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Unraveling Passivation Mechanism 
of Imidazolium‑Based Ionic Liquids on Inorganic 
Perovskite to Achieve Near‑Record‑Efficiency 
 CsPbI2Br Solar Cells

Jie Xu1, Jian Cui1, Shaomin Yang1, Yu Han1, Xi Guo1, Yuhang Che1, Dongfang Xu1, 
Chenyang Duan1, Wenjing Zhao1, Kunpeng Guo3, Wanli Ma4, Baomin Xu5, Jianxi Yao6, 
Zhike Liu1 *, Shengzhong Liu1,2 *

HIGHLIGHTS

• A series of 10 imidazolium-based ionic liquids (IILs) with different cations and anions have applied to unravel the passivation mecha-
nism of the IILs on  CsPbI2Br inorganic perovskites.

• It is found that anions of IILs play a more important role in passivation of lead- and cesium-related defects in inorganic perovskite 
compared with imidazole cations because they can form strong ionic interactions (Pb-F, Cs-F).

• A high-power conversion efficiency of 17.02% is obtained, which is among the highest values of  CsPbI2Br-based perovskite solar cells.

ABSTRACT The application of ionic liquids in perovskite has 
attracted wide-spread attention for its astounding performance 
improvement of perovskite solar cells (PSCs). However, the detailed 
mechanisms behind the improvement remain mysterious. Herein, a 
series of imidazolium-based ionic liquids (IILs) with different cati-
ons and anions is systematically investigated to elucidate the passi-
vation mechanism of IILs on inorganic perovskites. It is found that 
IILs display the following advantages: (1) They form ionic bonds 
with  Cs+ and  Pb2+ cations on the surface and at the grain boundaries 
of perovskite films, which could effectively heal/reduce the  Cs+/I− 
vacancies and Pb-related defects; (2) They serve as a bridge between 
the perovskite and the hole-transport-layer for effective charge 
extraction and transfer; and (3) They increase the hydrophobicity of 
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the perovskite surface to further improve the stability of the  CsPbI2Br PSCs. The combination of the above effects results in suppressed 
non-radiative recombination loss in  CsPbI2Br PSCs and an impressive power conversion efficiency of 17.02%. Additionally, the  CsPbI2Br 
PSCs with IILs surface modification exhibited improved ambient and light illumination stability. Our results provide guidance for an in-
depth understanding of the passivation mechanism of IILs in inorganic perovskites.

KEYWORDS Ionic liquids; Inorganic perovskite; Imidazolium; Passivation; High efficiency

Lewis bases/acids, organic halide salts and polymers pos-
sess insulating properties and could hinder efficient carrier 
extraction at the interface owing to their poor conductiv-
ity, and negatively affect the reproducibility of PSCs due 
to a distribution in molecular weights [16]. The fullerenes 
and their derivatives such as PCBM require many steps for 
synthesis, are expensive, and exhibit low yields [17, 18]. 
Therefore, the exploration of new passivation materials has 
become the main topic in research for achieving stable and 
efficient inorganic PSCs [19].

As a class of molten salts, ionic liquids (ILs) have 
recently become hot candidates to passivate/modify per-
ovskites and/or charge transport layers for realizing sta-
ble and efficient PSCs due to their diverse structures and 
unique properties, such as wide liquid temperature range, 
low toxicity, non-volatility, strong conductivity and good 
stability [20, 21]. Imidazolium ILs (IILs) have unique 
physicochemical properties, such as versatile functional 
ligands, large electrochemical window, high thermal stabil-
ity, and nonhazardous nature, and they have been widely 
used to passivate the defects both in the interior and at sur-
face grain boundaries of perovskites via additive-assisted 
techniques or surface-antisolvent methods [22–24]. Bai 
et al. reported the use of a small amount of the  BMIMBF4 
additive in the perovskite precursor solution [25], where 
 BMIM+ in the  BMIMBF4 can accumulate at the top surface 
of the perovskite film. The formed  BMIMBF4 layer could 
modify the surface dipole and improve the energetic align-
ment at the top interface of the perovskite film, resulting in 
reduced voltage loss and improved charge extraction at the 
interface. In addition, IILs surface passivation of the charge 
transport layer and perovskite layer has recently emerged 
as an efficacious strategy to suppress interface defects and 
reduce interface energy loss in hybrid perovskites [26–28]. 
For example, Noel et al. recently deposited  BMIMBF4 on 
a  SnO2 electron transport layer (ETL), and it was found 
that  BMIMBF4 can simultaneously reduce the work func-
tions of  SnO2 and perovskite film, thus reducing charge 
recombination loss and improving the charge extraction 

1 Introduction

Cesium-based all-inorganic halide perovskites  (CsPbX3, 
X = I, Br, Cl, or their mixtures) have recently attracted great 
attention because of their excellent light stability, heat sta-
bility and optoelectronic properties [1–3]. Although great 
progress has been made in inorganic perovskite solar cells 
(PSCs) in past two years [1, 4], two core issues limit their 
future commercialization. On one hand, due to the solution 
fabrication process and ionic nature of inorganic perovskite, 
a large number of defects are inevitably formed at the sur-
face and grain boundaries (GBs) of polycrystalline inorganic 
perovskite film, which serve as non-radiative recombination 
centers and cause open-circuit voltage (Voc) and power con-
version efficiency (PCE) loss for inorganic PSCs [5]. For 
example, Huang et al. have demonstrated that the defect den-
sity at the interface between the perovskite and hole–trans-
port-layer (HTL) is two orders of magnitude higher than that 
in the perovskite bulk [6]. These interfacial defects bring in 
deep electronic states as non-radiative recombination cent-
ers, thus restricting the photovoltaic parameters, especially 
the Voc [7–9]. In addition to the efficiency, the inferior phase 
stability of inorganic perovskite compared to organic–inor-
ganic hybrid perovskites is another serious issue. Research-
ers also found that defects and water are often involved in the 
phase transition process of inorganic perovskite film, leading 
to the instability issue of inorganic PSCs [1, 4]. Therefore, 
the effective passivation of surface defects and blocking 
water penetration are especially paramount for simultane-
ously enhancing the efficiency and prolonging the lifetime 
of inorganic PSCs.

Surface passivation, for eliminating defects (lattice vacan-
cies, undercoordinated ions and interstitial species) and 
improving charge transport/hydrophobicity, is one of the 
most prominent strategies to promote the efficiency and sta-
bility of PSCs [10]. Recently, common surface passivators 
including Lewis bases/acids, organic halide salts, polymers, 
fullerenes, and their derivatives have been used to passivate 
the defects of perovskite film [11–15]. Among them, most 
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and transport at the  SnO2/perovskite interface [29]. Com-
pared with bottom-surface modification of the ETL, an 
IIL-based upper-perovskite modification can passivate 
the bulk defects due to the permeation of IILs into the 
perovskite layer. Zhang et al. introduced an IIL (1-butyl-
2,3-dimethylimidazolium chloride: BMMIMCl) for surface 
modification of a  CsPbBr3 perovskite film[30]. It was found 
that BMMIMCl can passivate the defects (unsaturated  Pb2+ 
and  Cs+) on the surface of the  CsPbBr3 perovskite film 
to obtain a PCE of 9.92% in an HTL-free  CsPbBr3 PSC. 
Nonetheless, IILs have an electron-rich nitrogen atom, 
an alkyl side chain and an anion, the crucial interactions 
between IILs and perovskite precursors are still unclear, 
and the mechanism of IILs passivation of the inorganic 
perovskite layer has been rarely investigated. Therefore, 
further studies are needed to better understand the inter-
action between the IILs and perovskite and to provide a 
principle for rational design of the IIL molecules.

Herein, we report a series of IILs as surface passivators 
for efficient and stable inorganic  CsPbI2Br PSCs. These 
IILs possess imidazolium cations with different side chains 
and different anions. First-principle calculations reveal that 
anions of the IILs play a more important role in passiva-
tion of lead- and cesium-related defects in inorganic per-
ovskite compared with imidazole cations. The anions cause 
simultaneous ionic bonding of the IILs with  Cs+ and  Pb2+ 
cations on the surface and at the grain boundaries (GBs) of 
perovskite films, which could effectively heal/reduce  Cs+/
I− vacancies and Pb-related defects. Meanwhile, the IILs 
could improve the energy-level alignment between the per-
ovskite and Spiro-OMeTAD for promoting hole extraction 
and reducing electron–hole recombination at the perovskite/
Spiro-OMeTAD interface, eventually leading to an increase 
of Voc of 50 mV for the photovoltaic device. Profiting from 
superior IILs passivation, the efficiency of  CsPbI2Br PSCs 
has been elevated from 15.62 to 17.02% with a high VOC of 
1.33 V. Furthermore, the exposed hydrophobic alkyl com-
ponent protects the perovskite against detrimental environ-
mental factors. The unencapsulated device modified with 
 BMMIMBF4 presents outstanding long-term stability when 
stored in ambient air at 25 °C with a relative humidity (RH) 
of 25% or under continuous illumination for 100 h. Our work 
provides a complete set of characterization methods to elu-
cidate the passivation mechanism of IILs, which provides 
guidelines for the design of new ionic liquids to improve the 
performance of inorganic PSCs.

2  Experimental Section

2.1  Materials

Cesium iodide (CsI, 99.99%), lead bromide  (PbBr2, 99.99%), 
lead iodide  (PbI2, 99.99%), and lead acetate  (PbAc2, 99.5%) 
were purchased from Xi’an Polymer Light Technology Corp. 
 PbI2(DMSO), and  PbBr2(DMSO) were prepared by the 
antisolvent method. The ionic liquids (ILs) 1-butyl-2,3-di-
methylimidazolium tetrafluoroborate  (BMMIMBF4, 99%), 
1-butyl-3-methylimidazolium tetrafluoroborate  (BMIMBF4, 
99%), 1-propyl-3-methylimidazolium tetrafluoroborate 
 (PMIMBF4, 99%), 1-hexyl-3-methylimidazolium tetra-
fluoroborate  (HMIMBF4,  C10H19BF4N2, 99%), and 1-hexyl-
2,3-dimethylimidazolium tetrafluoroborate  (HMMIMBF4, 
99%) were purchased from Shanghai Chengjie Chemical 
Co., Ltd. N,N-dimethylformamide (DMF) and dimethyl-
sulfoxide (DMSO) were purchased from Shanghai Aladdin 
Biochemical Technology Co., Ltd.

2.2  Device Fabrication

The fluorine-doped tin oxide (FTO) glass substrates were 
sequentially cleaned with ethanol, acetone, and isopropanol 
in an ultrasonic bath for 30 min and then dried with  N2. The 
cleaned FTO glass substrates were then treated with UV-
Ozone for 10 min prior to the deposition of  TiO2. The  TiO2 
layer was deposited by immersing FTO glass substrates in 
200 mL aqueous solution with 4.5 mL titanium tetrachlo-
ride for 60 min at 70 °C, then rinsed with distilled water 
and annealed at 200 °C for 30 min. The  CsPbI2Br precur-
sor solution was prepared by dissolving  PbBr2(DMSO), 
 PbI2(DMSO), CsI, and  PbAc2 (molar ratio = 1:1:2:0.023) in 
DMF and DMSO (17:3 v/v). The resulting perovskite precur-
sor solution was spin-coated at 1000 rpm for 10 s, followed 
by 4000 rpm for 40 s. Afterward, the film was annealed at 
35 °C for 6 min, 120 °C for 10 min, and 180 °C for 4 min 
to obtain the perovskite layer. The IILs were dissolved in 
isopropanol with different concentrations (0.01, 0.02, 0.03, 
and 0.04 wt%) and spin-coated onto the  CsPbI2Br perovs-
kite film at 5000 rpm for 45 s; then the films were thermally 
annealed at 100 °C for 10 min to form the  TiO2/perovskite/
IIL structure. The hole-transport layer was prepared by spin-
coating Spiro-OMeTAD solution (90 mg  mL−1) doped with 
36 µL t-BP and 22 µL Li-TFSI (520 mg  mL−1) solution in 
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acetonitrile at 5000 rpm for 30 s onto  CsPbI2Br films to 
produce a  TiO2/perovskite/IIL/Spiro-OMeTAD architecture. 
Finally, an 80-nm Au electrode was deposited by thermal 
evaporation through a shadow mask to form a device with 
an active area of 0.09  cm2.

2.3  Density Function Theory (DFT) Calculation

The calculation was performed using VASP code in the 
framework of the PBE approximation. The van der Waals 
interaction was treated by the Tkatchenko-Scheffler method. 
The lattice constant of  CsPbI3 perovskite was set to 6.16 Å, 
which was obtained by optimizing a cubic  CsPbI3 unit cell. 
The interaction energies of the anions in this study with an 
I vacancy on the film surface were calculated by compar-
ing the energies of a  CsPbI3 slab (2 × 2 × 3 unit cells in the 
supercell) with one I vacancy and that of the slab with the 
I vacancy saturated with the anions. The dimension of the 
calculation was set to 12.32 × 12.32 × 50 Å3. The k-mesh 
was set to 10 × 10 × 1. In the calculations, the first layer of 
 CsPbI3 perovskite was fully relaxed. The interaction ener-
gies of the ions of interest with  PbI2 were calculated in a 
volume of 20 × 20 × 20 Å3. The k-mesh was set to 1 × 1 × 1. 
In all the calculations, the cut-off energy was set to 500 eV, 
and the convergence condition was set to  10–6 eV to ensure 
convergence of the system to a stable state.

2.4  Characterization

X-ray diffraction (XRD) patterns of the perovskite films were 
acquired on a D/MAX 2400 diffractometer. The absorption 
spectra of perovskite films were measured using a UV–vis 
NIR spectrophotometer (PerkinElmer, Lambda 950). Photo-
luminescence (PL) (excitation at 510 nm) spectra were meas-
ured using a FLS980 spectrometer (Edinburgh Instruments 
Ltd), and TRPL spectra were measured with a PicoQuant 
FluoQuant 300. The scanning electron microscopy (SEM) 
images of perovskite films were obtained by field-emission 
scanning electron microscopy (HITACHI, SU-8020). X-ray 
photoelectron spectroscopy (XPS) and ultraviolet photoelec-
tron spectroscopy (UPS) of the perovskite films were carried 
out using a photoelectron spectrometer (ESCALAB250Xi, 
Thermo Fisher Scientific). Fourier-transform infrared spec-
troscopy (FTIR) were performed with a Bruker Vertex 70. 
Nuclear magnetic resonance spectroscopy (NMR) was 

performed using a JNM-ECZ400S/L1 with a frequency of 
400 MHz, and deuterated DMSO was used as the solvent 
to dissolve  BMMIMBF4 and  PbI2 with  BMMIMBF4. The 
J-V curves of the inorganic PSCs were measured using a 
Keithley 2400 SourceMeter under AM1.5G illumination at 
100 mW  cm−2. The external quantum efficiencies (EQEs) 
of the PSCs were recorded using a QTest Station 2000ADI 
system (Crowntech Inc.). EIS analysis was performed on a 
Zahner Electrochemical Workstation. Water contact angles 
were measured using a DataPhysics OCA 20.

3  Results and Discussion

The chemical structures of IILs with the same anions and 
different imidazolyl and alkyl groups are presented in Fig. 
S1. The IILs passivation layer was prepared by solution 
coating the IILs isopropanol solution onto perovskite film 
and annealing at 100 °C for 10 min. During the annealing 
process, the IILs could anchor to the  CsPbI2Br through the 
coordination of N/F-atoms in the imidazolyl/anion and Pb in 
the perovskite [30]. Simultaneously, the hydrophobic alkyl 
chains of the IILs are arranged along the perovskite surface, 
which provides hydrophobicity to increase the moisture-
resistance of the  CsPbI2Br film [31]. In order to explore the 
effects of the IILs treatment on the crystallinity or orienta-
tion of the perovskite crystal structure, the XRD patterns of 
bare perovskite and perovskites modified by different IILs 
are characterized. As presented in Fig. 1a, only two main 
diffraction peaks from the (100) and (200) planes of the per-
ovskite crystal structure can be observed, which is consistent 
with our previous reports [32, 33]. All the diffraction intensi-
ties of the (100) and (200) peaks were slightly enhanced in 
perovskite treated by IILs, while the peak positions have no 
obvious shift compared to bare perovskite film, indicating 
that the IILs could enhance the (100) orientation of perovs-
kite but weren ‘t incorporated into the perovskite crystal 
lattice. According to the ultraviolet–visible (UV–vis) spectra 
of the perovskites (Fig. 1b), the absorption intensity and 
edge of the IILs-treated perovskite films have no discern-
ible change, confirming that the crystal structure of the per-
ovskite remains largely unchanged. The XRD and UV–vis 
results suggest that the IILs treatment does not change the 
cubic perovskite structure, and the IILs only remain at the 
surface and/or GBs of the perovskite film [34].
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Next, time-of-flight secondary-ion mass spectrometry 
(ToF–SIMS) was performed under negative polarity to check 
the chemical distribution within the perovskite film with 
 BMMIMBF4 treatment. As illustrated in Fig. 1c, it is found 
that the anions and cations of the IIL  (BMMIMBF4) are not 
identically distributed in the perovskite film. Specifically, 
 BMMIM+ is found to be distributed throughout the bulk 
film, while  BF4

− is located mainly at the surface of the per-
ovskite film. As shown in Fig. S2, the chemical distributions 
of N from  BMMIM+ and F from  BF4

− can be visualized and 
confirmed in the elemental 3D maps in the depth profile.

As shown in Fig. 1d, the surface morphologies of perovs-
kite films with different IILs treatments were characterized 
with SEM measurements. After treatment with very dilute 
IILs solution, there was no significant change to the surface 
morphology of the perovskite film. However, the hydropho-
bic feature of the perovskite film was obviously improved, 
which is due to the hydrophobic alkyl chains and fluorinated 
anions. The hydrophobic feature can also be adjusted by 
the alkyl length and added side chains. The hydrophobic 
IIL layer deposited on the surface of the perovskite could 
prevent moisture and oxygen from infiltrating the perovskite 
layer, thereby improving device performance stability.

To obtain more information regarding the effect of IILs 
modification on the charge transfer process of  CsPbI2Br 

film, steady-state PL measurements were conducted. As 
shown in Fig. 1e, all the PL intensities of the perovskite 
films with IILs modification are obviously quenched com-
pared to that of the control film, mainly due to the quench-
ing effect induced by charge transfer from the perovskite to 
the IILs [35]. In addition, when the spiro-OMeTAD layer 
was introduced, the PL quenching occurs more effectively 
in the IILs-treated perovskite films (Fig. S3). Further, time-
resolved photoluminescence (TRPL) measurements were 
carried out to study the photogenerated carrier lifetime, as 
shown in Fig. 1f. Table S1 lists the fitting parameters of 
the TRPL curves fitted by a biexponential function. All the 
perovskite films with IILs treatment exhibit shorter average 
lifetimes than the bare perovskite film, which indicates the 
existence of accelerated charge transfer from the perovskite 
to the IILs [26]. As show in Fig. 1e, f and Table S1, the 
perovskite film with  BMMIMBF4 treatment shows the most 
effective quenching efficiency and shortest PL decay time, 
indicating efficient charge transfer that would reduce the 
interfacial non-radiative recombination.

In order to clarify the possibility of charge transfer 
between the perovskite and IILs, UPS and electrochemical 
cyclic voltammetry (CV) characterization of perovskite and 
 BMMIMBF4 IIL were conducted. As shown in Fig. S4, the 
Fermi level (EF) of the perovskite is close to the conduction 
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band, indicating it is n-type, and the valence band maximum 
(VBM) is located at − 6.0 eV, while the highest occupied 
molecular orbital (HOMO) of  BMMIMBF4 is at − 5.54 eV. 
When the n-type perovskite contacts the  BMMIMBF4 under 
illumination, the holes will transfer from the perovskite to 
the  BMMIMBF4, which results in the quenching of PL and 
decreased carrier lifetime. Therefore, IILs treatment leads to 
a faster charge transport and extraction at the perovskite sur-
face, which means there is a possibility that charge-carrier 
recombination could be reduced [36] with potential benefit 
to the performance of the derived solar cells. To confirm 
this hypothesis, PSCs (FTO/TiO2/Perovskite/IILs/Au) with-
out HTLs are fabricated (Fig. S5). Compared to the device 
without treatment, the IILs-treated device shows a remark-
able increase in PCE from 5.16 to 9.86%, mainly driven 
by enhanced Voc and fill factor (FF). This is indicative of 
reduced recombination and enhanced charge extraction at 
the perovskite/IILs interface, which is consistent with the 
PL and TRPL results (Fig. 1e, f) [12, 37–39].

In order to further investigate, the interaction between the 
IIL  (BMMIMBF4) and  CsPbI2Br perovskite, FTIR, XPS, 
and 1H, 19F, 11B NMR were conducted. Figure 2a shows 
the FTIR spectra of bare  BMMIMBF4,  BMMIMBF4 +  PbI2, 
and  BMMIMBF4 + CsI mixtures. The bond positions in 
the different mixtures are listed in Table S2. It is found 
that the stretching vibration peaks at 1252 and 1466  cm−1 
assigned to the C–N and C=N bonds, respectively, in the 
pure  BMMIMBF4 are shifted to lower wavenumbers of 
1240 and 1457  cm−1 in  BMMIMBF4 +  PbI2. This indicates 
that the uncoordinated  Pb2+ can form coordination bonds 
with C–N and C=N groups in  BMMIMBF4. In contrast, 
the peaks for C–N and C=N bonds show almost no shift 
in  BMMIMBF4 + CsI, indicating that there was no interac-
tion between  Cs+ and C–N/C=N bonds [40]. Meanwhile, the 
B-F peaks in the  BMMIMBF4 +  PbI2 and  BMMIMBF4 + CsI 
mixtures show large red-shifts from 1056  cm−1 to 1025 
and 1039  cm−1, respectively. This indicates that the unco-
ordinated  Pb2+ and  Cs+ can be effectively passivated by 
 BF4

− through formation of ionic bonds. In addition, the 
bonding relationship between  Pb2+(Cs+) and the IIL was 
also validated by the XPS spectra. As shown in Fig. 2b-e, 
when the IIL was mixed with CsI or  PbI2, the binding ener-
gies of Cs 3d, Pb 4f, and N 1 s are all obviously shifted to 
lower position, while that of F 1 s is shifted to a higher posi-
tion, which was attributed to the formation of strong bonding 
between the  Cs+/Pb2+ and F atom in  BF4

− and/or between 

 Cs+  (Pb2+) and the electron-rich N atom in the alkyl chains. 
The formation of bonds increases the electron cloud density 
and decreases the electron affinity of  Cs+ and  Pb2+ ions. As 
shown in the inserts of Fig. 2b-d, all the Cs, F, and Pb peaks 
in the mixture split into two peaks, indicating that new ionic 
bonds (Cs-F and Pb-F) are formed between the CsI/PbI2 and 
 BF4

− in the  BMMIMBF4. These results imply that the strong 
bonding interaction between the  BMMIMBF4 and perovskite 
is favorable and could provide passivation of uncoordinated 
 Cs+/Pb2+ defects and the deep-level Pb-I antisite defects in 
perovskite through Cs-F and Pb-F bonds and suppress both 
the diffusion of inorganic cations and the phase transition of 
the inorganic perovskite crystal, thus significantly improving 
the stability of inorganic PSCs.

In order to gain deeper insights into the chemical inter-
action between the perovskite precursor and  BMMIMBF4, 
a series of liquid state 1H, 19F, and 11B NMR spectra of 
 BMMIMBF4 with  PbI2 or CsI are presented in Figs. 2f, 
g, S6 and S7. With the addition of  PbI2 or CsI into the 
 BMMIMBF4 solution, as shown in Tables S3 and S4 in the 
Supporting Information, all the 1H peaks in the mixture 
had weak shifts compared with bare  BMMIMBF4, sug-
gesting that the coordinative bonds between N atoms in 
the alkyl chains and Pb (Cs) atoms in the  PbI2 (CsI) are 
not so strong to affect adjacent  CH3 or  CH2 groups in the 
alkyl chains. In contrast, the characteristic F and B peaks 
of  BF4

− show obvious shifts when mixed with  PbI2 or 
CsI, due to the formation of Cs-F and Pb-F ionic bonds. 
From the aforementioned results, the interaction between 
 BMMIMBF4 and inorganic perovskite  CsPbI2Br most 
likely originates from the ionic bonds between  BF4

− and 
 Pb2+/Cs− ions. The long alkyl chains and side methyl 
groups on the imidazole group lead to steric hindrance 
effects, hampering the interaction of the nitrogen atom on 
the imidazole with the  PbI2 or CsI [41]. From examination 
of the results of NMR, FTIR, and XPS, it is concluded 
that the  BMMIM+ cation in  BMMIMBF4 could form a 
coordinative bond with uncoordinated  Pb2+, while the 
anion  (BF4

−) could bond with  Pb2+ and  Cs+ through ionic 
bonding, which are favorable for inhibiting non-radiative 
recombination in  CsPbI2Br perovskite.

To comprehensively evaluate the effect of the IILs treat-
ment on the photovoltaic performance of  CsPbI2Br PSCs, as 
shown in Fig. 3a, an n-i-p device with the planar structure 
glass/FTO/TiO2/CsPbI2Br(IILs)/Spiro-OMeTAD/Au was 
fabricated, where the IILs with different cations were coated 
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onto the perovskite layers as surface passivators. Figure 3b 
and Table 1 present the current density–voltage (J-V) curves 
and the corresponding photovoltaic parameters of optimized 
devices. The device with  BMMIMBF4 treatment delivers a 
champion PCE as high as 17.02%, with short-circuit cur-
rent density (Jsc) of 15.96 mA  cm−2, Voc of 1.33 V, and FF 
of 80.08%. Meanwhile, the best control device shows an 
inferior PCE of 15.62%, with Jsc of 15.81 mA  cm−2, Voc of 
1.28 V, and FF of 77.10%. As shown in Fig. S8 and Tables 
S5 and S6, the dependence of the device performance on 
the concentration of the  BMMIMBF4 treatment was also 
investigated. The optimized concentration of  BMMIMBF4 
is 0.03 wt%. The schematic energy-band alignment of the 

 CsPbI2Br PSCs with  BMMIMBF4 treatment is illustrated in 
Fig. 3c, where the VBM of perovskite is located at − 6.0 eV, 
and the HOMO of  BMMIMBF4 is at − 5.54  eV, which 
leads to a better energy-level alignment with the HOMO 
(− 5.22 eV) of Spiro-OMeTAD. Such a band alignment 
between the  CsPbI2Br surface and Spiro-OMeTAD facilities 
hole transport and reduces interfacial recombination [3, 33]. 
EQE spectra of devices are shown in Fig. 3d. The integrated 
current density values for control and  BMMIMBF4-treated 
devices are 15.64 and 15.92 mA  cm−2, respectively, which 
coincide with the Jsc values derived from the J-V measure-
ments. Figures 3e and S9 exhibit the statistical photovoltaic 
parameter distributions of 50 individual devices with or 
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Fig. 2  a FTIR spectra of  BMMIMBF4 solution with or without  PbI2/CsI additive. XPS spectra of b Cs 3d, c F 1 s of  BMMIMBF4 solution 
with or without CsI additive. XPS spectra of d Pb 4f, and e N 1 s of  BMMIMBF4 solution with or without  PbI2 additive. f 19F NMR spectra of 
 BMMIMBF4 solution with or without CsI additive. g 19F NMR spectra of  BMMIMBF4 solution with or without  PbI2 additive



 Nano-Micro Lett.            (2022) 14:7     7  Page 8 of 15

https://doi.org/10.1007/s40820-021-00763-8© The authors

without  BMMIMBF4 treatment, which permit the conclu-
sion that  BMMIMBF4 treatment can undoubtedly boost the 
performance of PSCs, mainly stemming from improved Voc 
and FF. The stabilized PCEs were further measured with 
devices biased at the initial maximum power point voltage 
for 120 s. As shown in Fig. 3f, the  BMMIMBF4-treated 

device achieved the stabilized PCE of 17.00% at the maxi-
mum power point (1.10 V), which is in good agreement with 
the PCE obtained from the J-V measurements.

A Mott-Schottky analysis was conducted to study the 
built-in potential (Vbi) in the devices. As illustrated in 
Fig. 3g, the device with  BMMIMBF4 treatment shows a Vbi 
of 1.29 V, which is larger than that of the control device 
(1.25 V). The larger Vbi in the treated device is usually 
related to a higher Voc value. Electrochemical impedance 
spectroscopy (EIS) was conducted under dark conditions 
(Fig. 3h) [33, 42]. The fitted parameters are summarized 
in Table S7. Compared with the control device, the charge 
transport resistance (Rct) of the device with  BMMIMBF4 
treatment was decreased significantly from 754.7 to 493.9 
Ω, while the recombination resistance (Rrec) was increased 
significantly from 2.35 to 6.89 kΩ. The smaller Rct and 
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Fig. 3  a Schematic image of a  CsPbI2Br PSC with the structure FTO/TiO2/CsPbI2Br(IILs)/Spiro-OMeTAD/Au. b J-V curves and c schematic 
energy-level alignment of the  CsPbI2Br PSC with  BMMIMBF4 modification. d EQE spectra, e Box charts of PCE, f stable output curves, g 
Mott-Schottky plots, h Nyquist plots and i open-circuit voltage dependence on light intensity of the  CsPbI2Br PSC with  BMMIMBF4 modifica-
tion. j Space-charge-limited current versus voltage for the FTO/TiO2/CsPbI2Br/PCBM/Ag and FTO/TiO2/CsPbI2Br(BMMIMBF4)/PCBM/Ag 
devices. k J-V curves under dark conditions of the  CsPbI2Br PSC without or with  BMMIMBF4 modification

Table 1  Summary of the photovoltaic parameters of the  CsPbI2Br 
PSCs treated using IILs with different cations

Sample Voc (V) Jsc (mA  cm−2) FF (%) PCE (%)

Control 1.28 15.81 77.10 15.62
BMMIMBF4 1.33 15.96 80.08 17.02
BMIMBF4 1.32 15.93 78.21 16.45
PMIMBF4 1.31 15.78 77.74 16.09
HMIMBF4 1.30 15.77 76.33 15.66
HMMIMBF4 1.27 15.62 76.74 15.25
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larger Rrec suggest remarkably enhanced carrier transfer 
and suppressed charge recombination due to low defect 
density in the modified device, resulting in the enhanced 
Voc and FF [43, 44].

To further understand the mechanism of trap-assisted 
carrier recombination during device operation, the rela-
tionship between Voc and light intensity was measured 
(Fig. 3i), which yielded ideality factors (IFs) of the control 
and treated devices of 1.68 and 1.15  KBT/q, respectively. 
The largely reduced IF indicates that IILs treatment can 
effectively reduce the trap-assisted non-radiative recom-
bination, which is favorable for obtaining high Voc and FF 
values [45–47].

To quantitatively evaluate the affects of IILs modifica-
tion on the trap density of perovskite films, a space-charge 
limited current (SCLC) characterization was conducted on 
an electron-transport device (ITO/TiO2/perovskite/PCBM/
Ag) [48, 49]. As shown in Fig. 3j, the trap-filled limit volt-
age  (VTFL) of the device with IILs treatment is ~ 0.28 V, cor-
responding to a relative trap density (nt) of 5.66 ×  1015  cm−3, 
while the control device displays a higher  VTFL of 0.45 V 
with nt of 9.1 ×  1015  cm−3. The lower defect density induced 
by the IILs treatment could be attributed to the effective 
passivation of the perovskite film by the IILs. Therefore, 
the SCLC results are consistent with the previous EIS 
and Voc versus light analysis, in which the perovskite film 
treated with IILs shows a lower defect density and offers an 
enhanced  Voc and FF in the PSCs. To evaluate the charge 
transport properties of the devices, dark J-V curves were 
measured and are shown in Fig. 3k. The device with IIL 
treatment has a lower leakage current than the control one, 
indicating a decreased carrier generation rate and reduced 
background carrier density in the device. Because the carrier 
generation rate in a solar cell in the dark is related to the trap 
density in the device [3, 50, 51], the dark J-V result further 
indicates that the IIL treatment could effectively passivate 
defects in perovskite.

The influence of IILs with different anions on the per-
ovskite devices and films was also studied. As shown in 
Fig. 4a, IILs with different anions were coated onto the per-
ovskite layer as surface passivators. Figure 4b and Table 2 

present the J-V curves and the corresponding photovoltaic 
parameters of optimized  CsPbI2Br PSCs. The device with 
 BMMIMBF4 treatment delivers a champion PCE as high as 
16.89%. The EIS curves (Fig. 4c) and their fitted parameters 
(Table S8) suggest remarkably enhanced carrier transfer and 
suppressed charge recombination in the  BMMIMBF4-treated 
devices. The XRD patterns and UV–vis spectra of perovs-
kite films with IILs treatment are shown in Fig. 4d and S10, 
respectively. All the diffraction peaks and absorption edges 
of the perovskite films have no discernible change, con-
firming that the crystal structure of the perovskite remains 
largely unchanged by IILs modification. The PL and TRPL 
spectra of perovskite films with different IILs treatments 
were measured and are shown in Fig. 4e, f, respectively. All 
the PL spectra of these perovskite films show significant 
quenching and shorter carrier lifetime compared to those of 
the bare perovskite film, indicating increased charger transfer 
from the perovskite to the IILs. Among all these perovskite 
films, the one with  BMMIMBF4 treatment shows the strong-
est quenching and the shortest carrier lifetime (Table S9), 
indicating the most effective charger transfer process.

Upon IILs treatment, as demonstrated by the FTIR, XPS, 
and NMR results, the IILs could form strong ionic bonds 
with the uncoordinated Pb and Cs to passivate positively 
charged halide vacancies [52, 53]. As such, the  I− vacancies 
were diminished, accompanied by reduced defect density. 
In order to further demonstrate the passivation effect of 
the IILs, DFT calculations were carried out to adequately 
clarify the interaction the anions in the IILs with halide 
vacancies [54–57]. For reducing the amount of calculation, 
a 2 × 2 × 3 supercell of  CsPbI3 was employed in the study 
(The detailed models and calculation details are given in the 
experimental section). Figure 5a shows a calculated structure 
that illustrates a  BF4

− anion passivating an  I− vacancy at 
the  CsPbI2Br surface.  I− vacancy defects often act as non-
radiative recombination centers and are responsible for the 
ionic conductivity of perovskites, causing operational insta-
bility. The relative binding affinities of different anions in 
the IILs to  I− vacancies at the surface were estimated. The 
results exhibited in Fig. 5b reveal that  BF4

− has the highest 
binding energy to vacant  I− sites in comparison with  PF6

−, 
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 Cl−,  Br−, and  I−. Pb-I antisites form localized states near 
the valence band edge of perovskite and act as non-radiative 
recombination centers. The binding energy between different 
anions in the IILs and Pb-I antisite was also confirmed by 
DFT. Figure 5c shows a calculated structure that illustrates 
a  BF4

− anion passivating an Pb-I antisite in the  CsPbI2Br 
perovskite. As shown in Fig. 5d,  BF4

− has the highest bind-
ing energy to Pb-I antisite in comparison with other anions, 
which means that Pb-I antisite could be more effectively 
passivated by  BF4

−. Furthermore, the bonding energies 
of anions and cations in IILs with  PbI2 are also calculated 
to identify the binding preference of the ions in IILs with 
 CsPbI2Br. Figure 5e shows the calculated structures for  PbI2 

binding with a  BF4
− anion or  BMMIM+ cation. As shown 

in Fig. 5f, the binding energy is as high as 0.61 eV for the 
 HMIM+ cation, which is the highest among the cations in 
this study. However, it is still much smaller than that of the 
anions  BF4

− (1.08 eV) and  PF6
− (1.09 eV). The calculation 

result shows that the  PMIM+,  BMIM+,  HMIM+,  BMMIM+, 
and  HMMIM+ cations cannot interact directly with  PbI2, 
while  BF4

− or  PF6
− can strongly interact with  PbI2. This 

result explicitly shows that the  BF4
− or  PF6

− anions can be 
incorporated into the  CsPbI3 perovskite at the film surface 
to eliminate  I− vacancies to reduce interfacial non-radiative 
recombination. In addition, compared with  BF4

− (2.76 Å), 
the larger size of  PF6

− (3.00 Å) could induce a certain stress 
to weaken the interaction energy with the perovskite film 
[58–60]. Therefore,  BF4

− anion is more suitable for passi-
vating  CsPbI2Br perovskite films. From the combined XPS, 
FTIR, NMR, and DFT calculated results, it can be concluded 
that anions  (BF4

−) play a more important role in passivat-
ing uncoordinated  Pb+, Pb-I antisite defects and eliminating 
 I− vacancy defects than do the cations.

Apart from the efficiency, the device stability was 
evaluated upon exposure to air and light conditions. The 
appearance of the perovskite films exposed in air for dif-
ferent times was tracked, as seen in the photographs in 
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Fig. 4  a Schematic image of a  CsPbI2Br PSC with the structure FTO/TiO2/CsPbI2Br(IILs)/Spiro-OMeTAD/Au. b J-V curves and c Nyquist 
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Table 2  Summary of the photovoltaic parameters of the  CsPbI2Br 
PSCs treated using IILs with different anions

Sample Voc (V) Jsc (mA  cm−2) FF (%) PCE (%)

Control 1.27 15.45 77.86 15.28
BMMIMBF4 1.31 15.95 80.63 16.89
BMMIMCl 1.29 15.77 77.57 15.78
BMMIMPF6 1.27 15.62 76.74 15.25
BMIMBr 1.26 15.88 76.27 15.32
BMIMI 1.26 15.97 77.85 15.67
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Fig. 6a. The  BMMIMBF4-treated film remained black even 
after 12 days exposure in air, while the control film shows 
obvious fading near the edges, indicating a phase transi-
tion from α to δ. As expected, the  CsPbI2Br solar cells 
with  BMMIMBF4 treatment show remarkably superior 
stability compared to the control one, retaining 94.4% of 
their initial efficiencies after being stored in air for 1440 h 
under ~ 25% RH. In contrast, the control device lost more 
than 20% of its PCE over the same period (Fig. 6b). Most 
importantly, as shown in Fig. 6c, the photostability of the 
devices with IILs treatment was significantly improved, 

with ~ 90% of their initial efficiencies remaining after 
100 h under AM 1.5G sun illumination at 40 °C in ambi-
ent air (RH: ~ 30%), while the PCE of the control device 
decreased by nearly 50%. Therefore, the IILs surface pas-
sivation could significantly improve the ambient and light 
stability of the  CsPbI2Br PSCs, which can be ascribed to 
the following effects: (1) The long alkyl chain of the IIL 
enhances the hydrophobicity of the perovskite film as con-
firmed by the dramatically increased contact angle from 
64.9° to 91.2° (Fig. 1d) [25]. (2) Effective defect passiva-
tion reduces the active sites for phase transition.

Fig. 5  a Calculated structure illustrating the passivation of an  I− vacancy at the  CsPbI2Br surface by a  BF4
− anion. b The relative interaction 

strengths of different anions with the  I− vacancy at the surface of the perovskite. c Calculated structure illustrating the interaction of Pb-I antisite 
with  BF4

−. d The binding energy of different anions with Pb-I antisite defect. e Calculated structure illustrating the interaction of  PbI2 with  BF4
− 

or  BMMIM+. f The binding energy of different ions with  PbI2
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4  Conclusions

A series of IILs with different cations and anions has 
been applied to unravel the mechanism for passivation 
of  CsPbI2Br inorganic perovskites by the IILs. In con-
trast to previous studies, this work found that anions of 
the IILs play a more important role in passivation of 
lead- and cesium-related defects in inorganic perovskite 
compared with imidazole cations because they can form 
strong ionic interactions (Pb-F, Cs-F). These ionic bonds 
could passivate the surface and grain boundaries of the 
perovskite to reduce the charge-carrier recombination at 
the  CsPbI2Br/spiro-OMeTAD interface. Due to the large 

steric hindrance effect, the interaction between the large 
imidazole cations and lead defects is weakened. Mean-
while, the IILs could improve the energy-level alignment 
between the perovskite and Spiro-OMeTAD for efficient 
charge transfer. Further, the IILs modification improves 
the hydrophobicity of the perovskite film, leading to an 
improved air stability of PSCs. As a result, the optimized 
 CsPbI2Br PSCs with  BMMIMBF4 treatment achieve the 
highest PCE of 17.02%, which is much higher than the 
PCE of the control device (15.62%). The unencapsulated 
device modified with  BMMIMBF4 presents outstanding 
long-term stability when stored in ambient air at 25 °C 
with a RH of 25%, or under continuous illumination for 

Fig. 6  a Photographs of control and  BMMIMBF4-treated  CsPbI2Br films aged in ambient air conditions (RH: ~ 25%, T = 25 °C). b Air stability 
and c light stability of the  CsPbI2Br PSCs with or without  BMMIMBF4 treatment
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100 h. This work provides insightful guidelines toward the 
design or choice of effective IILs for improving the perfor-
mance of inorganic PSCs or related photoelectric devices.
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