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Fig. S1 SEM images of a BiOI NSs and b Bi-MOFs
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Fig. S2 Photograph of the HTS device


[image: ]
[bookmark: _Hlk120358715]Fig. S3 SEM image of Bi/CNRs-15
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Fig. S4 a Transient temperature profile and b nanoparticle size distribution of Bi/CNRs-15
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Fig. S5 SEM image of Bi/CNRs-TFA
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Fig. S6 a TEM image and b nanoparticle size distribution of Bi/CNRs-TFA
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Fig. S7 a The transient temperature profile, b TEM image and c size distribution of Bi/CNRs-5. d The transient temperature profile, e TEM image and f size distribution of Bi/CNRs-30
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Fig. S8 XRD pattern of Bi/CNRs-TFA
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Fig. S9 SAED pattern of Bi/CNRs-15
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Fig. S10 BF-STEM image of Bi/CNRs-15 and corresponding elemental mappings for Bi and C elements
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Fig. S11 XPS survey spectrum of Bi/CNRs-15
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Fig. S12 C 1s spectrum of Bi/CNRs-15
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[bookmark: OLE_LINK8]Fig. S13 a Bi 4f spectrum of Bi/CNRs-15. b Bi 4f spectrum of Bi/CNRs-15 with the etching depths of 10 nm
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[bookmark: _Hlk138708290]Fig. S14 O 1s spectrum of Bi/CNRs-15
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Fig. S15 EPR spectra of Bi/CNRs-15 and Bi/CNRs-TFA
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Fig. S16 TGA curve of Bi/CNRs-15
The reason for the weight percentage increase in the temperature range of 200 to 300 °C is that the rate of Bi oxidation is faster than the rate of evaporation of adsorbed water and loss of C to CO2 gas [Ref. 50 of the text]. The content of metallic Bi in the Bi/CNRs-15 composite is calculated to be 86.8 wt% from the equation below.
Bi (wt%) =
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Fig. S17 a N2 adsorption/desorption isotherms and b pore size distribution of Bi/CNRs-15. c N2 adsorption/desorption isotherms and d pore size distribution of Bi-MOFs
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Fig. S18 CV curves of Bi/CNRs-15 at 0.1 mV s-1
Two cathodic peaks at 0.49 and 0.70 V are related to the stepwise alloy reactions from Bi to NaBi and further to Na3Bi. The sharp redox peaks and highly overlapped CV curves indicate fast kinetics and superior reversibility of Bi/CNRs-15.
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[bookmark: _Hlk148707056]Fig. S19 a Galvanostatic charge/discharge curves and b cycling performance of Bi/CNRs-15 at 1 A g-1
The Bi/CNRs-15 electrode achieves the initial discharge/charge capacities of 557.7 and 430.8 mAh g-1, respectively, corresponding to a high initial Coulombic efficiency (ICE) of 77.2%. The irreversible capacity in the 1st cycle is inferred to be the formation of the solid electrolyte interphase (SEI) film [S1]. The ICE values can potentially be improved according to the following strategies, such as electrolyte engineering (optimizing the formula of electrolyte and adding the electrolyte additives), binder optimization (developing multifunctional binders) and pre-sodiation (mixing the anode materials with sodium metal) [S2, S3]. Meanwhile, the discharge curves display pronounced plateaus at 0.70 and 0.50 V while plateaus at 0.60 and 0.75 V in the charge curves, which are completely in conformity with the CV curves. A reversible capacity of 393 mAh g-1 can be achieved after 500 cycles with a high capacity retention of 94.2% relative to the second cycle.
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Fig. S20 Cycling performances of Bi/CNRs-5 and Bi/CNRs-30 at 1 A g-1
The Bi/CNRs-5 and Bi/CNRs-30 electrodes provide lower capacities of 324.5 mAh g-1/81.9% and 360.7 mAh g-1/92.1%, respectively, compared with Bi/CNRs-15.
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Fig. S21 a Rate performance and b charge/discharge curves at various rates of Bi/CNRs-15. c Rate performances of Bi/CNRs-5 and Bi/CNRs-30. d Comparisons of rate performance of Bi/CNRs-15 with reported Bi-based SIB anodes
Moreover, Bi/CNRs-15 also exhibits the best rate performance compared with Bi/CNRs-5 and Bi/CNRs-30. At relatively low current densities (0.2, 0.5, and 1 A g-1), the average rate capacity reaches 405.6, 400.7 and 398.3 mAh g-1, respectively. Even with a sharp increase in the current to 100 A g-1 (only 13 s to complete full charge or discharge), the capacity of Bi/CNRs-15 displays tiny fluctuation and still remains stable at 373.4 mAh g-1. Furthermore, two notable voltage plateaus still exist in the galvanostatic charge/discharge curves of Bi/CNRs-15 at 100 A g-1, suggesting low polarization. It is worth noting that the Bi/CNRs-15 electrode provides ultrahigh stability even at extremely large current, showing competitive rate property compared with reported Bi-based anodes for SIBs [S1-S8].
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Fig. S22 Long-term cycling performance of Bi/CNRs-15 at 10 A g-1
In order to further validate the sustainability of Bi/CNRs-15, the long-term cycling test at a high rate of 10 A g-1 was implemented, which remains a reversible capacity of 328.4 mAh g-1 after 9000 cycles with a decay rate of only 0.002% per cycle, illustrating the fast reaction kinetics and appealing cycling stability.
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Fig. S23 Cycling performance of the Bi/CNRs-15 electrode under different mass loadings (1.0, 2.5 and 4.2 mg cm-2) at 1 A g-1
Even under high mass loadings of 2.5 and 4.2 mg cm-2, the Bi/CNRs-15 electrode still has high discharge capacities of 381.5 and 352.5 mAh g-1 after 400 cycles under 1 A g-1, respectively. Compared with the mass loading of 1.0 mg cm-2 (394.6 mAh g-1 after 400 cycles under 1 A g-1), the capacities for 2.5 and 4.2 mg cm-2 only decay 13.1 and 42.1 mAh g-1, respectively. This indicates that the Bi/CNRs-15 electrode exhibits superior electrochemical performance even under high mass loadings.
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Fig. S24 a Volume of the Bi/CNRs-15 powder after 500 times vibration, and the inset shows related mass. b Cycling performance of Bi/CNRs-15 based on volumetric capacity at 1 mA cm-2.
The average tap density of Bi/CNRs-15 is calculated to be 2.36 g cm-3, and the volumetric capacity of the Bi/CNRs-15 electrode remains as high as 927.5 mAh cm-3 at 1 mA cm-2 after 500 cycles.
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Fig. S25 a CV curves of Bi/CNRs-15 at various scan rates. b The determination of b value. c Contributions of the pseudocapacitance and diffusion at a scan rate of 1.0 mV s-1. d Contribution ratios of capacitive- and diffusion-controlled capacities at different scan rates
The redox peaks hold similar shapes and peak potentials at increased scan rates, suggesting a small polarization voltage and fast reaction kinetics. The relationship of the scanning rate (v) and peak current (i) can be described as [S9]:
i = avb                           (S1)
where both a and b are variables. Generally, the b values of 0.5 and 1.0 represent the completely diffusion-controlled process (Faradaic) and capacitive-dominated behavior, respectively. The quantitative contributions of capacitive (k1v) and diffusion process (k2v1/2) in Bi/CNRs-15 can be calculated based on the following equation [S9]:
i(V) = k1v + k2v1/2                      (S2)
The sweep-rate-dependent CV technique was employed to explore remarkable high-rate performance at room temperature. Through fitting two couples of redox peaks, the b values are 0.86, 0.59, 0.80 and 0.63 for R1, R2, O2 and O1, respectively, which demonstrates that the redox process is joint controlled by the pseudocapacitance and diffusion [8]. With increasing the scan rate, the proportion of the capacitive contribution gradually increases from 87.5% to 92.8%. This reveals that carbon vacancies induced by ultrafast HTS can facilitate Na+ adsorption to endow extra capacities and fast kinetics [S5, S10].
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Fig. S26 a XRD pattern and b cycling performance of Na3V2(PO4)3 (NVP) at 1 A g-1
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Fig. S27 Electrochemical properties of the Bi/CNRs-15//NVP full cell at room temperature. a Cycling performance of Bi/CNRs-15//NVP at 1 A g-1. b Rate performance of Bi/CNRs-15//NVP at various current densities. c Charge/discharge curves of Bi/CNRs-15//NVP at various current densities. d Cycling performance of Bi/CNRs-15//NVP at 5 A g-1
Encouraged by the impressive half cell properties, a full cell was fabricated using Bi/CNRs-15 as an anode, and NVP as a cathode. The mass loadings of cathode and anode are about 3.9 and 1 mg cm-2, respectively, to obtain the optimal performance of the Bi/CNRs-15//NVP full cell. The capacity of the Bi/CNRs-15 anode in the half cell at the 3th cycle is 393.1 mAh g-1 (Fig. S19b) and that of the NVP cathode is 100.1 mAh g-1 (Fig. S26b). The circular electrodes are discoidal pieces with a diameter of 12 mm and the corresponding area of each disk is about 1.13 cm2. Hence, the negative/positive (N/P) ratio = areal capacity of anode/areal capacity of cathode = 393.1 mAh g-1 × 1 mg cm-2 × 1.13 cm2/(100.1 mAh g-1 × 3.9 mg cm-2 × 1.13 cm2) = 1.01. The full cell shows a reversible capacity of 337.8 mAh g-1 (based on the mass of anode) after 100 cycles at 1 A g-1. Note that the rate performance of the full cell is also impressive with the average capacities of 372.8, 367.9, 343.1, 320.1 and 308.2 mAh g-1 at 0.2, 0.5, 1, 2 and 5 A g-1, respectively. Moreover, the full cell achieves a high capacity of 291.2 mAh g-1 after 400 cycles under a high current of 5 A g-1. All these results indicate that Bi/CNRs-15 is a feasible anode for practical applications in fast charging SIBs.
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Fig. S28 Photograph of 1.0 M NaPF6 in DME at -40 °C
Ether-based solvents are widely acknowledged for their low viscosity and freezing points, which enable the electrolyte to maintain a liquid state and display high ionic conductivity even at low temperature. For example, DME (1,2-dimethoxyethane) exhibits a low freezing point of -58 °C [Ref. 66 of the text]. Through further cryogenic storage experiments of electrolytes, we find that the electrolyte viscosity of 1 M NaPF6 in DME increases at -40 °C (Fig. S28) compared with room temperature. A small part of electrolyte hangs upside down on the wall of the glass bottle and most remains liquid. The freezing point of the electrolyte can be reduced by lowering the electrolyte concentration and/or introducing a co-solvent with a low freezing point.
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Fig. S29 Charge/discharge curves of Bi/CNRs-15 at 1 A g-1 at different temperatures
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Fig. S30 CV curves of Bi/CNRs-15 at 0.1 mV s-1 at different temperatures
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Fig. S31 Charge/discharge curves of Bi/CNRs-15 at various rates at -40 °C
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Fig. S32 a Comparisons of rate performance of Bi/CNRs-15, Bi/CNRs-TFA and pure Bi at -40 °C. b Cycling performance of pure Bi at 1 A g-1 at -40 °C. c The voltage-time curve of pure Bi at various current densities at -40 °C.
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Fig. S33 Charge/discharge curves of Bi/CNRs-15 at various rates at -60 °C
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Fig. S34 Charge/discharge curves of the Bi/CNRs-15//NVP full cell at various current densities at -40 °C
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Fig. S35 Cycling performance of the Bi/CNRs-15//NVP full cell after rate tests (see Fig. 2h of the text) at 0.1 A g-1 at -40 °C
[image: ]
Fig. S36 Photograph of lighted LED panel by the Bi/CNRs-15//NVP pouch cell at room temperature
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Fig. S37 Charge/discharge curves of the Bi/CNRs-15//NVP full cell at various current densities at -60 °C
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Fig. S38 a-c SEM images of the Bi/CNRs-15 electrode after 1, 5 and 50 cycles, respectively
The morphology of the cycled electrode was characterized by SEM and TEM. From Fig. S38, as the cycle proceeds, the electrode gradually evolves into coral-like porous nanonetworks, which can facilitate the diffusion of Na+ [S1, S2].
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Fig. S39 TEM image of the Bi/CNRs-15 electrode after 50 cycles
Figure S39 shows the TEM image of Bi/CNRs-15 after 50 cycles, where it can be observed that ultrasmall nanoparticles load on the porous structure.
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Fig. S40 Quasi-equilibrium voltage curves of Bi/CNRs-15 from GITT at 25 and -40 °C
Fig. S40 shows a small voltage polarization (20 mV) for Bi/CNRs-15 at -40 °C, validating excellent Na+ transport kinetics even at low temperature. The Na+ diffusion coefficient (D) was calculated using GITT technique to expound the electrochemical reaction kinetics. The D value was calculated from the following equation:
D = )2)2                    (S3)
where S is the surface area of the tested electrode and τ is the time duration of the pulse, mB, MB and VM are the weight, molar mass and molar volume of the active materials, respectively. ΔEs is the steady-state potential change by the current pulse, and ΔEτ is the instantaneous potential change during the constant current pulse.
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Fig. S41 Na+ diffusion coefficients of Bi/CNRs-15 and pure Bi during the a discharging and b charging processes at 25 °C
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Fig. S42 Detailed voltage response curves of the Bi/CNRs-15 and pure Bi electrodes during a single constant current pulse with respect to time
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Fig. S43 a EIS plots and b corresponding Rel and Rct values of the cycled Bi/CNR-15 electrode at room temperature
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Fig. S44 a CV curves of Bi/CNRs-TFA at 0.1 mV s-1. b EIS plots of Bi/CNRs-TFA, where the inset shows corresponding equivalent circuit diagram and the values of fitted Rct and Rel. c GITT voltage profiles of the Bi/CNRs-TFA electrode. d Na+ diffusion coefficients of Bi/CNRs-TFA during the discharging and charging processes
Two cathodic peaks at 0.49 and 0.69 V are related to the stepwise alloy reactions from Bi to NaBi and further to Na3Bi (Fig. S44a). On the basis of the equivalent circuit diagram in Fig. S44b, the values of Rct and Rel are 8.2 and 3.6 Ω, respectively, which are larger than the values of Bi/CNRs-15 (Rct of 5.9 Ω and Rel of 1.5 Ω). Furthermore, the Na+ diffusion kinetic of the Bi/CNRs-TFA electrode was investigated by GITT. The Na+ diffusion coefficients of Bi/CNRs-TFA are in ranges of 2.6 × 10-8 to 6.0 × 10-12, which are smaller than those of Bi/CNRs-15 (5.8 × 10-8 to 1.6 × 10-11).
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Fig. S45 Comparisons of Rel of the Bi/CNRs-15 and pure Bi electrodes at various temperatures
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Fig. S46 Depth-profiling XPS spectra of O 1s of SEI on the a Bi/CNRs-15 and b pure Bi electrodes
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Fig. S47 a TEM image of the Bi/CNRs-15 electrode after 5 cycles at 5 A g-1 at -40 °C. b TEM image of the Bi/CNRs-15 electrode after 5 cycles at 0.1 A g-1 at -40 °C
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Fig. S48 N2 adsorption/desorption isotherms of the Bi/CNRs-15 electrode before cycles
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Fig. S49 EIS plots of the Bi/CNRs-15 electrodes after 5 cycles at 5/0.1 A g-1 at -40 °C, where the inset shows corresponding equivalent circuit diagram and comparisons of Rct and Rel
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Fig. S50 In-situ XRD patterns of the Bi/CNRs-15 electrode under different discharge/charge states
The in-situ XRD measurement was conducted to probe the Na-storage reaction mechanism of Bi/CNRs-15. The corresponding charge/discharge profile (left panel), line plot (centre panel) and contour plot (right panel) are displayed in Fig. S50. In the discharging process, the diffraction peaks of Bi at 26.9°, 37.7° and 39.4° are attenuated gradually due to alloying reaction into the NaBi phase. With continuous Na+ insertion, the new characteristic peaks of Na3Bi appear and gradually enhance while the peaks of NaBi weaken and eventually vanish, revealing that tetragonal NaBi has completely transformed into hexagonal Na3Bi. During the desodiation process, the peaks of NaBi arise along with the disappearing of the Na3Bi phase, and then all NaBi phase converts to Bi due to full charge at 1.5 V, corroborating the reversibility after alloying and dealloying reaction.


Supplementary Tables
Table S1 Crystallite sizes of Bi/CNRs-15 calculated by the Scherrer equation.
	2θ (°)
	β (°)
	L (nm)

	27.20221
	0.20307
	39.80275

	38.00517
	0.22482
	36.95764

	39.66177
	0.21785
	38.33422


The average crystallite sizes of Bi nanoparticles have been calculated by the Scherrer equation L= Kλ/(βcosθ), where L is the crystallite size, K is a constant of 0.89, λ is the wavelength of the X-rays, and β is the half-height width of the diffraction peak.
Table S2 Comparisons of low-temperature performances of various SIB anode materials
	Samples
	Operating temperature (°C)
	Rate capability (mAh g-1)
	Cyclic stability
(mAh g-1)
	Refs.

	Bi/CNRs-15
	-40
-60
	261.4 at 5 A g-1
237.9 at 2 A g-1
	241.7 (2400 cycles, 1 A g-1)
334.1 (100 cycles, 0.1 A g-1)
	This work

	CoGa2S4@G
	-60
	97 at 2 A g-1
	100 (1000 cycles, 1 A g-1)
	[S11]

	hard carbon
	-40
-50
	255 at 0.1 A g-1
220 at 0.1 A g-1
	243 (500 cycles, 0.1 A g-1)
209 (100 cycles, 0.1 A g-1)
	[S12]

	H-NTO
	-40
	25 at 0.3 A g-1
	55 (3000 cycles, 0.1 A g-1)
	[S13]

	Zn-HC
	-40
	44.3 at 2 A g-1
	258 (400 cycles, 0.1 A g-1)
	[S14]

	HCM-1300-ZBE
	-40
	295 at 0.1 A g-1
	260 (70 cycles, 0.1 A g-1)
	[S15]

	Meso-TNOC
	-40
	59 at 1.7 A g-1
	99 (500 cycles, 0.17 A g-1)
	[S16]

	FeSe2/rGO
	-40
	271.7 at 1 A g-1
	216.7 (200 cycles, 1 A g-1)
	[S17]

	Graphite
	-40
	59 at 0.3 A g-1
	/
	[S18]

	Fe3BO5@C
	-40
	292 at 0.05 A g-1
	350 (20 cycles, 0.1 C)
	[S19]

	VS4
	-40
	163 at 2 A g-1
	396 (20 cycles, 0.2 A g-1)
	[S20]

	Bi@C
	-40
	246 at 0.1 A g-1
	246 (10 cycles, 0.1 A g-1)
	[27 of text]

	TiO2@rGO
	-40
-20
	30 at 7 A g-1
54 at 7 A g-1
	100 (1500 cycles, 1.75 A g-1)
120 (1500 cycles, 1.75 A g-1)
	[S21]

	F-CuFeS2@RGO
	-40
-20
	200 at 2 A g-1
375 at 2 A g-1
	182 (200 cycles, 2 A g-1)
375 (200 cycles, 2 A g-1)
	[S22]

	ZnSe@NCNFs
	-40
-20
	/
98 at 5 A g-1
	55 (1000 cycles, 1 A g-1)
123 (1000 cycles, 1 A g-1)
	[S23]

	KTOP
	-35
	75.6 at 0.45 A g-1
	90 (550 cycles, 0.45 A g-1)
	[S24]

	TS-MoSe2
	-30
-10
	308 at 0.1 A g-1
410 at 0.1 A g-1
	260 (100 cycles, 0.1 A g-1) 380 (100 cycles, 0.1 A g-1)
	[S25]

	FePSe3
	-30
	320 at 10 A g-1
	200 (10000 cycles, 20 A g-1)
	[S26]

	PANI/Ti3C2Tx
	-30
	120.5 at 0.1 A g-1
	100 (100 cycles, 0.1 A g-1)
	[S27]

	MoS2@MXene@D-TiO2
	-30
	/
	180 (100 cycles, 0.05 A g-1)
	[S28]

	Ti3C2-Nfunct
	-25
	90 at 5 A g-1
	110 (5000 cycles, 1 A g-1)
	[S29]

	3DSG
	-25
	84 at 2 A g-1
	250 (500 cycles, 0.1 A g-1)
	[S30]

	defective HT-NW
	-25
	108 at 5 A g-1
	120 (4200 cycles, 1 A g-1)
	[S31]

	c-MoS2
	-25
	37 at 2 A g-1
	100 (1000 cycles, 0.2 A g-1)
	[S32]

	FeS@g-C
	-25
	/
	311 (80 cycles, 0.05 A g-1)
	[S33]

	Fe7Se8@C
	-25
	/
	338 (80 cycles, 0.2 A g-1)
	[S34]

	Fe1-xS@NC
	-25
	159.9 at 3 A g-1
	/
	[S35]

	hard carbon
	-20
	175 at 2 A g-1
	181 (1000 cycles, 2 A g-1)
	[S36]

	NaV1.25Ti0.75O4
	-20
	93 at 0.2 C
1 C = 100 mA g-1
	/
	[S37]

	Bi@3DCF
	-20
	190 at 5 A g-1
	200 (500 cycles, 1 A g-1)
	[S38]

	NaTi2(PO4)3/C foams
	-20
	95 at 20 C
	116 (500 cycles, 0.2 C)
	[S39]

	NaTi2(PO4)3/C-CNT
	-20
	62 at 10 C
1 C = 133 mA g-1
	/
	[S40]

	NTONb0.08
	-15
	103 at 0.1 A g-1
	103 (200 cycles, 0.1 A g-1)
	[S41]

	SnSe2-SePAN
	-15
	300 at 0.5 A g-1
	300 (700 cycles, 0.5 A g-1)
	[S42]

	Sb2Se3/rGO
	-15
	233 at 2 A g-1
	/
	[S43]

	hard carbon 
paper
	-15
	300 at 0.5 A g-1
	217.1 (1000 cycles, 0.5 A g-1)
	[S44]

	CF
	-10
0
	/
	270 (500 cycles, 0.2 A g-1)
227 (1000 cycles, 0.5 A g-1)
	[S45]

	ZnSe-40
	-10
	181 at 5 A g-1
	247 (600 cycles, 1 A g-1)
	[S46]

	ZnS/MWCNTs
	-10
	208 at 4 A g-1
	230 (400 cycles, 1 A g-1)
	[S47]

	CoS/Cu2S@C-NC
	-5
	/
	375.2 (900 cycles, 2 A g-1)
	[S48]

	P-NiSe@C
	-5
	343.8 at 0.2 A g-1
	313.8 (50 cycles, 0.2 A g-1)
	[S49]

	Bi@C-NSA
	0
	276.3 at 2 A g-1
	271.8 (200 cycles, 1 A g-1)
	[28 of text]

	NbSSe
	0
	85 at 3 C
1 C = 150 mAh g-1
	136 (500 cycles, 0.2 C)
	[S50]

	FeS0.5Se0.5@NC
	0
	226.1 at 8 A g-1
	380.1 (200 cycles, 1 A g-1)
	[S51]

	Na2Ti6O13@C
	0
	20 at 5 C
	43 (250 cycles, 2 C)
	[S52]

	SnSe@CNF
	0
	/
	267 (100 cycles, 0.1 A g-1)
	[S53]
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