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S1 Supplementary Method
S1. 1 Materials
Poly(ethylene glycol) (Mn = 10,000), dimethyl sulfoxide (DMSO) (anhydrous, ≥ 99.9%), N,N-dimethylformamide (DMF) (anhydrous, 99.8%), chloroform (anhydrous, ≥99%), butyl acrylate (≥99%), poly(ethylene glycol) methacrylate (PEGMA, Mn=500), 2,2’-azobis(2-methylpropionitrile) (AIBN) and 1-hydroxycyclohexyl phenyl ketone (PI184, 99%) were purchased from Sigma-Aldrich. 1,1’-carbonyldiimidazole (CDI), α-cyclodextrin (α-CD), polyethylene glycol diacrylate (PDA, n=approx.9), ethylenediamine, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and N-carbobenzoxy-L-tyrosine (Z-Try-OH), dibutyltin dilaurate (DBTDL, >95%), hexamethylene diisocyanate (HDI), 4,4’-methylene diphyenyl diisocyanate (MDI) were purchased from TCI. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 98+%) was purchased from Alfa Aesar. 2-isocyanatoethyl acrylate was purchased from Showa Chemical Industry. All other organic solvents (HPLC grade) were purchased from Samchun Pure Chemical Co., Ltd. (Gyeonggi-Do, Korea). All chemicals were used as received without further purification. 
S1.2 Synthesis of pristine polyrotaxane (pPR) and pPR-SPE
2 g poly (ethylene glycol) was completely dissolved in 30 ml chloroform. Subsequently, 0.2 g 1,1’-carbonyldiimidazole was added and stirred for 6 h. Following that, ethylene diamine was added, and the solution was stirred for 24 h. The resulting solution was precipitated in diethyl ether to obtain PEG-bis(amine) (PEGBA) powder. 3 g of α-CD, and 1 g of PEGBA were dissolved in 35 mL of distilled water and allowed to mix for 24 h. The resulting mixture was freeze-dried and dispersed in ethanol (35 mL). Subsequently, DMTMM (0.5 g) and Z-Try-OH (0.5 g) were added and the mixture was stirred vigorously for 24 h. The resulting solution was placed in a dialysis tube (MWCO 12k) and dialyzed, and freeze-dried to obtain pPR powder. pPR-SPE was synsthesized as described in a previous paper[1]. Speficially, 0.6 pPR were disolvend in 6 mL of DMSO with 0.1 M cross-linker (HDI:MDI= 4:1, molar ratio). Then, 0.75 M LiTFSI was added to the solution and stirred until the mixture was completely dissolved. The resultant solution was poured into a PTFE mold within argon-filled glass case ,and reacted in the oven at 70 °C for 48 h.
S1.3 Synthesis of modified polyrotaxane (mPR)
1 g pPR, 2-isocyanatoethyl acrylate and 0.1 g DBTDL were dissolved in 6 mL of DMSO. The mixture was stirred vigorously for 36 h. The resulting solution was placed in a dialysis tube (MWCO 12k), dialyzed, and freeze-dried to obtain the mPR powder.
S1.4 Synthesis of poly(α-cyclodextrin) (PCD) 
1 g PEGMA was dissolved in 6 mL of chloroform and added in a solution in which 0.7 g of 1,4-phenylene diisocyanate was dissolved in 9 mL of chloroform, and resulting solution was stirred for 16 h. After the reaction, the mixture was precipitated in hexane and brown isocyanate-terminated PEGMA (I-PEGMA) was obtained. The collected I-PEGMA and 1 g of α-CD were dissolved in 10 mL of DMF and stirred for 24 h. The resulting solution was then precipitated in diethyl ether to obtain the resultant (CD-PEGMA). Subsequently, 1 g of CD-PEGMA and 0.3 mL AIBN were stirred in 8 mL of DMF and polymerized at 70 °C for 24 h. The solution was then precipitated in diethyl ether. Finally, a brown powder (PCD) was obtained and dried under vacuum. 
S1.5 Optimization of lithium salt concentration of mPR-SPE
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Extended Fig. 1 (a) Temperature-dependent ionic conductivity of the mPR-SPE at LiTFSI concentration of 0.375M, 0.5M, 0.625M, 0.75M, and 0.875M. (b) Bar graph of ionic conductivity of the mPR-SPEs at room temperature
Ionic conductivities were investigated to determine the optimal salt concentration (0.75 M) required in mPR-SPE.
S1.6 Preparation of RuO2-Graphene (RuO2-G)
To synthesize RuO2-G, graphene (0.02 g, Angstron Materials), ruthenium (III) chloride (RuCl3·xH2O; 0.015 g, Kojima Chemical, 99%), and cetrimonium bromide (1 g, Sigma Aldrich, 95%) were dispersed in 25 mL of distilled water and ethanol (4:1, v/v). The resulting solution was sealed in a 30 mL Teflon-lined stainless-steel autoclave and heated at 150 °C for 10 h. After cooling to room temperature, the particles were washed with distilled water, filtered multiple times using a nylon membrane (Durapore, 0.22 μm, Billerica, MA, USA), and dried at 70 °C for 24 h. Subsequently, the particles were subjected to thermal treatment at 500 °C for 2 h, followed by 800 °C for 5 h under a nitrogen flow of 100 sccm.
S2 Supplementary Figures and Tables
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Nano-Micro Letters
Fig. S1 (a) 1H NMR spectrum of pPR (400 MHz, DMSO-D6). (b) 1H NMR spectrum of mPR (400 MHz, DMSO-D6). (c) X-ray diffraction (XRD) of pPR and mPR. (d) Expected crystalline structure of mPR-SPE (In the view of one side of hexagonal lattice)
S2/S16
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Fig. S2 Schematic of the crystalline structure by α-CD in polyrotaxane (PR)
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Fig. S3 (a) Water contact angle of Teflon. (b) Geometrically optimized three-dimensional (3D) structure of H2O and PEFE unit of Teflon
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Fig. S4 (a) Chemical structures of the three types of polymers containing acryl group. (b) 1H NMR spectrum (400 MHz, DMSO-d6) of PCD (c) FT-IR spectra of mPR-SPE, PCD-SPE and PDA-SPE before and after curing
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Fig. S5 (a) Ionic conductivity of PDA-SPE, PCD-SPE, and mPR-SPE at 25 °C. (b) Li+ transference number of PCD-SPE. (c) Li+ transference number of PDA-SPE
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Fig. S6 Comparison of the ionic conductivity and oxidation stability with those of recently reported polymer-based electrolytes
Table S1 Comparison of ionic conductivity of recently reproted polymer-based electrolytes
	Polymer
	Salt
	Ionic conductivity at 25 °C (S cm-1)
	Oxidation  stability
(Voltage)
	Refs.

	mPR
	LiTFSI
	2.8E-3
(at 25 °C)
	4.8
	This study

	PRX
	LiNO3
	5.93E-3
(at 2 5°C)
	4.7
	[S1]

	PAN
	LiTFSI
	2.0E-5
(at 30 °C)
	4.8
	[S2]

	HFBA+MBAM
	LiTFSI
	1.01E-3
(at 25 °C)
	4.58
	[S3]

	Elastic epoxy
	LiTFSI
	3.5E-4
(at 25 °C)
	4.4
	[S4]

	P(VDF-HFP)
	LiTFSI (EMIMTFSI)
	0.53E-3
(at 20 °C)
	4.9
	[S5]

	PEGMA
	LiDFOB
	1.3E-4
(at 30 °C)
	4.8
	[S6]

	DOL + PEE
	LiTFSI
	2.36E-3
(at 25 °C)
	4.5
	[S7]

	PALE
	LiTFSI
	0.84E-3
(at 25 °C)
	5.04
	[S8]

	PVCM
	LiDFOB
	8.61E-4
(at 25 °C)
	4.8
	[S9]

	MEDP+EGMEA
	LiTFSI
	1.1E-4
(at 25 °C)
	5
	[S10]

	PEO+PMMA
	LiTFSI
	1.08E-3
(at 25 °C)
	4.7
	[S11]

	PEO+LLZTO
	LiTFSI
	1.96E-4
(at 40 °C)
	5.1
	[S12]

	P(VEC-CEA)
	LiTFSI
	2.63E-4
(at 25 °C)
	5.0
	[S13]

	PVDF-HFP
	LiTFSI
	1.33E-3
(at 25 °C)
	4.5
	[S14]

	PEO+PEGDE+BADGE
	LiPF6
	1.0E-3
(at 25 °C)
	4.37
	[S15]

	PEGMA+UPyMA
	LiTFSI
	3.8E-3
(at 25 °C)
	4.6
	[S16]

	PEGDA+UPyMA
	LiTFSI
	3.42E-4
(at 25°C)
	5.2
	[S17]
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Fig. S7 (a) DSC data of PDA-SPE, PCD-SPE, and mPR-SPE with and without salts. (b) XRD data of PDA-SPE, PCD-SPE, and mPR-SPE with and without salts
Table S2 Transition temperature and thermodynamic variables measured during the 2nd run of the DSC heat flow
	Sample
	Tg (°C)
	Tc (°C)
	Tc (°C)

	PDA-SPE
	–47
	-
	-

	PDA-SPE
(without LiTFSI)
	–31
	-
	-

	PCD-SPE
	–44
	-
	106.3

	PCD-SPE
(without LiTFSI)
	–12
	-
	105.6

	mPR-SPE
	–45
	-
	-

	mPR-SPE
(without LiTFSI)
	–25
	-
	-

	Tg: Glass transition temperature
Tc: Crystallization temperature
Tm: Melting temperature
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Fig S8 Enlarged profiles of cycling performance of the symmetric Li cells with mPR-SPE at a current density of 0.2 mA cm-2 corresponding to (a) 75-80 cycles and (b) 345-350 cycles
[image: ]
Fig. S9 (a) Main component of solid-state lithium oxygen battery (LOB). SEM images of (b) RuO2-G catalyst, (c) carbon fibre film. Mass of cathode material loading (Wcat) was calculated by relevant electrode information
cathode surface area = 0.785 cm2
loading mass of catalyst = 0.35 mg
Specific capacity (Ah/gcat) = current density (A/gcat) × 1 h,
Wcat =  = 0.45 mg/cm2
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Fig. S10 Galvanostatic discharge-charge curves of solid-state Li-O2 battery cell at a current rate of 500 mA g−1 and a fixed capacity limit of 1000 mA h g−1 in different polyelectrolytes of (a) mPR-SPE and (b) pPR-SPE
Table S3 Comparison of electrocatalytic performances of recently applied polymer-based solid-state LOBs
	Polymer
	Catalysts
	Limited capacity
(mA h g–1)
	Current density
(mA g–1)
	Cycle
(number)
	Lithium salt & solvent
	Refs.

	mPR
	RuO2-G
Carbon fibre film
	500
	100
[0.045 mA cm-2]
	300
	0.75 M LiTFSI
in DMSO
	This study

	
	
	1000
	500
[0.225 mA cm-2]
	202
	0.75 M LiTFSI
in DMSO
	This study

	PVDF-HFP
@SiO2-SO3Li
	Ru@C
	600
	100
	370
	1.0 M LiTFSI
in TEGDME
	[S18]

	PTFE
@XPEG/SNPC
	Super P
	1000
	500
	277
	1.0 M LiTFSI
in TEGDME
	[S19]

	MSTP-BQ
	CNTs/LiFePO4
	500
	500
	200
	LiTFSI
in TEGDME
	[S20]

	SN-PCE
(PVDF-HFP, BHT)
	Ru-CNTs
	500
	200
	150
	1.0 M LiCF3SO3
in DMSO
	[S21]

	PTFE@PS
	Super P
	500
	500
	149
	1.0 M LiTFSI
in TEGDME
	[S22]

	P(VDF-HFP)
+ silica
	Ru-CNTs
	1000
	500
	145
	LiTFSI
in DMAc
	[S23]

	PEGMA
+MTA
	Pd3Co/MWCNT
	500
	100
	125
	1.0 M LiCF3SO3
in TEGDME
	[S24]

	P(VDF-HFP)
+ silica
	Ru@Super P
	1000
	200
	89
	1.0 M LiTFSI
in TEGDME
	[S25]

	P(VDF-HFP)
	Super P
	500
	100
	56
	1.0 M LiTFSI
in TEGDME
	[S26]

	P(VDF-HFP)
	Carbon black
	500
	500
	50
	1.0 M LiTFSI
in TEGDME
	[S27]

	FST-GPE
	CNT
	1000
	500
	30
	1.0 M LiTFSI
in TEGDME
	[S28]

	P(VDF-HFP)
	SGL Carbon
(gas diffusion layer)
	198
	200
	89
	1.0 M LiTFSI
in TEGDME
	[S29]

	P(VDF-HFP)
	Co3O4@CC
	0.125
(mA h cm-2)
	0.025 mA cm-2
	101
	LiTFSI
in DMF, THF
	[S30]

	PEO-based gel polymer (PG)
	Carbon paper
	1.0
(mA h cm-2)
	0.2 mA cm-2
	110
	1.0 M LiTFSI
in TEGDME
	[S31]

	PMMA/SiO2/PP
	CNTs
	0.5
(mA h cm-2)
	0.1 mA cm-2
	116
	LiTFSI
in TEGDME
	[S32]

	P(VDF-HFP)
	Co3O4/RuO2
	0.1
(mA h cm-2)
	0.1 mA cm-2
	553
	LiClO4
in TEGDME
	[S33]
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Fig. S11 Galvanostatic discharge-charge curves of solid-state Li-O2 battery cell with (a) mPR-SPE and (b) pPR-SPE at 45 °C. (c) Cycling performance of mPR-SPE and pPR-SPE cell associated with Fig. S11a, b

[image: ]
Fig. S12 (a) Galvanostatic cycling of mPR-SPE cell at different capacity limits. (b) Galvanostatic cycling of mPR-SPE cell at different current densities at a fixed capacity limit of 500 mAh g−1
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Fig. S13 Illustration of polymer infiltration and cell structure for in situ Raman analysis
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Fig. S14 In situ Raman spectra from the discharge to the charge process of mPR-SPE cell recorded every 4 h in the galvanostatic discharge–charge curves
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