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Fig. S1 FT-IR spectras of the cellulose in aqueous suspensions. a CNF(-OH), b CNF(-COO–), and c CEF(-COO–)
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Fig. S2 Photographs of a OLO cathode with CEF binder and b upon bending deformation
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자동 생성된 설명]
Fig. S3 SEM image of the CNF(-COO–) cathode 
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[bookmark: _Hlk182648388][bookmark: _Hlk182648670]Fig. S4 Electrochemical performance of cells (CNF(-COO–) cathode (areal-mass-loading = 19 mg cm–2)||Li metal anode (100 m)). a Spatial distribution of electronic resistance of the CNF cathode using EBAC analysis. b Charge/discharge voltage profiles at varied discharge current rates (0.1 C (=0.47 mA cm–2) – 0.5 C (=2.3 mA cm–2)) at a fixed charge current rate of 0.1 C. c (top) GITT profile upon repeated current stimuli at charge/discharge current rate of 0.1 C/0.1 C (=0.47 mA cm–2) and (bottom) internal cell resistance (Rinternal) as a function of SOC and DOD. d Cycling retention at charge/discharge current rates of 0.2 C/0.2 C (=0.95 mA cm–2/0.95 mA cm–2) under a voltage range of 2.0–4.7 V
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[bookmark: _Hlk183350476]Fig. S5 Nyquist plots of a PVDF and b CEF cathodes obtained by symmetric cells configuration at 0 % SOC, in which symbols and solid lines represent experimental data and fitted curves based on a transmission line equivalent circuit model (TLM), respectively. c Equivalent circuits utilizing generalized finite length Warburg element open circuit terminus (Wo)
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Fig. S6 Electrochemical performance of cells (PVDF cathode with SWCNTs (areal-mass-loading = 19 mg cm–2)||Li metal anode (100 m)). a Photograph. b Charge/discharge voltage profiles at varied discharge current rates (0.1 C (=0.47 mA cm–2) – 0.5 C (=2.3 mA cm–2)) at a fixed charge current rate of 0.1 C. c (top) GITT profile upon repeated current stimuli at charge/discharge current rate of 0.1 C/0.1 C (=0.47 mA cm–2) and (bottom) internal cell resistance (Rinternal) as a function of SOC and DOD. d Charge/discharge voltage profiles at 1st and 9th cycles. e Cycling performance at charge/discharge current rates of 0.2 C/0.2 C (=0.95 mA cm–2/0.95 mA cm–2) under a voltage range of 2.0–4.7 V
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Fig. S7 SEM images of the PVDF cathode containing the SWCNTs
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Fig. S8 Galvanostatic intermittent titration technique (GITT) profiles of the CEF and PVDF (areal-mass-loading = 22 mg cm–2) cathodes at a current rate of 0.1 C (= 0.55 mA cm–2) with the interruption time of 1 h between the pulses. The Li+ diffusion coefficients (were calculated using the following equation (S1) [1]:

=                           (S1)

where  is assigned to the mass of the electrode active material,  is the geometric area of the electrode,  is the molar mass of the electrode material,  is the molar volume of the electrode material, and other parameters (, , and ) in the equation are displayed in the GITT profiles shown above


	
	Electrolyte composition

	Electrolyte 1
	1 M LiPF6

	Electrolyte 2
	0.3 M Mn(TFSI)2

	Electrolyte 3
	1 M LiPF6 + 0.3 M Mn(TFSI)2

	Electrolyte 4
	1 M LiPF6 + 0.3 M Mn(TFSI)2 with CEF
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Fig. S9 Electrolyte degradation test under coexistence of PF6– and Mn2+. a Compositions of the carbonate-based liquid electrolytes. b Photographs of the carbonate-based liquid electrolytes before (left) and after (right) being stored for 5 days at 45 ℃, using a solvent mixture of EC/DMC (1/1, v/v) in the whole samples
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[bookmark: _Hlk182643769]Fig. S10 Amount of metallic Ni, Mn and Co deposited on cycled Li metal anodes paired with the CNF cathode, measured by ICP-MS analysis
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[bookmark: _Hlk182642042]Fig. S11 Charge/discharge voltage profiles of the cells as a function of areal-mass-loading of the PVDF cathodes at charge/discharge current rates of 0.05C/0.1C and voltage range of 2.0–4.7 V
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[bookmark: _Hlk182642055]Fig. S12 Cycling performance of cells (CEF cathode (areal-mass-loading = 30 and 50 mg cm–2)||Li metal anode (100 m)) at charge/discharge current rates of 0.2C/0.2C and voltage range of 2.0–4.7 V
[bookmark: _Hlk182642291]We evaluated the cycling performance of CEF cathodes with high areal-mass-loadings of 30 and 50 mg cm−2. Both cathodes showed stable capacity retention during cycling. However, the CEF cathode with an areal-mass-loading of 50 mg cm−2 showed relatively limited cycle life (~23 cycles). When conventional carbonate electrolytes are used, Li metal anodes tend to show severely low plating/stripping reversibility, which becomes more pronounced at higher plating/stripping capacities [S2]. In this study, approximately 35 μm-thick Li (paired with the 30 mg cm⁻² cathode) and 59 μm-thick Li (paired with the 50 mg cm⁻² cathode) were plated and stripped from the Li metal anode during each cycle, which initially had a thickness of 100 μm. To identify the cause of the capacity fading, we replaced the cycled Li metal anode, separator, and electrolyte with fresh components after observing the capacity fading. The cell then recovered close to its initial discharge capacity, indicating that the CEF cathode may not be the primary factor contributing to cycling decay. Similar experiments involving the replacement of the cycled Li metal anode, separator, and liquid electrolyte have been reported in previous studies for Li-metal cells [S3, S4].
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자동 생성된 설명]Fig. S13 (a) Photograph of the pouch-type cell (30 × 30 mm2) containing CEF cathode (areal-mass-loading of 50 mg cm–2). (b) Charge/discharge voltage profile at charge/discharge current rates of 0.05C/0.1C and voltage range of 2.0–4.7 VThe  was calculated using the following equation (S2) [S1]:

=                        (S2)

where  is assigned to the mass of the electrode active material,  is the geometric area of the electrode,  is the molar mass of the electrode material,  is the molar volume of the electrode material, and other parameters (, , and ) in the equation were displayed in the Fig. S5. 
Table S1 Calculation details for the  of the CEF and PVDF cathodes
	
	
	
	
	
	
	
	

	
	(s)
	(g mol–1)
	(cm3 mol–1)
	(mg cm–2)
	(mV)
	(mV)
	[bookmark: _Hlk175158518](cm2 s–1)

	CEF cathode
	3600
	106.32
	20.53
	22.00
	178.23
	218.9
	[bookmark: _Hlk175158508]4.23 x 10-9

	PVDF
cathode
	3600
	106.32
	20.53
	22.00
	202.24
	281.52
	3.29 x 10-9



As illustrated in Fig. 6e, the specific energies of the full cells is plotted. The equation be derived according to, 

Specific energy (Wh kg–1) =  = 

where Mcathode, Manode, and Melectrolyte are the mass of cathode, anode (comprising Li metal (100 μm corresponding to an areal capacity of 20 mAh cm–2) and Cu current collector (9 μm)), separator and injected liquid electrolyte. C and A indicates capacity and area, respectively. The electrolyte mass/cell capacity (E/C) ratio in the cell was controlled as 2.5 g Ah–1. The nominal voltage of the cell was set as 3.6 V.
Table S2 Calculation details for the specific energy densities of the cells containing the CEF-based OLO cathodes
	C/A
	Mcathode/A
	Manode/A
	Mseparator/A
	Melectrolyte/A
	Mtotal/A
	Specific energy

	(mAh cm–2)
	(mg cm–2)
	(mg cm–2)
	(mg cm–2)
	(mg cm–2)
	(mg cm–2)
	(Wh kg–1)

	12.5
	55.6
	13.2
	0.98
	31.25
	101.03
	445.4


Table S3 Comparison of the CEF-based OLO full cells (this study) with previously reported OLO cathodes. Note that some previous works did not reveal the thickness data of Li-metal anodes. Therefore, these values were assumed to be 100 μm
	
	C/A
	Mcathode/A
	Manode/A
	Mseparator/A
	Melectrolyte/A
	Mtotal/A
	Specific energy

	
	(mAh cm–2)
	(mg cm–2)
	(mg cm–2)
	(mg cm–2)
	(mg cm–2)
	(mg cm–2)
	(Wh kg–1)

	CEF cathode
	12.5
	55.64
	13.2
	0.98
	31.25
	101.03
	445.4

	PVDF cathode
	9.15
	60.96
	13.2
	0.98
	31.25
	106.39
	309.6

	Hybrid binder [S5]
	0.81
	8.71
	13.2
	0.98
	1.88
	24.77
	117.7

	Guar gum
[S6]
	0.38
	7.90
	13.2
	0.98
	1.25
	23.33
	58.6

	Polymeric nanofibers
[S7]
	1.60
	10.00
	13.2
	0.98
	4.06
	28.24
	203.9

	Sodium-alginate 
[S8]
	0.50
	7.92
	13.2
	0.98
	1.25
	23.35
	77.1

	Fluorinated polyimide
[S9]
	0.69
	9.40
	13.2
	0.98
	1.88
	25.46
	97.6

	Aqueous binder
[S10]
	0.58
	8.11
	13.2
	0.98
	1.44
	23.72
	87.9

	Double-helix-superstructure
[S11]
	1.25
	11.65
	13.2
	0.98
	3.13
	28.96
	155.4

	Water-soluble
guar gum 
[S12]
	0.31
	7.02
	13.2
	0.98
	0.81
	22.01
	50.7

	DNA-wrapped
CNTs [S13]
	1.80
	14.10
	13.2
	0.98
	5.00
	33.28
	194.7

	Polyacrylic
acid [S14]
	0.55
	7.91
	13.2
	0.98
	1.25
	23.34
	84.8

	Nanofibrous
carbon binder [S15]]
	1.61
	13.00
	13.2
	0.98
	4.38
	31.56
	183.7

	Carbon fibrous skeletons 
[S16] 
	2.85
	16.00
	13.2
	0.98
	6.50
	36.68
	279.7
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