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S1 Experimental Section
S1.1 Data Preprocessing Method
[bookmark: _Hlk168067360]The proposed model relies on three types of datasets: a pre-trained unlabeled dataset, a few-shot labeled dataset specific to a scenario, and a test set validated for that scenario. The unlabeled dataset consisted of randomly generated wrist-motion signals from three users, totaling 2,000 s of random wrist-motion signals, which were used to pretrain the model. We selected three different scenarios (directions, numbers, and letters) and gathered few-shot labeled data (five shots per scenario) for fine-tuning. To effectively assess the representation capability of our learning framework under constrained conditions, we utilized a limited labeled dataset instead of pre-trained weights for initialization during the training process. For instance, the wrist starts in a still position, and then numbers or letters are air-written with the index finger. The first complete movement after returning to the initial state following writing was considered a collection cycle. To accurately reflect the real usage scenarios of new users, the test set was generated through users’ normal interactions with the software interface.
Given that different individuals may exhibit differences in baseline capacitance values while wearing the wristband, the four-channel signals needed to be normalized using a method based on maximum and minimum values:

	 (S1)
[bookmark: _Hlk174566820]The pre-trained unlabeled datasets and few-shot labeled datasets were normalized separately. For the test set, the normalized maximum and minimum values were obtained from the labeled dataset specific to that scenario. For any set of collected capacitance signals (comprising four channels) , where  indicates the signal length and the normalized signal for each channel is represented as . The original capacitance signals were susceptible to noise interference. Low-pass filtering techniques were applied to the data signals to eliminate unnecessary noise and minimize signal amplitude distortion effects (see Fig. S3 for the quantitative comparison of noise reduction).
[bookmark: _Hlk173526302]S2 Supplementary Figures
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[bookmark: _Hlk173523942][bookmark: _Hlk174544791]Fig. S1 Schematic of detailed flowchart of iontronic sensing device and microstructure images corresponding to each stage
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Fig. S2 Comparison of the initial states of conventional PVA and improved PVA, their states after dissolving in water at room temperature (28°C) for 60 s, and their states after drying for 200 s
[image: 图形用户界面
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Fig S3 Waveform diagrams of four signals: a in the pressure-free static state and b under low pressure with external metal interference
[bookmark: OLE_LINK22]To demonstrate that shielded wiring and low-pass filtering effectively reduce noise in capacitive sensors, the signal-to-noise ratio (SNR) is calculated for quantitative data comparison and analysis. Assuming that the original ideal signal is A=[a1, a2,…an], the signal with unshielded wiring is B=[b1, b2,…bn], the signal with shielded wiring (before low-pass filtering) is C=[c1, c2,…cn], and the signal after low-pass filtering is D=[d1, d2,…dn].
The SNR of unshielded wiring signal is SNRunshielded:


[bookmark: _Hlk174527789]The SNR of shielded wiring signal is SNRshielded:


The SNR of signal before filtering is SNRbefore:


The SNR of signal after filtering is SNRafter:


The differences in these four SNR values for two measured signals were analyzed separately, as shown in Fig. S3. For the first signal, measured in a stationary state without pressure (Fig. S3a), the values are: SNRunshielded = 58.8, SNRshielded = SNRbefore = 61.5, and SNRafter = 62.1. For the second signal, measured under low pressure with external metal interference (Fig. S3b), the values are: SNRunshielded = 45.9, SNRshielded = SNRbefore = 47.7, and SNRafter = 47.9. These results show that both shielded wiring and low-pass filtering improve the SNR of the capacitive signal, effectively reducing noise in the collected data.
[image: 图形用户界面, 网站

描述已自动生成]
Fig. S4 Finite element analysis result of the stress distribution of device with hierarchical microcones under pressures up to 120 kPa
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Fig. S5 Response of device under repeated different pressures (2.5 kPa, 8 kPa, 13 kPa, 22 kPa, 43 kPa, and 80 kPa)
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[bookmark: _Hlk157769709]Fig. S6 Response of device at different bending angles (30°, 45°, 60°, and 80°)
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[bookmark: _Hlk167372988]Fig. S7 Durability test of device over 15,000 cycles under pressure of 30 kPa, and inset showing the waveforms of the last few cycles
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[bookmark: _Hlk167373013]Fig. S8 Durability test of device over 11,000 cycles of bending at 65°, and inset shows the last few cycle waveforms
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[bookmark: _Hlk167373030]Fig. S9 Photo of the wearable wristband system
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[bookmark: _Hlk167373043]Fig. S10 Detailed architecture of Transformer in cross-view fusion module (Token c is added to input features of model as representative vector)
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[bookmark: _Hlk167373064]Fig. S11 Sequence of air-writing trajectory of numbers “0–9” and six symbols
[image: 图片包含 形状
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[bookmark: _Hlk167373379]Fig. S12 Sequence of air-writing trajectory of letters “A–Z” and four functional keys
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[bookmark: _Hlk167373390]Fig. S13 Confusion matrix for prediction of four directions, with an average accuracy of 94.7%
[image: 图片包含 日历
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Fig. S14 Confusion matrix for prediction of eight directions with 10-shot, showing an average accuracy of 87.5%
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[bookmark: _Hlk167373404]Fig. S15 t-SNE projection of high-dimensional latent features of labeled data for four-direction-recognition using transfer learning
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[bookmark: _Hlk167373414]Fig. S16 Waveforms of real-time four-channel signals of numbers “0–9” and six symbols
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[bookmark: _Hlk167373461]Fig. S17 Confusion matrix for prediction of numbers, with an average accuracy of 81.2%
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[bookmark: _Hlk167373475]Fig. S18 Waveforms of real-time 4-channel signals of letters “A–Z” and four functional keys
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[bookmark: _Hlk167373485]Fig. S19 Confusion matrix for user 1’s air-writing 26 letters and four function keys, with an average accuracy of 94.9%
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[bookmark: _Hlk167373500]Fig. S20 Four-channel signal changes corresponding to letters “K B G I F M V P,” air-written by the same user at different times
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Fig. S21 Confusion matrix for user 1’s air-writing 26 letters and four function keys on the second day, showing an average accuracy of 90.7%
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Fig. S22 Confusion matrix for user 1’s air-writing 26 letters and four function keys on the third day, showing an average accuracy of 91.5%
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[bookmark: _Hlk167373510]Fig. S23 Four-channel signal changes corresponding to letters “K B G I F M V P,” air-written by four different users
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Fig. S24 Photos of relatively thinner wrist and thicker wrist wearing the wristbands
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Fig. S25 Confusion matrix for user 2’s air-writing 26 letters and four function keys, with an average accuracy of 91.4%
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Fig. S26 Confusion matrix for user 3’s air-writing 26 letters and four function keys, with an average accuracy of 90.3%
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Fig. S27 Confusion matrix for user 4’s air-writing 26 letters and four function keys, with an average accuracy of 92.5%
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Fig. S28 a Sequence of air-writing trajectory of symbols with identical strokes arranged in different relative positions, and b corresponding four-channel signals
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描述已自动生成]
Fig. S29 Confusion matrix for symbols with identical strokes arranged in different relative positions, showing an accuracy of 88.6%
[bookmark: _Hlk177251895]
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Fig. S30 Signal plots of the X, Y, and Z axes when air-writing the letters A to H using the accelerometer
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Fig. S31 Similarity matrices for signals from a) the accelerometer and b) the flexible sensing devices when air-writing the letters A to H
[image: 图片包含 日历
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Fig. S32 Confusion matrixes for air-writing letters A to H using a) the accelerometer and b) flexible capacitive sensors, with an average accuracy of 86.9% and 98.9%, respectively
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Fig. S33 a Optical image of the water vapor permeability test for the water-containing bottles covered with different materials, including Polydimethylsiloxane (PDMS) film, polyimide (PI) film, wristband material, a sealed bottle with a cap, and an open bottle. b Mass loss curves of the water contained in the bottles
S3 Supplementary Tables
[bookmark: _Hlk174557066]Table S1 Power consumption of Wi-Fi module
	[bookmark: _Hlk174557379]Parameters
	Typical
	Unit

	Tx 802.11b, CCK 11Mbps, P OUT=+17dBm
	170
	mA

	Tx 802.11g, OFDM 54Mbps, P OUT=+15dBm
	140
	mA

	Tx 802.11n, MCS7, P OUT=+13dBm
	120
	mA

	Rx 802.11b, 1024 bytes packet length, -80dBm
	50
	mA

	Rx 802.11g, 1024 bytes packet length, -70dBm
	56
	mA

	Rx 802.11n, 1024 bytes packet length, -65dBm
	56
	mA

	Modem-Sleep
	15
	mA

	Light-Sleep
	0.9
	mA

	Deep-Sleep
	10
	uA


Table S2 Ablation experiment study on the effects of different data augmentation methods in number and letter prediction
	Strong augmentation
	Weak augmentation
	Number accuracy
	Letter accuracy

	no aug
	scale
	74.4
	79.5

	no aug
	scale + jitter
	75.9
	83.0

	permutation
	no aug
	75.3
	82.6

	jitter + permutation
	no aug
	77.0
	86.6

	jitter + permutation
	time shift
	78.6
	86.4

	jitter + permutation
	time shift + jitter
	76.6
	85.1

	jitter + permutation
	scale
	79.1
	90.1

	jitter + permutation
	scale + jitter
	81.2
	94.9


[bookmark: _Hlk167373607]Table S3 Ablation experiments of effect of different components in TS-VFC model
	Component
	Prediction of 8 directions
	Prediction of numbers
	Prediction of 
letters

	TS-Ca)
	79.8
	76.9
	92.7

	TS-VCb)
	80.6
	76.0
	92.6

	TS-VFC (ours)
	82.0
	81.2
	94.9

	TS-VFC (Weak only)
	80.9
	74.8
	91.4

	TS-VFC (Strong only)
	80.1
	72.4
	90.7


a)TS-C represents that Transformer structure is not used, and projection head is directly connected. 
b)TS-VC represents the use of the Transformer structure and does not use cross-view fusion module.
Moreover, we show the impact of using two weak or strong augmentation on its performance. It is evident that a combination of weak and strong augmentation yields the best performance.



[bookmark: _Hlk167373554]Table S4 Detailed structure of the encoder
	Layer name
	Operator
	Kernel size
	Padding
	Stride
	Input
Channel
	Input
Size
	Channel
size
	Output
Size

	Conv 1
	[image: 文本
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	4
	2
	1
	4
	4×32
	32
	32×17

	Conv 2
	[image: 文本
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	4
	4
	1
	32
	32×17
	64
	64×12

	Conv 3
	[image: 文本
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	4
	4
	1
	64
	64×12
	128
	128×9


The encoder is composed of three layers of one-dimensional convolutional neural network, which extract two-dimensional features from time-seires signals.

[bookmark: _Hlk167373570]Table S5 Test results after fine-tuning the TS-VFC model with 3 or 5 labels
	Task
	Accuracy
	Precision
	Recall
	MF1-score

	Prediction of four directions
	94.7
	94.7
	94.7
	94.7

	Prediction of eight directions
	82.0
	83.1
	81.8
	81.4

	Prediction of numbers
	81.2
	83.0
	81.0
	80.7

	Prediction of  letters
	94.9
	95.1
	94.9
	94.9


[bookmark: _Hlk167373582]

Table S6 Representative study on task performance using deep learning-enabled wearable devices
	Sensor type
	Learning
objectives
	Dynamic gestures
	Learning
method
	Dataset
	Multi-task
support
	Multi-user
support
	Number of sensors
	Accuracy

	Piezoresistive sensor [S1]
	12 hand gestures
	×
	Supervised learning (SVM)
	Labeled 120 shots
	×
	√
	5
	96.3%

	Triboelectric and piezoelectric sensor [S2]
	26 hand gestures
	×
	Supervised learning (LDA)
	○
	×
	○
	8
	92.6%

	Triboelectric sensor [S3]
	21hand gestures
	×
	Supervised learning (CNN)
	Labeled 7350
shots
	×
	○
	7
	97.6%

	Optical-nanofiber-based sensor [S4]
	21hand gestures
	×
	Supervised learning (SVM)
	○
	×
	√
	3
	94.0%

	Surface electromyography and inertial measurement unit [S5]
	8 air gestures and 4 surface
	√
	Supervised learning (LDA)
	○
	×
	√
	5
	92.6%

	Capacitive sensor [S6]
	3 gestures
	×
	Supervised learning (SVM)
	○
	×
	√
	5
	90.0%

	Barometric sensor [S7]
	 6 wrist gestures, 5 finger gestures, and 10 Chinese number gestures
	
×
	Supervised learning (LDA or SVM)
	Labeled 2500
shots per task
	√
	√
	10
	94.0%

	Substrate-less nanomesh [S8]
	4 Command,
Keyboard typing,
6 objects
	√
	Unsupervised Meta learning (Transformer)
	Unlabeled random motions (900s), Few-shot Transfer (5-shots)

	√
	√
	1
	Numpad keys:85%,
Keyboard: 93%,
Objects:82%

	Iontronic sensor (This work)
	8 directions, 10 numbers and 6 operators, 30 letters, and function keys
	√
	Unsupervised learning (CNN+
Transformer)
	Unlabeled random motions (2000 s),
5-shot transfer
	√
	√
	4
	Direction:82.0%,Number: 81.2%, Letter: 94.9%



Supplementary Movies
Movie S1 Real-time display of four-channel signals of random wrist movement, using wristband integrated wireless Wi-Fi module
Movie S2 Learning and prediction of four directions
Movie S3 Learning and prediction of full eight directions
Movie S4 Direction control in a game using gesture commands
Movie S5 Prediction of air-writing letters
Movie S6 Prediction of air-writing numbers and calculation operations
Movie S7 Virtual keyboard implemented by air-writing words
Movie S8 Login system interface in three languages
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