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Supplementary Tables and Figures
Table S1 Energy consumption of various wastewater electrolysis cell using real wastewater samples
	No.
	Wastewater
	Electrode
	Energy Consumption (kWh g–1)
	References

	
	
	
	COD
	TN
	NH4+-N
	

	1
	Toilet wastewater
	NFI/TiO2
	0.068
	0.53
	0.045
	This work

	2
	Ammonium
wastewater
	Ti/RuO2 mesh
	-
	0.160-0.254
	-
	[S1]

	3
	Landfill leachate (1)
	DSA
	-
	0.109
	-
	[S2]

	4
	Landfill leachate (2)
	
	-
	0.060
	-
	

	5
	Landfill leachate
	BDD
	0.114
	-
	-
	[S3]

	6
	
	Pt
	0.095
	-
	-
	

	7
	
	Pt-IrO2
	0.114
	-
	-
	

	8
	
	RuO2-TiO2
	0.116
	-
	-
	

	9
	
	RuO2-IrO2
	0.110
	-
	-
	

	10
	
	IrO2-Ta2O5
	0.112
	-
	-
	

	11
	Urinary wastewater
	BDD
	-
	1.32
	-
	[S4]

	12
	Urinary wastewater
	Ti/Ir-SnO2
	0.058
	0.055
	
	[S5]

	13
	
	Ti/IrO2
	0.060
	0.060
	-
	

	14
	
	BDD
	0.085
	0.092
	-
	

	15
	Reverse osmosis concentrates
	BDD
	0.059
	-
	-
	[S6]

	16
	Reverse osmosis concentrates
	BDD
	0.158-0.203
	-
	-
	[S7]

	17
	
	Ti/IrO2-RuO2
	0.048-0.066
	-
	-
	

	18
	
	Ti/IrO2-Ta2O5
	0.055-0.211
	-
	-
	

	19
	Reverse osmosis concentrates
	BDD
	0.250
	-
	-
	[S8]

	20
	Textile wastewater
	BDD
	0.011
	-
	-
	[S9]

	21
	Textile wastewater
	BDD
	0.411-0.865
	-
	-
	[S10]

	22
	Dyeing wastewater
	Ti/PbO2
	0.098
	-
	-
	[S11]

	23
	Three brown 
diazo dyes
	BDD
	0.062
	-
	-
	[S12]

	24
	Industrial wastewater
	Ti/PbO2
	0.180
	-
	-
	[S13]

	25
	Tannery effluent
	Ti-TiO2/IrO2/RuO
	0.211
	-
	-
	[S14]

	26
	Slaughterhouse
	Ti/Pt mesh
	0.014
	-
	-
	[S15]

	27
	Surfactant
	BDD
	~ 1.0
	-
	-
	[S16]

	28
	Aquaculture seawater
	Ti/RuO2-IrO2
	0.026
	-
	0.054
	[S17]

	29
	Aquaculture seawater
	Ti/IrO2-
SnO2-Sb2O5
	-
	-
	0.68
	[S18]

	30
	Aquaculture seawater
	BDD
	-
	-
	0.041
	[S19]

	31
	Aquaculture seawater
	Ti/RuO2-IrO2
	-
	-
	0.131
	[S20]

	32
	Aquaculture wastewater
	Ti/RuO2-IrO2
	-
	-
	0.11
	[S21]

	33
	Aquaculture wastewater
	Ti/IrO2-SnO2-Sb2O5
	-
	-
	0.101
	[S22]

	35
	Coking wastewater
	Ti/RuO2-IrO2
	-
	-
	0.13
	[S23]

	36
	Saline industrial
wastewater
	BDD
	-
	-
	0.43
	[S24]
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Fig. S1 (a) Scanning electron microscopy (SEM) image of surface view for NFI with energy dispersive spectroscopy (EDS) mapping of (b) O (c) Ni, (d) Fe, (e) Ir, and (f) Ti
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Fig. S2 X-ray fluorescence spectroscopy (XRF) analysis results of NFI
[image: ]
Fig. S3 (a) powder X-ray diffraction (PXRD) profiles for powders of NF and NFI avulsed from Ti substrate with NiFe2O4 reference (blue circle) and (b) Raman spectra for powders of NF and NFI avulsed from Ti substrate with NiFe2O4 reference (A1g, T2g, and Eg)
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Fig. S4 (a) Scanning electron microscopy (SEM) image of surface view for NFI/TiO2 with energy dispersive spectroscopy (EDS) mapping of (b) O (c) Ti, (d) Ni, (e) Fe, and (f) Ir
[image: ]
Fig. S5 Glow Discharge Spectrometer (GDS) analysis of NFI/TiO2
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[bookmark: _Hlk94729955]Fig. S6 Deconvolution data of (a) Ni 2p, (b) Fe, and (c) O 1s, 2p from X-ray photoelectron spectroscopy (XPS) spectra of NF. Deconvolution data of (d) Ni 2p, (e) Fe 2p (f) O 1s, and (g) Ir 4f from X-ray photoelectron spectroscopy (XPS) spectra of NFI

[image: ]
Fig. S7 Ti 2p peak comparison in X-ray photoelectron spectroscopy (XPS) spectra for NF/TiO2 and NFI/TiO2 with TiO2 on Ti substrate
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Fig. S8 Linear sweep voltammograms of the nickel and iron oxides synthesized on Ti substrate from nitrate salt precursor using sol-gel and thermal decomposition method (Cathode: Pt, reference: Hg/HgO, geometric surface area: 2 × 1 cm2, and scan rate: 20 mV s−1)

[image: ] Fig. S9 (a) Linear sweep voltammograms and (b) overpotential at 10 mA cm-2 of the Ir doped NiFe2O4 synthesized on Ti substrate by mixing nickel ferrite and iridium precursor as molar ratio (Ir = 0, 1, 3, 5, 7, and 10%) and proceeding sol-gel and thermal decomposition method (Cathode: Pt, reference: Hg/HgO, geometric surface area: 2 × 1 cm2, and scan rate: 20 mV s−1)


[image: ]
Fig. S10 (a) X-ray diffraction patterns (XRD) of Ti substrate, NF, and NF/TiO2 heterojunction anodes referenced with NiFe2O4 and TiO2 (Anatase) and (b) Ti substrate, IrO2, and IrO2/TiO2 heterojunction anodes referenced with IrO2 and TiO2 (Anatase)

[bookmark: _Hlk174482896][image: ]Fig. S11 Cyclic voltammograms for double layer capacitance measurement of (a) NF, (b) NF/TiO2, (c) NFI, (d) NFI/TiO2, (e) IrO2, and (f) IrO2/TiO2 with scan range of 0−0.5 V vs Ag/AgCl in 100 mM NaCl solution (Cathode: Pt, reference: Ag/AgCl, geometric surface area: 2 × 1 cm2, scan rates = 5, 10, 20, 50, and 100 mV s−1)
[image: ]
Fig. S12 Nyquist plots from electrochemical impedance spectroscopy (EIS) results (scan frequency: 100 kHz − 10 Hz, 1.9 V RHE) for NFI, NF, and IrO2 electrocatalysts in 100 mM NaCl
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Fig. S13 iR compensated linear sweep voltammograms for NFI, NFI/TiO2, NF, NF/TiO2, IrO2, and IrO2/TiO2 heterojunction electrodes in 1 M KOH
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[bookmark: _Hlk174482837]Fig. S14 (a) Capacitive ja-jc vs scan rate from cyclic voltammograms for NFI, NFI/TiO2, NF, NF/TiO, IrO2, and IrO2/TiO2 electrocatalysts in 1 M KOH. Cyclic voltammograms for double layer capacitance measurement of (b) NF, (c) NF/TiO2, (d) NFI, (e) NFI/TiO2, (f) IrO2, and (g) IrO2/TiO2 with scan range of 0−0.4 V vs Hg/HgO in 1 M KOH solution (Cathode: Pt, reference: Hg/HgO, geometric surface area: 2 × 1 cm2, scan rates = 5, 10, 20, 50, and 100 mV s−1)
[image: ]
Fig. S15 Mott-Schottky plots in electrochemical impedance spectroscopy. The Mott-Schottky plots were measured (a) in aqueous 1 M KOH with a frequency of 3.2 kHz with the potential range of 0.1 to 0.9 V vs Hg/HgO and (b) in 0.1 M NaCl with the potential range of 0.2 to 1.0 V vs Ag/AgCl
[image: ]
Fig. S16 Cyclic voltammograms of 100 cycles for stability test of (a) NF/TiO2 and (b) NFI/TiO2 in 0.5 M NaClO4 solution with scan rates of 20 mV s−1 (Cathode: Pt, reference: Ag/AgCl, and geometric surface area: 2 × 1 cm2)

[image: C:\Users\owner\Dropbox\Paper Work\국외 논문\210430 ES&T NiFe2O4 for wastewater treatment plz\NiFeIrOx Ti\논문 Figure\Total SR_Real.TIF]
Fig. S17 Specific rate for ClER (SRClER) of NF, NF/TiO2, NFI, NFI/TiO2, IrO2, and IrO2/TiO2 at all galvanostatic conditions in 100 mM NaCl solutions (Cathode: Pt, reference: Ag/AgCl, geometric surface area: 2 × 1 cm2, and applied anodic current density: 10, 20, 30, 40, and 50 mA cm-2)
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Fig. S18 Average of current efficiency for RCS generation (CERCS) of NF, NF/TiO2, NFI, NFI/TiO2, IrO2, and IrO2/TiO2 at all galvanostatic conditions in 100 mM NaCl solutions (Cathode: Pt, reference: Ag/AgCl, geometric surface area: 2 × 1 cm2, and applied anodic current density: 10, 20, 30, 40, and 50 mA cm-2)
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Fig. S19 Correlations of PZC with CEClER of NF, NF/TiO2, NFI, NFI/TiO2, IrO2, and IrO2/TiO2


[image: ]
Fig. S20 Evolutions of capacitance as functions of applied anodic potential (E) for (a) NF, (b) NF/TiO2, (c) NFI, (d) NFI/TiO2, (e) IrO2, and (f) IrO2/TiO2 to estimate the potential of zero charge (electrolyte = 0.1 M NaCl, frequency = 150 mHz, sinus amplitude = 5 mV)
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Fig. S21 iR-compensated LSVs of NFI and NFI/TiO2 in 0.5 M Na2SO4 (for exclusive OER) or 0.5 M NaCl (for predominant ClER)  
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Fig. S22 Cyclic voltammograms of (a) NF and NF/TiO2 and (b) NFI and NFI/TiO2 in 1 M KOH + 0.1 M K3Fe(CN)6 solution
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[bookmark: _Hlk174485421]Fig. S23 Concentration for chloride and nitrite during the electrolysis process for NFI/TiO2, BDD, and IrO2/TiO2 under 30 mA cm-2 for 3 h (Cathode: Pt, reference: Ag/AgCl, geometric surface area: 2 × 1 cm2, [Ammonium]0 = 25 mM, [Cl-]0 = 100 mM)
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Fig. S24 Time profiles of the concentration for total chlorine, free chlorine, and combined chlorine of (a) BDD and (b) IrO2/TiO2 under 30 mA cm-2 for 3h (Cathode: Pt, reference: Ag/AgCl, geometric surface area: 2 × 1 cm2, [Ammonium]0 = 25 mM, and [Cl-]0 = 100 mM)
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Fig. S25 Time profiles of the concentration for total nitrogen and ammonium N of chemical experiment stirred for 3 hours ([Ammonium]0 = 25 mM and [OCl-]0 = 100 mM)
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[bookmark: _Hlk175400542]Fig. S26 Time profiles of concentration for chloride, nitrate, and nitrite of NFI/TiO2 in initial 100 mM Cl- with various initial ammonia concentration (NH4+:Cl− molar ratio, 2:1, 1.5:1, 1:1, 1:1.5, 1:2, 1:3, and 1:4) under 30 mA cm-2 for 3h (Cathode: Pt, reference: Ag/AgCl, and geometric surface area: 2 × 1 cm2)

[image: ]
Fig. S27 Time profiles of the concentration for (a) total chlorine and (b) free chlorine of NFI/TiO2 in initial 100 mM Cl− with various initial ammonia concentration (NH4+:Cl− molar ratio, 2:1, 1.5:1, 1:1, 1:1.5, 1:2, and 1:3) under 30 mA cm−2 for 3h (Cathode: Pt, reference: Ag/AgCl, geometric surface area: 2 × 1 cm2)



[image: ]
Fig. S28 Degradation of ammonia on NFI/TiO2 for ten repeated runs. The concentration profile of total chlorine (black) and free chlorine (red) (Cathode: Pt, reference: Ag/AgCl, geometric surface area: 2 × 1 cm2, [Ammonia]0 = 25 mM, [Cl-]0 = 100 mM, and applied current density: 30 mA cm-2)
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Fig. S29 XRD pattern obtained from NFI/TiO2 before and after the batch electrolysis cycles
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Fig. S30 X-ray photoelectron spectra for the (a) Ni 2p and (b) Fe 2p of NFI and NFI/TiO2
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Fig. S31 X-ray photoelectron spectra of (a) Ni 2p, (b) Fe 2p, and (c) Ti 2p of NFI/ TiO2 before and after the electrolysis
[image: ]
Fig. S32 Raman spectra of NFI/TiO2 before and after electrolysis
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Fig. S33 Current efficiency for HER as a function of time during the wastewater electrolysis
[image: ]
Fig. S34 Fluorescence EEMs of the (a) influent and (b) effluent of the scaled up electrolysis cell for livestock wastewater treatment
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