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S1 Electrochemical Experiment
[bookmark: OLE_LINK3]In a typical three-electrode configuration cell, electrochemical tests were carried out on a CHI 660e electrochemical workstation (Shanghai Chenhua, China) and WaveDriver 200 (PINE, USA) with the prepared sample as the working electrode and the carbon rod and the Hg/HgO (1 M KOH solution) electrode as the counter electrode and reference electrode, respectively. The electrolyte for HER was 1 M KOH, pH = 13.7. Electrochemical measurements of all samples were carried out under the same test conditions. Oxygen was expelled by passing argon gas through the electrolyte for 30 minutes prior to testing, and then electrochemical measurements were performed in an environment where argon gas was passed through all the time. The potential herein is referenced to the reversible hydrogen electrode (RHE) with the following equation: E(RHE) = E(Hg/HgO) + 0.098 + 0.059 × pH. LSV curves were used to measure the electrocatalytic activity of the catalyst over a potential range of -0.479 ~ 0.221 V vs. RHE at a scan rate of 5 mV s-1, with all polarisation curves were 90% iR-compensated, where i is the current and R is the uncompensated electrolyte ohmic resistance as measured by electrochemical impedance spectroscopy (EIS). The current density was calculated from the actual area of the prepared catalyst immersed in the electrolyte. According to the Tafel equation: η = a + blog j, using the logarithm of the current density as the X-axis and the overpotential as the Y-axis, a Tafel plot is obtained, where a is the Tafel constant, b is the Tafel slope, j is the cathodic current density, and η is the overpotential.
S2 Computational Method
The calculations were carried out using DFT, with the Vienna ab-initio simulation package (VASP) [S1, S2]. The exchange-correlations functional was described by a generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) [S3]. On-site Hubbard correction U of Ni-3d orbits was set to 5.5 eV. The energy cutoff for the plane wave was 400 eV. A 15 Å vacuum was used. The Fermi scheme was employed for electron occupancy with an energy smearing of 0.1 eV. The first Brillouin zone was sampled using a 2 × 2 × 1 point grid by the Monkhorst-Pack K-points scheme [S4]. The DFT-D3 method was used to calculate the van der Waals interactions [S5]. The energy (converged to 1.0 ×10-5 eV/atom) and force (converged to 0.01 eV/Å) were set as the convergence criterion for geometry optimization. The spin polarization was considered in all calculation.
For HER, the Computational Hydrogen Electrode model (CHE) [S6] employs the Gibbs free-energy change curves to estimate the activity of the catalyst. Free energy change from initial states to final states of the reaction was calculated as follows [S7]: 

Where ΔE is the total energy change based on the DFT calculations, ΔZPE and ΔS are the change in the zero-point energy and the entropy, respectively, T is room temperature (298.15 K). The free energy of (H++e-) at standard conditions was assumed as the energy of 1/2 H2. The entropies of the HER intermediates were calculated from the vibrational frequencies.
S3 Supplementary Figures
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Fig. S1 Pt contents in as-prepared catalysts with varied Pt deposition time (10 min, 20 min, 40 min, 120 min) through ICP-OES
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Fig. S2 a, b SEM images of Pt-NP/a-Ni(OH)2 at varied magnifications. c TEM images of Pt-NP/a-Ni(OH)2, in which Pt nanoparticles can be clearly observed

[image: ]
Fig. S3 EPR spectra of the amorphous Ni(OH)2, Pt-SA/a-Ni(OH)2 and commercial Ni(OH)2.
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Fig. S4 a q space fitting curve at Pt L3-edge of Pt-SA/a-Ni(OH)2. b k space fitting curve at Pt L3-edge of Pt-SA/a-Ni(OH)2
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Fig. S5 a HAADF-STEM image of Pt-SA/commercial Ni(OH)2 catalyst. b The Pt L3-edge XANES spectra of Pt-SA/commercial Ni(OH)2 and PtO2. c Fourier transformed EXAFS spectra of Pt L3-edge of Pt-SA/commercial Ni(OH)2 and PtO2
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Fig. S6 TEM image of the as-prepared PtNi alloy
[image: ]Fig. S7 a Pt 4f XPS spectra of Pt/a-Ni(OH)2 catalyst with electrodeposition time of 40 min. b Pt 4f XPS spectra of Pt/C catalyst



Fig. S8 The Pt 4f XPS spectra of Pt/a-Ni(OH)2 catalyst with electrodeposition time of 5 min. It could be found that the regularity of red shifted Pt(0) is further enhanced
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Fig. S9 Calculated charge density differences of two H atoms adsorbed on Pt-SA/a-Ni(OH)2 (isosurfaces = 0.003 e/Å3), and the yellow and blue contours represent electron accumulation and depletion, respectively. Here, purple, green, red and white balls represent the Pt, Ni, O and H atoms, respectively
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[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Fig. S10 a The PDOS diagrams of Pt atoms for Ni-bonded Pt with different amount of H atoms. Upper panel: without H adsorption (Pt*0H SA); Middle panel: one H adsorption (Pt*1H SA), lower panel: two H adsorption (Pt*2H SA). b The PDOS diagrams of Pt atoms for O-bonded Pt*0H and O-bonded Pt*1H
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Fig. S11 a Raman spectra of CFP. b Photo of the in situ electrochemical Raman testing


Fig. S12 In situ Raman spectra of amorphous Ni(OH)2 during HER
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Fig. S13 The H transfer behavior between Pt and Ni(OH)2 of Pt-Ni model (a) and Pt-O model (b) based on first-principles molecular dynamics (FPMD) simulations for 10 ps. The trajectory of the H atom as a function of time were shown in line by different colors The initial part is shown in blue, while the final stage was shown in red. Red, white, green and purple balls stand for O, H, Ni, and Pt atoms, respectively
[image: ]
[bookmark: _Hlk149340286]Fig. S14 The typical configurations of Ni-bonded Pt with different amount of H atoms. Left panel: without H adsorption (Pt*0H SA); middle panel: one H adsorption (Pt*1H SA); right panel: two H adsorption (Pt*2H SA). Here, purple, green, red and white balls represent the Pt, Ni, O and H atoms, respectively
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Fig. S15 The atomic model of Pt-NP/Ni(OH)2, and Pt-NP*H/Ni(OH)2. Here, purple, green, red and white balls represent the Pt, Ni, O and H atoms, respectively
[image: ]
Fig. S16 The atomic model of different configurations for Pt(111) adsorption hydrogen atoms. Here, purple and white balls represent the Pt and H atoms, respectively

[image: ]
Fig. S17 LSV curves of Pt-SA/a-Ni(OH)2 catalyst and Pt-SA/commercial Ni(OH)2
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[bookmark: _Hlk162498900]Fig. S18 TEM image of Pt/C. The inset shows the high-resolution transmission image labeled by the white frame. Both the atomic arrangement and the lattice spacing are consistent with Pt(111)
[image: ]
Fig. S19 a SEM image of Pt-SA/a-Ni(OH)2 stabilized after test. b HAADF image of Pt-SA/a-Ni(OH)2 stabilized after test
S4 Supplementary Tables
Table S1 Structural parameters extracted from the Pt L3-edge EXAFS fitting. (S02=0.89)
	sample
	Scattering pair
	CN
	R (Å)
	σ2 (10-3Å2)
	ΔE0 (eV)
	R factor

	Pt-SA/a-Ni(OH)2
	Pt-O
	1.2
	1.98
	7.3
	6.6
	0.006

	
	Pt-Ni
	8.2
	2.65
	6.7
	
	0.004


Table S2 Calculated Bader charge differences between the isolated Pt and the Pt of Pt-Ni model without and with H adsorption. As for H adsorption, both one and two H atoms were considered, respectively
	
	Pt-SA/a-Ni(OH)2
	Pt*H-SA/a-Ni(OH)2
	Pt*2H-SA/a-Ni(OH)2

	Pt
	-0.58
	-0.47
	-0.31

	The first H atom
	-
	-0.11
	-0.12

	The second H atom
	-
	-
	-0.06


Table S3 Calculated Bader charge difference between the isolated Pt and the Pt of Pt-O model-SA/a-Ni(OH)2 without and with H adsorption
	
	Pt-O SA
	Pt*H-O SA

	Pt atom
	-0.03
	0.28

	Adsorbed H atom
	*
	-0.12


Table S4 Comparison of the electrocatalytic activity of Pt-SA/a-Ni(OH)2 for HER with catalysts from previous reports
	Electrocatalysis
	Overpotential (10 mA cm-2)
	electrolytes
	Content of Pt
	References

	Pt-SA/a-Ni(OH)2
	64 mV
	1 M KOH
	0.07 wt%
	This work

	Pt@PCM
	139 mV
	1 M KOH
	0.53 wt%
	Sci. Adv., 2018, 4(1), eaao6657

	Pt/Nb-Co(OH)2
	112 mV
	1 M KOH
	3.34 wt%
	Small, 2023, 19(20), 2207569

	Pt-Ni(OH)x
	58 mV
	1 M KOH
	0.17 wt%
	Adv. Energy Mater., 2023, 13(10), 2203955

	Pt5/HMCS
	46.2 mV
	1 M KOH
	5.08 wt%.
	Adv. Mater.,2020, 32(7), 1901349

	PtSA-NiSe-V
	45 mV
	1 M KOH
	3.2 wt%
	Angew. Chem. Int. Ed, 2023, 62(39), e202308686

	Pt@DG
	37 mV
	1 M KOH
	1.57 wt%
	J. Am. Chem. Soc., 2022, 144(5), 2171–2178
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