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Supplementary Figures and Table
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Fig. S1 SEM image of BCH
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Fig. S2 a Appearance and b thickness of the BCC/BCH membrane
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Fig. S3 TEM image of bare BC
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[bookmark: _Hlk149765898]Fig. S4 HRTEM image of CNTs
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Fig. S5 XPS spectrum of BCC and BCH samples
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Fig. S6 Evaporation enthalpy of water in different evaporation systems
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Fig. S7 a Surface temperature of dry BCC and BCH membranes under 1-sun irradiation. b UV-Vis-NIR absorption spectra of BCH and BCC membranes
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Fig. S8 Schematic illustration of the water evaporation measurement under downward solar light
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[bookmark: _Hlk135157562]Fig. S9 Infrared images of the top surfaces of BCT, BCH, BCC, and BCC//BCH membranes, showing their steady-state temperatures under 1-sun irradiation for 60 min
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Fig. S10 Water contact angels of the bottom and the top surfaces of the BCC//BCH membrane
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Fig. S11 Thermal conductivity of BCC and BCH components
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Fig. S12 Water mass changes of BCT, BCH, BCC and BCC//BCH membranes under 1-sun irradiation
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[bookmark: _Hlk150259943]Fig. S13 Water evaporation rates of the BCC//BCH membrane under different solar irradiatio[image: ]
Fig. S14 Comparison of the evaporation performance of the BCC//BCH bilayer membrane with those of reported solar-driven evaporators [S1-S23] 
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Fig. S15 Apparent activation energy of the BCC/PMS system
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Fig. S16 Phenol concentration before and after degradation
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Fig. S17 a Degradation rate constant of various dyes using BCC catalyst under 1 kW m−2 irradiation. b Degradation rate constants of various antibiotics using BCC catalyst under 1 kW m−2 irradiation. c Degradation rate constants of CIP antibiotics using BCC catalyst under 1 kW m−2 irradiation with addition of various scavengers
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Fig. S18 EPR spectra of a DMPO-•OH/SO4•− and b TEMP-1O2
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Fig. S19 EPR spectrum of BCC
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Fig. S20 a XPS and b Co 2p spectra before and after the CIP degradation in the BCC/PMS system
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Fig. S21 The presence of different kinds of water (IW, FW, and BW) in the evaporator
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Fig. S22 Fitting curves based on the Gaussian function in the energy region of the O–H stretching modes of water in a BCC//BCH system, b BCC//BCH-CIP system, and c BCC//BCH-PMS system
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Fig. S23 Dark evaporation rates of water in different evaporation systems
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Fig. S24 The average numbers of hydrogen bonds in BC of different systems
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Fig. S25 a, b CIP degradation evolution and evaporation rates with different masses of BCC//BCH films
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Fig. S26. a, b CIP degradation evolution and evaporation rates of different PMS concentrations with the optimum BCC//BCH mass
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Fig. S27 Residence times of the CIP pollutant at various flow rates
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Fig. 28 Concentration of CIP before and after degradation[image: ]
Fig. S29 Mass spectrum of CIP degradation intermediates[image: ]
Fig. S30 Proposed degradation pathway of CIP by the flow bed system
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Fig. S31 SEM images of the BCC//BCH interlayers with AOPs
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Fig. S32 SEM images of the BCC//BCH interlayers without AOPs
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Fig. S33 XRD patterns of NaCl crystallites formed where PS foam and the BCC//BCH film come into contact during the evaporation processes in 25 wt.% saline

The grain sizes of the NaCl crystals were calculated using the Debye-Scherrer equation:

Where  refers to the grain size (nm),  is the Scherrer constant (0.89), the is the X-ray wavelength and has a value of 0.15406 nm for Cu Ka,  is the half peak width of the XRD pattern and θ is the diffraction angel. 
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Fig. S34 SEM images of NaCl crystallization at the edge of the BCC//BCH membrane without AOPS
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Fig. S35 SEM images of NaCl crystallization at the edge of the BCC//BCH membrane with AOPS
Table S1 Comparison of the solar steam generation performances of the BCC//BCH evaporator with those of other solar-thermal materials under 1-sun irradiation
	Entry
	Materials
	Evaporation rate
(kg m-2 h-1)
	Efficiency
(%)
	References


	1
	BCC//BCH
	1.70
	93%
	This work

	2
	LAL
	1.25
	78.5
	[S1]

	3
	MoOx HNS Membrane
	1.26
	85.6
	[S2]

	4
	TiOx
	0.80
	50.3
	[S3]

	5
	H-TiO2
	1.13
	70.9
	[S4]

	6
	Ppy-coated mesh
	0.92
	58.0
	[S5]

	7
	Oligoaniline
	1.17
	80.6
	[S6]

	8
	PIP2
	1.55
	89.8
	[S7]

	9
	AI NP/AAM
	1.00
	57.0
	[S8]

	10
	AU/D-NPT
	0.80
	65.0
	[S9]

	11
	Aluminophosphate-treated wood
	1.42
	90.8
	[S10]

	12
	Mushroom
	1.48
	78.0
	[S11]

	13
	F-Wood/CNTs
	0.95
	65.0
	[S12]

	14
	C800-ZIF-8 WS
	1.42
	84.5
	[S13]

	15
	PPy–wood
	1.01
	72.5
	[S14]

	16
	AGW
	1.39
	90.1
	[S15]

	17
	Self-regenerating evaporator
	1.04
	85.1
	[S16]

	18
	Fe-D-Wood
	1.30
	73.0
	[S17]

	19
	RGO-SA-CNT aerogels
	1.62
	83.0
	[S18]

	20
	N950 porous graphene
	1.50
	80.0
	[S19]

	21
	SPCF
	1.57
	86.0
	[S20]

	22
	CB/PMMA-PAN
	1.30
	72.0
	[S21]

	23
	VA-GSM
	1.62
	86.5
	[S22]

	24
	PSN-rGO aerogel
	1.55
	90.8
	[S23]
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