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S1 Experimental Section
S1.1 Material characterization
Scanning electron microscopy (SEM, TESCAN MIRA LMS) was taken to observe the morphology and nanoparticle dispersion of the obtained catalysts. X-ray diffraction (XRD) patterns were obtained by Rigaku SmartLab 9kW - Advance with Cu Kα radiation to detect the crystal structures of obtained catalysts. High-resolution transmission electron microscopy (HRTEM, JEOL JEM F200) was applied to explore the morphology and microstructure of catalysts with the corresponding element EDX mapping. Raman spectra were collected by RENISHAW Raman microscope with an excitation laser of 532 nm. Fourier transform infrared spectroscopy (FT-IR) test was taken via Vertex 70 FTIR spectrometer to detect the molecular structure and chemical composition of the obtained catalysts. X-ray photoelectron spectroscopy (XPS) was probed by Thermo Scientific ESCALAB Xi+ with Al Kα X-ray source and all the data were corrected with C 1s line at 284.6 eV. TG (thermogravimetric analysis) data were collected via NETZSCH TG 209F3 TGA209F3A-0171-L with the temperature from 30 to 1000 ℃.
S1.2 Electrochemical tests
The OER performance of these catalysts was recorded at potentiostation (Biologic instrument) with a rotation speed controller (Keruite Analytical Instrument Co., Ltd) by a standard three-electrode electrolytic cell with the alkaline solution, in which the obtained catalyst coated at the glassy carbon electrode served as the working electrode, the graphene rod acted as the counter electrode, and Hg/HgO in 1 M KOH solution was used as the reference electrode. Before preparing the working electrode, a uniform slurry needs to be made. In detail, 5 mg catalysts and 2.5 mg acetylene black were added into 0.5 mL mixed solution (isopropanol and Nafion with a volume ratio of 9:1) with vigorous ultrasound treatment. Subsequently, 5 μL of the prepared ink was drop-cast onto a glassy carbon electrode (GCE) with a catalyst loading of 0.2~0.3 mg cm−2. The electrochemistry performances were recorded in an O2-saturated 0.1 M, 1 M, and 0.01 M KOH aqueous electrolyte with a rotation speed of 1600 rpm for the working electrode. In detail, the OER performance was tested by linear sweep voltammetry (LSV) with iR-compensation at a scan rate of 5 mV s−1 and cyclic voltammetry (CV) at a scan rate of 20 mV s−1 within 0.2 to 1.0 V versus Hg/HgO, respectively [S1]. The above potentials were corrected to the RHE scale via a calibration equation given below:

[bookmark: _Hlk170206742]For the durability tests, catalysts of Ni3Fe oxide/PANI, Ni3Fe oxide, and IrO2 were coated on the carbon paper with a mass loading around 1 mg cm-2 and chronopotentiometry was conducted at a constant current density of 10 mA cm−2 for the OER in the 0.1 M KOH solution. The electrochemical impedance spectroscopy (EIS) measurements were obtained under a frequency range from 100000 to 0.1 Hz with various potentials 1.17 – 1.67 V vs. RHE. The electrochemically active surface area (ECSA) of catalysts was recorded through CV tests within 0.87-0.97 V vs. RHE under different scan rates of 10, 20, 30, 40, 50, and 60 mV s-1. The electrochemical double-layer capacitance (Cdl) is calculated through the equation of, in which ic and v means half of the difference in current density at 0.92 V (vs. RHE) and scan rate, respectively. [2, 3] The ECSA is calculated through the equation of ECSA = Cdl/Cs, in which Cs = 40 μF cm-2. The intrinsic activity of designed catalyst can be calculated by JECSA = J / ECSA, in which the J means the current (mA) in OER LSV curve.
S1.3 Fabrication and evaluation of Zn-air batteries
Home-made Zn-air battery was assembled by an air cathode with catalysts loaded on a gas diffusion layer, a fresh metal anode (high purity Zn foil), and an electrolyte (6 M KOH + 0.2 M ZnAc2 aqueous solution). Typically, to prepare the air cathode for the Zn-air battery, the Ni3Fe oxide/PANI catalyst slurry prepared in the above electrochemical tests section was drop-cast on the surface of a gas diffusion layer with the catalyst mass loading of ~1 mg cm-2. For comparison, a mixture of Ni3Fe oxide, Pt/C and IrO2 with a weight ratio of 1:1 was also prepared using the same procedure as Ni3Fe oxide/PANI. All battery tests were recorded in the ambient atmosphere and at room temperature. The discharge/charge polarization curves (voltage-current density) were measured through the CHI 760E with a voltage step of 5 mV s−1. The galvanostatic charge/discharge curves at the current density of 10 mA cm-2 and charge/discharge rate test (at the current density 2.5-22.5 mA cm-2) were collected by the Neware equipment testing system (5 V, 20 mA or 5 V, 10 A).
S2 Supplementary Figures and Tables
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Fig. S1 XRD patterns for the (a) Fe oxide/PANI, (b) PANI, and (c) Ni oxide/PANI
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Fig. S2 SEM images of Ni3Fe oxide/PANI catalysts
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Fig. S3 TEM images of Ni3Fe oxide/PANI catalysts
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Fig. S4 TG curve of Ni3Fe oxide/PANI catalysts
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Fig. S5 TG curve of Ni3Fe oxide/PANI without air calcination. The mass loss at 60 and 340 °C is attributed to the expulsion of HCl dopant from PANI and degradation of the PANI chain, respectively. The mass loss at 200 °C is attributed to the expulsion of adsorbed oxygen species from Ni3Fe oxide
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Fig. S6 Raman patterns for (a) Fe oxide/PANI and (b) Ni oxide/PANI at the range of 200-1000 cm-1. Raman patterns for (c) PANI, (d) Fe oxide/PANI, (e) Ni oxide/PANI, (f) Ni3Fe oxide/PANI and Ni3Fe oxide at the range of 1000-2000 cm-1
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Fig. S7 FTIR patterns for PANI, Ni3Fe oxide/PANI and Ni3Fe oxide at the range of 800-400 cm-1
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Fig. S8 XPS spectra for the O 1s of the Ni3Fe oxide and Ni3Fe oxide/PANI catalysts
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Fig. S9 XPS spectra for the N 1s of the Fe oxide/PANI and Ni oxide/PANI catalysts
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Fig. S10 (a) EIS curves, (b) the OER LSV polarization curves, and (c) Tafel slopes for Ni3Fe oxide/PANI, Ni2Fe2 oxide/PANI, Ni2.5Fe1.5 oxide/PANI, and Ni3.5Fe0.5 oxide/PANI catalysts
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Fig. S11 (a) The OER LSV polarization curve and (b) EIS curve for Ni3Fe oxide/PANI, Ni oxide/PANI, and Fe oxide/PANI catalysts with or without calcination procedures
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Fig. S12 CV curves with different scan rates (10, 20, 30, 40, 50, and 60 mV s-1) at the range of 0.87-0.97 V vs. RHE: (a) PANI, (b) Ni3Fe oxide, and (c) Ni3Fe oxide/PANI
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Fig. S13 (a) the OER LSV polarization curves, (b) Tafel slopes, (c) Half of the difference in current density at 0.87-0.97 V (vs. RHE) versus scan rate from 10-60 mV s-1, and (d) OER activity based on the ECSA value for the Ni oxide/PANI and Fe oxide/PANI catalysts
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Fig. S14 The CV curves with different scan rates (10, 20, 30, 40, 50, 60 mV s-1) at the range of 0.87-0.97 V vs. RHE: (a) Fe oxide/PANI, and (b) Ni oxide/PANI
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Fig. S15 (a) The OER overpotential at 10 mA cm-2 and (b) the OER activity evaluation with SA and MA comparisons at overpotential of 300 mV for the Fe oxide/PANI, Ni oxide/PANI, Ni3Fe oxide, PANI, IrO2, and Ni3Fe oxide/PANI catalysts. (c) EIS spectra at the potential of 1.62 V vs. RHE for the Fe oxide/PANI, Ni oxide/PANI, Ni3Fe oxide, IrO2, and Ni3Fe oxide/PANI catalysts 
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Fig. S16 (a) The LSV polarization curves of Ni3Fe oxide, Ni3Fe oxide/PANI, and Pt/C catalysts at the range of 0.2-1 V vs. RHE with the scan rate of 5 mV s-1. (b, c) The discharging polarization curves with the calculated power density of Zn-air batteries with the Ni3Fe oxide, Ni3Fe oxide/PANI, and Pt/C catalysts

[image: ]
Fig. S17. Galvanostatic charge test at the current density from 2.5 to 22.5 mA cm-2 of Zn-air batteries with Ni3Fe oxide/PANI for five times.
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Fig. S18 (a) XRD patterns after 100 CV cycles. (b) The CV curves for the Fe oxide/PANI and Ni oxide/PANI catalysts
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Fig. S19 TEM images of Ni3Fe oxide/PANI after 10 h OER stability test
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Fig. S20 Raman spectra of Ni3Fe oxide and Ni3Fe oxide/PANI catalysts after 10 h OER stability test
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Fig. S21. OER LSV polarization curves at different pH conditions for (a) Ni3Fe oxide/PANI and (b) Ni3Fe oxide catalysts. (c) The reaction order parameter of Ni3Fe oxide/PANI and Ni3Fe oxide catalysts
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Fig. S22 EIS spectra at the potential range of 1.17-1.67 V vs. RHE: (a) Ni3Fe oxide/PANI, (b) Ni3Fe oxide, (c) Ni oxide/PANI, (d) Fe oxide/PANI, (e) PANI
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Fig. S23 The phase value and Frequency curves at the potential range of 1.17-1.67 V vs. RHE: (a) Ni3Fe oxide/PANI, (b) Ni3Fe oxide (c) Ni oxide/PANI, (d) Fe oxide/PANI, (e) PANI

Table S1 Comparison of OER activities of Ni3Fe/PANI catalyst with the state-of-the-art catalysts
	Catalyst
	Catalyst loading
(mg cm-2)
	Electrolyte
	OER overpotential @10 mA cm-2
	Tafel
(mV dec-1)
	Refs.

	RuO2/CMO
	0.25-0.35
	0.1 M KOH
	310 mV
	86
	 [S1]

	NiCo2O3@OMC
	0.567
	1 M KOH
	280 mV
	96.8
	 [S4]

	NiFe-carbon
	0.5
	1 M KOH
	296 mV
	56
	 [S5]

	NiFe NNG
	2
	1 M KOH
	293.2 mV
	48
	 [S6]

	LDH/G/Ni
	2.18
	0.1 M KOH
	325 mV
	44
	 [S7]

	FeCoNi-N-rGO
	0.06
	0.1 M KOH
	440 mV
	124
	 [S8]

	NiFe-Mi-C-Gr
	0.5
	0.1 M KOH
	305 mV
	90
	 [S9]

	Nd1.5Ba1.5CoFeMnO9-δ
	0.418
	0.1 M KOH
	359 mV
	81
	 [S10]

	CoS/Co3O4-5 NFs
	/
	1 M KOH
	304 mV
	98.5
	 [S11]

	NiOx@Co3O4/CC
	/
	0.1 M KOH
	360 mV
	107
	 [S12]

	Holey NCS
	0.25
	1 M KOH
	300 mV
	53
	 [S13]

	Ni3FeN
	0.13
	0.1 M KOH
	355 mV
	70
	 [S14]

	LCF-700
	0.245
	0.1 M KOH
	293 mV
	67
	 [S15]

	PtOaPdObNPs@Ti3C2T
	0.141
	0.1 M KOH
	340 mV
	75
	 [S16]

	NiCoO2/CNTs
	0.51
	0.1 M KOH
	420 mV
	156
	 [S17]

	RuO2/CeO2
	0.28
	1 M KOH
	350 mV
	74
	 [S18]

	Co@Co3O4/N-C
	0.455
	0.1 M KOH
	390 mV
	88
	 [S19]

	N-GQDs/Co3O4
	0.71
	0.1 M KOH
	330 mV
	71
	 [S20]

	NiCo-LDH@HOS
	0.45
	0.1 M KOH
	293 mV
	72
	 [S21]

	Co3Fe7@Fe2N/rGO
	0.71
	0.1 M KOH
	372 mV
	114
	 [S22]

	Mn-Co3O4@CNTs
	0.136
	0.1 M KOH
	356 mV
	68
	 [S23]

	NiFe LDH-A-Fe/NC-CNT
	/
	0.1 M KOH
	360 mV
	107
	 [S24]

	Ni-CAT/NiFe-LDH/CNFs
	/
	1 M KOH
	370 mV
	79
	 [S25]

	Co9S8@NiFe-LDH
	/
	0.1 M KOH
	390 mV
	81.36
	 [S26]

	FeOx@N-PHCS
	0.25
	0.1 M KOH
	340 mV
	162
	 [S27]

	LaFeO3
	0.232
	1 M KOH
	420 mV
	62
	 [S28]

	Pr0.5Ba0.5CoO3−δ
	0.39
	0.1 M KOH
	440 mV
	82
	 [S29]

	BaZrxFe1−xO3−δ
	1
	0.1 M KOH
	412
	97
	 [S30]

	Ni3Fe oxide/PANI
	0.25-0.35
	0.1 M KOH
	270 mV
	60
	This work



Table S2 Comparison of Zn-air batteries with transition metal-based electrocatalysts
	Catalyst
	Catalyst loading
(mg cm-2)
	 Power density
(mW cm-2)
	Time (h) /
Current density
(mA cm-2)
	Terminal cycling voltage
(V)
	Refs.

	FePc-NiCo-LDH/Ti3C2
	1.0
	148
	80/10
	~ 2.0
	 [S31]

	CoFe-NiFe/NC
	/
	155
	400/10
	~ 1.95
	 [S32]

	Ni1.9FeS1.09(OH)4.6 monolith
	0.15
	248
	25/2
	~2.0
	 [S33]

	NiFeS2/S-GO
	/
	60
	60/10
	1.98
	 [S34]

	NiFe LDH/GQD
	/
	140.04
	120/10
	~1.95
	 [S35]

	NiFe-MOF NSs@CQDs-COOH||GO@CQDs-COOH
	1.0
	78
	225/5
	~2.0
	 [S36]

	Asy-electrode
	/
	236.26
	320/10
	~2.1
	 [S37]

	Fe2Ni@NC catalyst
	1.0
	126
	500/10
	~2.0
	 [S38]

	NiFe@C@Co CNFs
	/
	130
	200/5
	~2.1
	 [S39]

	NiFe@NGHS-NCNTs
	1.0
	126.54
	166/10
	~2.2
	 [S40]

	Fe0.5Ni0.5@N-GR
	2.0
	85
	40/20
	~2.0
	 [S41]

	S–LDH/NG
	0.5
	165
	120/5
	~1.9
	 [S42]

	NiFe/NCNF/CC
	/
	140.1
	233/10
	~2.0
	 [S43]

	Ni-CAT/NiFe-LDH/CNFs
	1.5
	292.1
	66/1
	~2.0
	 [S25]

	Ni3Fe@NC-600
	3
	175
	110/10
	2.02
	 [S44]

	Ni3Fe oxide/PANI
	1.0
	135
	400/10
	1.95
	This work
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S1 Experimental Section 

S1.1 Material characterization 

Scanning electron microscopy (SEM, TESCAN MIRA LMS) was taken to observe the 

morphology and nanoparticle dispersion of the obtained catalysts. X-ray diffraction (XRD) 

patterns were obtained by Rigaku SmartLab 9kW - Advance with Cu Kα radiation to detect the 

crystal structures of obtained catalysts. High-resolution transmission electron microscopy 

(HRTEM, JEOL JEM F200) was applied to explore the morphology and microstructure of 

catalysts with the corresponding element EDX mapping. Raman spectra were collected by 

RENISHAW Raman microscope with an excitation laser of 532 nm. Fourier transform infrared 

spectroscopy (FT-IR) test was taken via Vertex 70 FTIR spectrometer to detect the molecular 

structure and chemical composition of the obtained catalysts. X-ray photoelectron spectroscopy 

(XPS) was probed by Thermo Scientific ESCALAB Xi+ with Al Kα X-ray source and all the 

data were corrected with C 1s line at 284.6 eV. TG (thermogravimetric analysis) data were 

collected via NETZSCH TG 209F3 TGA209F3A-0171-L with the temperature from 30 to 

1000 ?. 

