 3 M LiCl (pH 6.76) (Fig. S8). Significantly, 
this is the first report for TiN-based materials to be operated 
in such a wide working voltage of 1.5 V [22, 33, 43–46]. 
The large working voltage can be ascribed to the employ-
ment of the sulfate-based neutral electrolyte, which have 
been demonstrated to be effective in expanding the work-
ing voltage of SC materials in aqueous electrolyte because 
the high solvation energy of sulfate and alkali metal ions 
(160–220 kJ mol−1) cause relatively large overpotentials for 
hydrogen evolution and oxygen evolution reactions [47–50].

Excellent specific capacitances have been obtained for 
electrodes with small mass loading (0.1–1 mg cm−2) of 
metal nitrides deposited on conducting substrates (~ 10 to 

200 mg cm−2) [21, 22, 24, 33, 51]. These capacitances were 
typically calculated based only on the mass of active mate-
rial. However, the value of specific capacitance would be 
more practically meaningful if it is normalized to the mass 
of the entire electrode. In this regard, binder-free and con-
ducting additive-free TiN papers are advantageous over its 
counterparts that require current collector. The TiN paper 
electrode showed a high capacitance of 164.5 F  g−1 in 0.5 M 
 Na2SO4 at a scan rate of 5 mV s−1 and retained 64.7% of 
its capacitance when the scan rate is raised to 100 mV s−1 
(Fig. S9), which is significantly higher than capacitance 
of other metal nitride electrodes normalized to the mass 
of entire electrode, such as TiN nanosheets/graphene 
nanosheets (5.3 F  g−1 at 10 mV s−1) [21],  Nb4N5/Ni foil 
(0.86 F  g−1 at 0.67 A  g−1) [52], TiN nanowire/carbon cloth 
(10.2 F  g−1 at 10 mV s−1) [22], VN nanowire/carbon cloth 
(16.7 F  g−1 at 10 mV s−1) [53], and TiN/MnO2 nanowire/
carbon cloth (25.9 F  g−1 at 2 mA cm−2) [54].

TiN pellet electrodes as control samples were prepared 
by mixing TiN nanobelts, carbon black and PTFE binders, 
followed by pressing the mixture into thin pellets (Figs. 4a 
and S10). Symmetric supercapacitors (SSCs) were prepared 
via the assembly of two TiN paper or pellet electrodes with 
the same mass loadings. As shown in Fig. 4b, the paper-
based SSCs indeed have considerably longer charging and 
discharging time than the pellet SSCs. Importantly, the paper 
SSC exhibits excellent capacitive behavior even at ultrafast 
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charging rates at 200 A  g−1 (Fig. S11), while the charging 
rate of the pellet SSC is limited by its large internal resist-
ances (Fig. S12). As shown in Fig. S13, the TiN paper-based 
SSC achieves a specific capacitance of 12.67 F  g−1 at a scan 
rate of 100 mV s−1 and retains a capacitance of 8.99 F  g−1 
at a high scan rate of 1 V s−1 and 3.35 F  g−1 at an ultrahigh 
scan rate of 100 V s−1. These values are substantially higher 
than that of pellet-based SSC. The reduced capacitance and 
rate capability of the pellet electrode are mainly because 
of two reasons. First, the addition of non-conductive and 
non-electrochemical active polymer binder (PTFE) increases 
the overall electrode resistance and decreases the specific 
capacitance. Second, part of the active capacitive material 

TiN nanobelts is covered by carbon black and PTFE. This 
makes the ion diffusion to TiN nanobelts more difficult, 
especially at high charging rates, compared to the porous 
paper electrode.

EIS measurements were performed to understand the elec-
tron transport, ion diffusion resistivity and frequency charac-
teristics of TiN SSCs. The equivalent series resistance (ESR) 
obtained from the intercept of the plot on the real axis is only 
0.92 Ω, indicating the excellent electrical conductivity and 
low resistance of TiN paper SSCs (Fig. S14). Besides, the 
paper SSC showed much smaller charge transfer resistance 
(1.66 Ω) than the pellet SSC (35.98 Ω) (Fig. 4c). The high 
knee frequency of paper SSC (464 Hz) is also an order of 
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magnitude higher than the knee frequency of the pellet SSC 
(26.1 Hz) (Fig. 4c). The characteristic time constant of the 
paper SSC was calculated to be 4 ms (Fig. S15). This value 
is substantially smaller than the values reported for many 
carbon-based SSCs, including CNT fibers (1930 ms) [55], 
metal–organic frameworks derived porous carbon (1270 ms) 
[56], carbide-derived carbon (379 ms) [57], laser-scribed 
graphene (33 ms) [58], and onion-like carbon (26 ms) [59].

In addition to the efficient electron transport, paper SSCs 
exhibited much faster ion diffusion kinetics than the conven-
tional pellet SSCs. The ion diffusion resistances (σ) can be 
extracted from the slopes of the linear fitting of the real part 
of impedance (Z’) versus the reciprocal of the square root of 
frequency (ω−0.5) in the intermediate frequency range [60]. 
The paper SSC displayed an σ of 9.19 Ω  s−0.5, which is much 
smaller than the pellet SSCs (44.75 Ω  s−0.5), highlighting the 
advantage of having the unique porous electrode structure 
(Fig. 4d).

The CV curves of the paper SSC retain the rectangu-
lar shape even at ultrafast charging rates of 100  V  s−1 
(Fig. 5a–e). The linear increase of the discharge currents 

to 20 V s−1 reflects the efficient charge transfer and ion dif-
fusion in the paper SSCs (Fig. 5f), in contrast to the pellet 
SSCs. The paper SCC delivers an energy density of 1.05 
Wh  kg−1 under an extraordinarily high power density of 
251.2 kW kg−1, with a charging/discharging time of only 
15 ms. These values are much better than most of previ-
ously reported electrochemical capacitors (Fig. S16). Fur-
thermore, the TiN paper SSCs showed remarkable energy 
density of 3.26 mWh  cm−3 under a power density of 78.3 
mW  cm−3. An energy density of 0.54 mWh  cm−3 was 
still retained under an extremely high power density of 
130,632.2 mW cm−3, which is again much higher than most 
metal nitride-based SSCs (Fig. S17) [21, 22, 51, 53, 61, 62].

Transition metal nitride electrodes have been suffering 
from the instability problem during cycling [22, 24]. TiN 
paper SSCs were tested for long-term stability in three 
different electrolytes, 0.5 M  Na2SO4, 1 M  H2SO4, and 
1 M KOH solutions. TiN paper SSC shows zero decay 
in capacitance after cycling in 0.5 M  Na2SO4 electro-
lyte for 200,000 cycles at 1 V s−1, while only 47.5% and 
42.4% of capacitance were retained in 1 M  H2SO4 and 
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1  M KOH electrolyte, respectively (Fig.  6a–d). SEM 
images revealed that the porous structure of TiN nano-
belts remained unchanged after cycling in 0.5 M  Na2SO4 
electrolyte. In contrast, the nanobelt morphology of TiN 
changed significantly after testing in 1 M  H2SO4 and 1 M 
KOH solutions (Fig. 6e–g). XPS spectra were collected to 
investigate the chemical nature of TiN electrode surface 
before and after cycling stability test. The N 1s spectrum 
of TiN paper tested in 0.5 M  Na2SO4 solution shows no 
obvious change, while the N 1s peaks disappeared after 
cycling in 1 M  H2SO4 or 1 M KOH electrolytes (Fig. S18). 
Ti 2p XPS spectra further showed that the signal of Ti-N 
and Ti-N–O decreased considerably after testing in  H2SO4 
or KOH solution, leaving only Ti–O signals, while the 
Ti-N and Ti-N–O signals were not affected for TiN paper 
tested in 0.5 M  Na2SO4. These results suggested that TiN 
papers were oxidized in both  H2SO4 and KOH solutions, 
which are consistent with the previous reports [25, 63, 
64]. Titanium ions in TiN can be oxidized to soluble titan-
ate ions  (HTiO3

−) and/or  TiO2·H2O in alkaline solution 
[63], while they can also be oxidized steadily to the tri-
valent state (Ti(OH)2+) and tetravalent state (Ti(OH)2

2+) 
at positive voltages in acidic solutions [64]. These results 
demonstrate the importance of selecting the sulfate-based 
neutral electrolyte for TiN electrodes and possibly other 
nitride electrodes. The outstanding cycling stability of TiN 
with zero decay in capacitance after 200,000 cycles in 
0.5 M  Na2SO4 is much better than the previous reports on 

metal nitride electrodes (Table S1), such as TiN nanow-
ires on carbon cloth (82% after 15,000 cycles) [22],  Mo2N 
nanobelts/graphene (85.7% after 4000 cycles) [65],  Nb4N5 
nanobelts (80% after 1000 cycles) [51], VN/CNT com-
posite (82% after 10,000 cycles) [61], and  Fe2N/graphene 
(92.9% after 20,000 cycles) [21].

The filtration method offers not only an easy way to 
make paper-like electrode, but also the capability of con-
trolling the electrode thickness and mass loading. We 
investigated the capacitive performance of TiN paper 
SSC with different mass loadings. As shown in Fig. 7a, 
TiN paper SSC retains a rectangular CV curves at a high 
scan rate of 1 V s−1 under different mass loadings. When 
the mass loading increased from 0.38 to 3 mg cm−2, the 
areal capacitance increases almost linearly, manifesting 
the gravimetric and volumetric capacitance are not signifi-
cantly affected with the increased mass loading (Figs. 7b 
and S19). The thickness/mass loading-insensitive capaci-
tive behavior makes the TiN paper electrode promising for 
practical energy storage devices.

4  Conclusion

In summary, we have fabricated a freestanding highly con-
ductive and porous TiN paper electrode that can be oper-
ated at an ultrahigh scan rate of 100 V s−1 in a wide volt-
age window of 1.5 V in a  Na2SO4 electrolyte and shows 
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no capacitance decay in 200,000 charge/discharge cycles. 
Importantly, the TiN paper SSC exhibits an outstanding 
response time with a characteristic time constant of 4 ms. 
This can be attributed to the high conductivity of TiN nano-
belts and the efficient ion diffusion in the unique electrode 
architecture constructed with a network of mesoporous TiN 
nanobelts. We believe the paper-like electrode fabrication 
method can be applied to other metal nitride materials and 
provide an alternative way to make electrodes for ultrafast-
charging supercapacitors.
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